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Abstract: The present work aimed to examine the feasibility of using artificial neural network (ANN)
based models to obtain accurate estimates of nitrate loads in river basins, which is an important
parameter for water quality management. Both Single ANN (SANN) and Ensemble ANN (EANN)
models were used to obtain the load estimations for five river basins in the Midwest United States.
These basins included the Cuyahoga, Raisin, Sandusky, Muskingum, and Vermilion basins in Michigan
and Ohio. Further, canonical correlation analysis (CCA) was applied to the ANN models to improve
the performance. The k-fold cross-validation method was then utilized to evaluate the proposed
models based on two statistical indices, namely, the YRMSE and rBAIS, and the estimates were
compared for four different k values (k = 3, 5, 7, and 10). According to the results, the EANN model
seemed to produce better load estimations than the SANN model, and the CCA based EANN model
tended to produce the best estimates among all of the proposed models in this study. The box plot
data for the rRMSE index were also investigated, and the plot results indicated that increasing values
of k tended to generate better estimates. Thus, the use of k = 10 is recommended for load estimations
since this value was associated with better performances and less biased estimates.

Keywords: single artificial neural network; canonical correlation analysis; ensemble artificial neural
network; k-fold cross-validation; load estimations; Midwest; nitrate

1. Introduction

Nutrient enrichment is a growing problem in rivers and streams, where excessive nutrients can
cause degradation in water quality. Nutrients represent one of the most problematic water quality
constituents in rivers in the Midwestern United States [1-3]. In particular, nutrient levels in streams
and rivers in the state of Ohio are a critical issue and have been monitored for many years to obtain
accurate nitrate load estimations. For designing suitable conservation measures or reduction strategies,
it is necessary to accurately calculate the nutrient loads on a monthly, seasonal, and yearly basis at each
monitoring station. However, evaluation results for nutrient loads typically contain many potential
sources of uncertainties including those related to the models used and the data sets.

Various type of methods have been developed to resolve the data gaps encountered when
estimating nutrient loads [2,4]. One well-known approach for estimating water quality constituents is
a regression based method, in which water data are correlated with the constituents of concern such
as the nutrient load. The United States Geological Survey (USGS) has developed several methods
to calculate various water quality constituents. The most well-known USGS methods are based on
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multiple regression techniques that relate observed concentrations with the daily discharge, time, and
season. In obtaining water quality constituent data, the estimation of daily nutrient concentrations is
often a critical issue.

Annual, seasonal, and monthly load estimations are important because these loads are the
summation of the daily load multiplied by the daily discharge and daily nutrient concentration [4-7].
Nutrient concentrations are often not monitored every day and over long periods of time. Hence, many
researchers have suggested different approaches for estimating the missing nutrient concentrations.
The most representative methods for load estimations are based on regression analyses between
the streamflow and nutrient concentrations. Cohn et al. [8] and Cohn [4] suggested the use of a
regression model with seven parameters to estimate daily concentrations. This model estimates the
logarithm-transformed concentrations through use of a second-order polynomial regression equation
with data on logarithm-transformed daily flows and decimals of time. The algorithm of the regression
method can be obtained by downloading the LOADEST or FLUXMASTER load-estimation software
package from USGS. Hirsch et al. [9] also developed another load estimation method, which is referred
to as the Weighted Regressions on Time Discharge and Season (WRTDS). This method estimates
the logarithm of daily concentrations by using the sine and cosine transformations of decimal time,
and the logarithm of daily discharge. The method is implemented with five or seven parameter
equations. The main input parameters in WRTDS are decimal time and streamflow discharge. One of
the important processes in WRTDS is the estimation of weights for each day in the sample depending
on the differences in the values of the variables between the prediction and sample day [10]. In a
more recent study, the algorithm of WRTDS was applied to Exploration and Graphics for RivEr Trend
(EGRET) to enhance load estimations [11].

The prediction of nitrate concentrations in streamflow by using artificial intelligence algorithms
has been studied. Markus et al. [12] and Markus et al. [13] used artificial neural network (ANN)
based models to forecast weekly nitrate concentrations. They also compared those ANN model
results with results from evolutionary polynomial regressions and naive Bayes models for several
watersheds in Illinois, USA. The authors demonstrated that the most outstanding models differed
depending on the error evaluation method used, and they proposed a multi-tool approach for analysis.
Besides, many other studies have applied ANN models to predict the monthly biological oxygen
demand (BOD) [14,15], monthly total nitrogen content, total phosphorus content, and dissolved oxygen
level [16,17] in various types of rivers located in different countries.

