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Abstract: Different studies have estimated cities’ contribution to total greenhouse gas (GHG) emissions
at between forty and seventy percent. According to the so-called Compact City Approach, high
density and centrality should lead to low GHG. This study compares the effect of the urban density
and spatial structure (monocentrism, polycentrism, and dispersion) of the main U.S. cities on their
greenhouse gas emissions from mobility and housing. The estimated models include control variables
in order to improve the statistical adjustment, these variables are grouped into three categories:
basic controls as temperature and Gross Domestic Product (GDP); historical-demographic controls
since 1900; and geographic-urban planning controls. The results detect an environmentally positive
effect, albeit a moderate one, associated with monocentric and polycentric spatial structures as
compared to dispersed structures. Within the tradition of urban planning, these results can be used
as an argument to stop the dispersed decentralization of cities. However, the efficacy of some policies
encouraging density should be accompanied by specific policies which increase the energy efficiency
of housing and promote the use of public transport.
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1. Introduction

Different studies have estimated cities’ contribution to total greenhouse gas (GHG) emissions
at between forty and seventy percent [1–5]. With more than half of the world’s population living
in cities, designing policies to lower greenhouse gas (GHG) emissions on an urban scale seems like
a sound strategy in the struggle against climate change. According to the so-called Compact City
Approach [6–8], dense and centralized cities have lower per capita emissions in comparison with
low-density dispersed cities, given that in the former cars are used less and commuting distances are
shorter [9–15], and the buildings require less energy to reach an acceptable climate comfort level [16–18].
Continuing along this line of argumentation, urban planning policies modify the built environment
(urban form and spatial structure) of cities, which should affect their volume of GHG emissions.

There is an extensive literature on the environmental benefits of compactness (high density and
high centrality) associated with low energy consumption in mobility [17,19–30] and housing [16–18].
In the case of mobility, compactness facilitates travel on foot or by public transport [13,15] and reduces
commuting distances [31–36]. In the case of housing, the type of residential buildings in dense
neighborhoods is characterized by the small size of the houses and the existence of shared walls, which
leads to low energy consumption [16–18,37].

The Brookings Institution funded an