Several research projects have been conducted to estimate various hydrological variables based
on an Ensemble ANN (EANN) approach. These studies used hydrological variables that have been
spatially and temporally monitored for long periods of time, and the results seem to suggest that an
EANN approach is appropriate for application in artificial intelligence algorithms. For example, the
EANN approach has been applied to simulations and forecasts of the rainfall-runoff process [18], flood
frequency [19,20], peak discharge [21], and monthly potential evapotranspiration [22]. These studies
proposed that the EANN was more effective than a Single ANN (SANN) or other existing physical
approaches. Moreover, cross-validation techniques have been widely used for different hydrologic
variables to assess the estimates obtained from hydrological models [23-26].

Recently, the EANN approach has been applied for forecasting and simulations of water quality
constituents to improve the estimation modeling. Kan et al. [27] used an EANN based on a hybrid
function approximator, named the PEK model, to simulate runoff in three different catchments in
China. They investigated the results for the runoff hydrograph and peak flow derived with the EANN
by comparing the model performance with the performances of two physical runoff models, namely,
the Xinanjiang model and the IHACRES (identification of unit hydrographs and component flows from
rainfall, evaporation, and streamflow) model. The authors demonstrated that the performances of the
EANN model for runoff and peak flow results were better than those of the other two physical watershed
models tested. In addition, Huang and Gao [28] applied an EANN to simulate chlorophyll with other
seven water quality parameters. They reported that the ensemble simulations were affected by the
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ensemble size and that determination of the appropriate ensemble size was significant for ensemble
simulations. However, little research has been carried out to investigate EANN applications with
multivariate statistics for enhancing load estimations and to evaluate the load estimation performances
based on both SANN and EANN approaches.

In the present study, we aimed to identify a better estimation model for obtaining load estimations,
which can be used for nutrient concentration simulations in Midwest streams or rivers. The SANN and
EANN models were applied to determine a proper model by investigating daily load estimations and
by comparing the performances. Further, multivariate statistics, namely, canonical correlation analysis
(CCA) results, were used to improve the load estimations by establishing a correlation structure
between the data sets of two variables that were strongly related to nutrient concentrations. For the
model validation, this study utilized the k-fold cross-validation technique, which involved identifying
the appropriate value of folds and evaluating the model performance.

2. Data Sets

For the analysis of load estimations, we focused on Midwest river basins in the USA and used data
from five stations located in the Cuyahoga, Raisin, Sandusky, Muskingum, and Vermilion basins. The
five stations cover river basins characterized by various areas ranging from 697 km? to 19,208 km?. The
average for the nitrate concentration ranged from 1.389 to 3.957 mg/L, and the average for the discharge
ranged from 491.013 to 8642.170 m3/s. The monitoring durations were 35, 27, 35, 22, and 7 years for
the Cuyahoga, Raisin, Sandusky, Muskingum, and Vermilion basins, respectively. The land in the
river basins is basically agricultural, urban, and wooded land. The agricultural areas represent a large
portion of the overall land use, and agricultural activities here have led to high nitrate concentrations
downstream in Lake Erie and the Mississippi River basin. Around the Cuyahoga, Raisin, Sandusky;,
Muskingum, and Vermilion stations, the proportion of land used for agriculture amounts to 17%,
72%, 83%, 71%, and 52%, respectively. The drainage basins also contain many wetlands, lakes, and
floodplain forests where ecological resources are plentiful. Figure 1 shows the five river basins studied
in the present study.

Lat: 41°57%38"

S0y temsears  Lake Erie .
(;l}y?‘f s +
~-MICHIGAN —

Lat: 41°1828"  Lal: 41°22'55" [ af: 41°2343"
Lon: 83°09'32" Lon: 82°19'01" \;}

Legend

*  outlet

l:l Vermilion
l:l Sandusky
l:l Raisin
l:l Muskingum %
" R Lat: 39°38'42" Pad
[ ] cuyahoga e Lon: 81°51'002
OHIO o 20 40 80 120 —

160
Streams @ Kilometers

Figure 1. Five river basins and locations of stations used in this study. Gray lines within each basin
indicate the Hydrologic Unit Code (HUC) 10, and blue lines indicate the streams in each basin.
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To conduct the analysis of load estimations, we used daily discharge data, nitrate concentrations,
and the day of year at the five stations. The daily discharge was denoted as Q, and the daily nitrite
plus nitrate (NO,-N+NOj3-N) data were represented as nitrate (NOj) in this study. The loads we
aimed to estimate can be calculated by Q x NO3. The data sets for the analysis of load estimations
were obtained from USGS (https://waterdata.usgs.gov/nwis/sw) for the discharge data and the Water
Quality Laboratory (WQL) of the National Center for Water Quality Research at Heidelberg University,
Tiffin, Ohio (https://www.heidelberg.edu/tributary-data-download) for the nitrate data. The periods of
the data sets were 19822016 for the Cuyahoga station, 1983-2009 for the Raisin station, 19822016 for
the Sandusky station, 1995-2016 for the Muskingum station, and 2001-2007 for the Vermilion station.
A description of each station is presented in Table 1. Figure 2 shows Q and nitrate concentration for the

five stations.

Table 1. Descriptive features for the five stations in the USA that were used for the estimation of

nitrate loads.

Station USGS Station Year Drainage Mean Discharge Mean Nitrate Land Use (%)
2 3 i
Name Number Area (km”) (m’/s) Concentration (mg/L) Agriculture  Urban  Wooded
Cuyahoga 04208000 1982-2016 1843 1005.486 2457 17 47 35
Raisin 04176500 1983-2009 2755 825.608 2.962 72 11 16
Sandusky 04198000 1982-2016 3285 1474.102 3.957 83 9 8
Muskingum 03150000 1995-2016 19,208 8642.170 1.389 52 2 43
Vermilion 04199500 2001-2007 697 491.013 2.191 71 1 26
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Figure 2. Plots of (a) daily discharge (m3/s) and (b) daily nitrate concentrations (mg/L) for the five
river basins.

3. Methods

3.1. ANN Models for Load Estimations

In the present study, we constructed several ANN models to evaluate the optimal ANN model for
estimating daily loads at the sites of interest. Variables for discharge, nitrate concentration, and time
were used to obtain the load estimations. An ANN is an information processing model designed for
reproducing certain structures and for identifying the interconnections among a group of nodes. Such
a model can be utilized to solve complex problems related to classification, pattern recognition, and
estimation as a nonlinear mathematical model. With an ANN model, multilayer perceptrons (MLPs)
have been commonly used to provide the ANN predictions, which represent the model output [29].
The MLPs consist of three types of layers including input, hidden, and output layers, and they can
be characterized as a feed forward supervised model. During this process, the input layer receives
information consisting of the input variables, and then, the hidden layer connects the input layer
with the output layer based on weighted acyclic arcs. The number of hidden neurons of the hidden
layer plays a crucial role in predictions of the model output with the ANN model. The model can be
overfitted when many hidden neurons are applied due to the use of an insufficient training sample,
while the model can underfitted when few neurons are utilized due to the difficulty of determining
functional relationships among the variables. Here, five hidden neurons were selected for the hidden
layer to build the ANN model by considering the model performance. This number was also used in
previous studies to estimate hydrological variables [20,23].

For the training algorithm in the ANN process, the Levenberg-Marquardt (LM) algorithm was
applied for the determination of optimal solutions to decrease errors of the model. This algorithm is
relatively faster and more accurate than other algorithms including the gradient descent algorithm.
The scalar parameter of the LM algorithm was selected based on the analysis of Demuth et al. [30]. If
the value of the scalar parameter is large, the algorithm follows the features of the gradient descent
method, whereas if the value of the parameter is small, it follows the properties of the Gauss-Newton
method. Here, the error of a specific configuration was identified and compared with the target output
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by running the training samples. Then, early stopping criteria were applied in this study to find the
optimal network parameters that could minimize the estimation error.

3.2. Ensemble ANN Models

Once we set up the SANN model for load estimations, the ensemble technique was used for
creating the EANN model, which was applied to improve the ability of generalization and stability of
model performance. Based on the purposes of this study, we compared the results obtained from the
SANN model and the EANN model. The EANN model was based on a number of ANNSs that were
trained and generated by individual networks [31,32]. As a result, the number of ANN models is 14 in
this study. In the EANN processes, the bagging approach was used to produce unique predictions of
the model [33]. With the bagging method, a number of ANNs were trained based on a subset of the
training set by solving a given problem. Then, the results generated by the individual networks were
combined to produce the unique output, which is the output of the ensemble.

The size of an ensemble plays a significant role in the design of the EANN model as it defines
the amount of information and determines the degree of homogeneity within the training subsets.
If the size for the ensemble is relatively large, the time of training will be increased because of the
many sub-models. This affects the amount of information assigned in each ensemble, and it decreases
the model performance. If the size for the ensemble is relatively small, the ability for generalization
and stability will be not improved. Different ensemble sizes were examined for this study, and an
ensemble size of 14 was selected. The estimation error was gradually reduced by the size of 11, while
subsequent increases in the size seemed to result in very little change in the error. Notably, Shu and
Ouarda [20] investigated the size of the ensemble and chose a size of 14 for the EANN model with the
bagging method.

3.3. Integration of ANN Models and CCA

The CCA technique is basically used to establish a linear relationship between two groups of
random variables. This multivariate approach provides a general theoretical framework for factorial
discriminant analysis and multivariate regression. Previously, CCA has been applied for estimations of
hydrological variables and recommended for CCA based ANN models to enhance the generalization
and performance [20,23]. If X and Y are two random variables, CCA computes two sets for basis vectors
that are canonical variables. Given that W and V are a linear combination of X and Y, respectively,
we have

W=aX 1)

V=pY 2
where o’ denotes the transpose of the vector & and ’ denotes the transpose of the vector .
The correlation between W and V is calculated as

o= o Yxy B 3)

Vo' Lxap’ Yy B
Based on the above equation, the vectors of @ and f are determined by maximizing the correlation,
p. If the first pair of canonical variables is calculated, other pairs of the canonical variables are estimated
based on the correlation subject to the constraint of unit variance for normalization. Note that X implies

a set of discharge and time variables and Y implies a set of load variables in this study. A time variable
was used in this study because the water quality and discharge can be influenced by seasonal trends.
The CCA constructs a transformed space called a canonical space, and then, a calibration with data is
conducted by establishing the functional relationship between the two sets of variables in the space.
Detailed information on the process of CCA is available in the literature [34].

Once the discharge and time variables were projected for the use of the ANN model in the canonical
space, the projected variables were fed to the model for estimations of load variables. The ANN model
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approximates the functional relationships among the canonical variables as the input variables and
load variables as the output variables. Through the MLP process, the output layers generate the ANN
predictions. The present study used an integration of the SANN and CCA (SANN-CCA) and an
integration of the EANN and CCA (EANN-CCA) to achieve improvements in the load estimations.
Figure 3 presents a diagram of the processes to estimate loads using the ANN based models.

Data collection: Obtain streamflow, nitrate
concentration, and date of interest

Preprocessing: Transform the collected variables for normality and
standardize (logarithmic transformation and standardization)

~

Estimating: Perform ANN and CCA

Estimating: Perform ANN based on the Analysis based on the variables and

variables by assessing the proposed model canonical variables by assessing the

with k-fold cross validation proposed model with k-fold cross
validation

/

~

Output: Gain load estimation using OQutput: Gain load estimation using
ANN model ANN and CCA model

l

Comparison and validation: Compare and validate the results
based on rRMSE and rBIAS with k-fold cross validation

Figure 3. Diagram for processes used to obtain load estimations with the ANN and ANN-CCA.
3.4. Evaluation Approaches and Criteria

To assess the performance of models, cross-validation techniques have been commonly used as
resampling methods [19,35,36]. This study used the k-fold cross-validation method to evaluate the
relative performance of several ANN models during load estimations.

In the k-fold cross-validation procedure, the original sample is randomly grouped into k
subsamples based on the same size. The subsamples are classified for a testing member and training
members. The testing set as the validation data set represents an unknown data set, and the training
sets represent known data sets. Then, the model conducts the analysis on the training sets and validates
the analysis on the testing set. The cross-validation process is repeated k times to obtain a single
estimate of the model output from the average value of the results for the different sets.

The ANN models can be assessed on the basis of two measures, namely, the relative root mean
squared error (rRMSE) and the relative mean bias (rBIAS), which were used for flood quantile
estimations [20]. The two measures can be computed as follows:
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*RMSE = 100 x )

100 v (qi - qi)
rBIAS = — — ®)
n ; q,‘
where 1 is the total number of data points used for the analysis, g; is the measured data for day i, and
§i indicates the load estimation derived from the ANN models for day i. The rRMSE ranges from zero
to large positive numbers. The rBIAS ranges from large negative numbers to large positive numbers.

The optimal value of both rRMSE and rBIAS is zero.

4. Results and Discussion

4.1. Single ANN and Ensemble ANN

In the analysis, the SANN and EANN models were structured for load estimations, which could
be used to investigate nutrient concentrations and manage water quality. The k-fold cross-validation
procedure was applied to the study areas, and 3-fold, 5-fold, 7-fold, and 10-fold cross-validation
techniques were examined during the estimations of loads for five river basins. Rodriguez et al. [37]
used various values of the folds including 2, 5, and 10 for the identification of optimal values of the folds.
We also selected fold values less than 10 for the analysis of load estimations in this study. A correlation
analysis for discharge and nitrate concentrations and for discharge and loads was conducted as shown
in Figures 4 and 5. Figure 4a shows that correlation coefficients between the daily discharge and daily
nitrate concentration ranged from —0.584 to 0.519. Figure 4b shows that correlation coefficients between
the annual discharge and annual nitrate concentration ranged from —0.805 to 0.283. Additionally,
Figure 5 presents that correlation coefficients between the daily discharge and daily load and between
the annual discharge and annual load ranged from 0.777 to 0.919 and from 0.675 to 0.918, respectively.
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indicates the correlation coefficients.
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Figure 5. Plots of the (a) relationship between the daily discharge and daily nitrate load and (b)

relationship between the annual discharge and annual nitrate load for each basin. r indicates the

correlation coefficients.

With both the SANN and EANN models, we obtained load estimations for different
cross-validations, and Table 2 presents the corresponding rRMSE and rBIAS indices for the 3-fold,
5-fold, 7-fold, and 10-fold cross-validations. The rRMSE index basically provides an assessment of
accuracy for the ANN predictions, and the ¥BIAS index generally provides an indication of whether
the proposed model seems to overestimate or underestimate. The results in Table 2 show that the
rRMSE and rBIAS indices tended to improve for the five river basins when the number of folds in
the cross-validation increased. The analysis using the ¥BIAS index shows that the models produce
underestimated loads. Further, Figure 6 presents the rRMSE index derived from the SANN and EANN
models with the different cross-validations. This figure indicates that the EANN model seemed to
have a better performance than the SANN model according to the YRMSE criterion. The 10-fold
cross-validation for each basin provided enhanced performances among the four different k-fold
cross-validations tested.

Table 2. K-fold cross-validation results based on the SANN and EANN models for the five stations.

. Single ANN Ensemble ANN
Stations

3-fold  5-fold  7-fold  10-fold  3-fold  5-fold  7-fold  10-fold
Cuyahoga fRMSE (%) 352.831 311.046 306131 237.211 321.558 297.889 241552  214.550
rBIAS (%) -13.800 -12.382 -13.469 -11.957 -11.798 -12.754 -11.202 -11.314
Rasin fRMSE (%) 280.892 274257 270516 258239  280.725 270368 260.635  257.411
rBIAS (%)  —31.303 —30.402 -30.380 —30.342 —32.069 —30.754 —30.942 —30.302
Sandusky rRMSE (%) 740484 740347 735574  692.975 730.151 714.809 724670  692.351
rBIAS (%) —119.670 -116277 -119.456 -114721 -116436 -114.695 -115.791 —114.841
Muskingum rRMSE (%)  303.115 299.618 295394 285.894  309.235 300.883 295583  280.123
tBIAS (%)  —35.836 —34.618 -34795 -34516 -35.810 —34.773 -35.031 -34.156
. fRMSE (%) 574167 550.747 544.796  455.043 533.059 524.288  490.741  454.188
Vermilion  prag o) —133.011 —128781 —116.168 —109.642 —125444 —128916 —118546 —111.249
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Figure 6. r/RMSE of the SANN and EANN model results for the five stations based on different values
of k in the cross-validation method.

Furthermore, we identified how the number of folds affects the model performance for load
estimations based on the rRMSE of the SANN and EANN models. Figure 7 shows the results for the
four types of fold cross-validation in the five river basins. In the figure, box plots are presented for each
model. The center line in the box plot represents the median value of the load estimation, and the top
and bottom of the plot show the 75th and 25th percentiles of the rRMSE of the estimation, respectively.
The left box plots with the blue color indicate the results of the SANN model, while the right box
plots with the red color indicate the results of the EANN model. The increasing number of k-folds
showed a decreasing trend in both models. However, the model with the 10-fold cross validation
for the five river basins presented a slightly decreasing tend or no noticeable trend compared to the
model with the 7-fold cross validation. This phenomenon was observed in both the SANN and EANN
models. To assess the sensitivity of the predictions based on k-fold cross-validation, Rodriguez et
al. [37] conducted an experimental study in which they changed the training set with various values of
k. In their analysis, the use of the low value of k = 2 seemed to produce the most biased result, and the
use of k = 5 or 10 was recommended to obtain a less biased result on the basis of the experimental
results. We also observed that a k value of 5 seemed to produce a better estimation than a k value of 7 in
the Cuyahoga and Sandusky basins. Based on the load estimations examined in this study, we propose
the application of a k value of 10, which tends to provide a less biased error estimator for the loads.
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Figure 7. Box plots of the rRMSE of the SANN and EANN model results for the five stations; data
were derived by examining different values of k in the cross-validation method.

4.2. Single ANN-CCA and Ensemble ANN-CCA

In order to identify whether the variable of time affects the ANN predictions, the CCA based SANN
and EANN model results were examined by changing the number of folds in the cross-validation. In
conducting the CCA, the variables of discharge and time were used to estimate loads for the five river
basins. The combination with the variables can help the performance of ANNSs. Table 3 shows the
rRMSE and rBIAS indices obtained from the SANN-CCA and EANN-CCA models for assessment
of the model performance. This table also includes the results for 3-fold, 5-fold, 7-fold, and 10-fold
cross validations. The model performance based on the two indices seemed to be enhanced when
the number of folds increased. Overall, the CCA based models outperformed the SANN and EANN
models. The EANN-CCA model showed a better performance according to the YfRMSE and rBIAS
indices than the SANN-CCA model for the 10-fold cross-validation. These results indicate that the
use of the ANN models based on the combination of the variables in the CCA space can improve the
performance relative to the ANN models with one variable. Figure 8 presents the results derived by
using different folds of cross-validations for the SANN-CCA and EANN-CCA models in the five river
basins. From this figure, we can observe that the performance of ANNs seemed to be improved for all
sites except for the Sandusky basin.
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Table 3. K-fold cross-validation results based on the SANN-CCA and EANN-CCA models for the

five stations.

Single ANN-CCA

Ensemble ANN-CCA

Stations
3-fold 5-fold 7-fold 10-fold 3-fold 5-fold 7-fold 10-fold
Cuyahoga rRMSE (%) 305525 264.872 259.891 219.974 302.339 238481 194.688  166.095
rBIAS (%) -11.488 -11576 -11.929 -11.458 -11519 -10.830 -10.706 —9.798
) rRMSE (%)  279.883 271493  269.687 241273 273169 262427 258720  237.591
Rasin rBIAS (%) -31.159 -31.469 -30401 -30.166 —-30.246 -30.679 —30.682 —29.921
Sandusky fRMSE (%)  716.695 696797 665316 665208 719.670 692.090 666.620  662.612
rBIAS (%) —118.735 -114.608 -116932 -111576 -117.194 -115.492 -113.638 -114.878
Muskingum rRMSE (%) 300587 285457 282.776 276290 297.780 287.342  278.656  273.975
rBIAS (%)  -35.664 —33.865 —33.832 -33378 -34948 -35097 -32.854 -34.721
Vermilion "RMSE (%) 560430 495932  449.676 441531 462424 457477 443022 397644
rBIAS (%)  -129.024 -110.639 -109.929 -101.932 -105.677 -102.146 -100.717 —99.477
Cuyahoga
300 T T 3
i —© —SANN-CCA
Z250 - - _G-HH‘“‘—G—EA_\I.\I—CC;_\_ 1
Z 200 - .
3 5 7 10
K-fold validation
p __ . Raisin .
I T e —& —SANN-CCA
= 260 —6—EANN-CCA
&
240 =

K-fold validation
Sandusky

rRMSE

— & —SANN-CCA | |
—S—EANN-CCA

10
K-fold validation
Muskingum
300§ T T
= — & —-SANN-CCA
Z 290 —e—EANN-CCA ||
R
=0 e TT - —— p
=
3 5 7 10
K-fold validation
Vermilion
600 T T
b - —© -SANN-CCA
ESI]I]- T o —&—EANN-CCA |
~
) =
400

K-fold validation

Figure 8. rRMSE of the SANN-CCA and EANN-CCA model results for the five stations based on
different values of k in the cross-validation method.

The model performance based on the Y/RMSE index for load estimations was also analyzed with
box plots for various folds in the cross-validation. Figure 9 shows the box plots according to the rRMSE
index of the five river basins. As in Figure 7, the left box plots with the blue color represent the results
of the SANN-CCA model, whereas the right box plots with the red color represent the results of the
EANN-CCA model in Figure 9. This figure shows that there was a decreasing trend in the index for the
ANN models when the number of folds increased. The results indicated that the variables that were
significantly related to nutrient concentrations could improve the ANN predictions, and the model



Sustainability 2020, 12, 400 14 of 17

with the 10-fold cross-validation seemed to provide a better performance. This examination shows
that the proposed model can produce good estimates by adding in the important variables correlated
with water quality, and it can be used for improved load estimation applications.
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Loemlo 08 |
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Figure 9. Box plots of the rRMSE of the SANN-CCA and EANN-CCA model results for the five stations;
data were derived by examining different values of k in the cross-validation method.

5. Conclusions

A methodology based on ANN models to achieve nitrate load estimations was examined for
river basin nutrient concentration assessments in this study. The SANN and EANN models were built
for five river basins in the Midwest US, and these basins included the Cuyahoga, Raisin, Sandusky;
Muskingum, and Vermilion in the states of Michigan and Ohio. To improve the model performance,
CCA was also used with a combination of variables such as the discharge and time for load estimations.
The proposed models were assessed by using 3-fold, 5-fold, 7-fold, and 10-fold cross validations. Two
statistical indices, namely, the rRMSE and rBIAS were applied for the validation of the proposed models.

Application of the ANN based models in the study region showed that better performances can be
obtained when the number of folds in the cross-validation is high. The best rRMSE and rBIAS indices
seemed to be produced with the 10-fold validation for the five river basins and for the three river
basins, respectively. Moreover, the EANN model tended to produce better estimations for loads than
the SANN model. The box plots for the YRMSE index based on the two models were also analyzed,
and the plots indicated that an increasing number of folds seemed to provide a better performance.
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However, the station data for the Raisin and Vermilion basins only tended to show improvements up
to the 7-fold validation and results were nearly constant at the 10-fold validation. The station data for
Cuyahoga and Sandusky basins seemed to show that the results of the 5-fold validation were better
than the results of the 7-fold validation in the ensemble model. Overall, the use of a k value of 10 can
be recommended to estimate loads when other basins in a different region are investigated for load
estimations. This is because the k value of 10 steadily provides good estimations derived from the
single and ensemble models proposed in the present study within the study regions.

Moreover, the CCA based ANN models were proposed for the achievement of better estimations.
The SANN-CCA and EANN-CCA models were applied to obtain load estimations, and the
corresponding statistical indices were compared for different folds of cross-validation. Compared
to the SANN and EANN models, the CCA based ANN models led to a better performance in the
measures including the rRMSE and rBIAS. The 10-fold cross-validation tended to provide a better
estimation than the other fold cross-validations for the five river basins. The EANN-CCA model
improved the performance in terms of both the rRMSE and rBIAS indices compared to the SANN-CCA
model. The box plots for the YRMSE index were also examined, and the index seemed to show a
decreasing trend when the number of folds increased for the studied regions.

The ANN based models were analyzed in this study for load estimations to determine a better
estimation model. Ultimately, the CCA based ANN models with significant variables related to nitrate
loads were proposed to improve the model performance. Based on this work, the models can be applied
for load estimations, especially to deal with missing monitoring data of interest when investigating
nitrate loads in a river basin. Additionally, other common methods such as EGRET can be applied to
achieve a better load estimation technique.
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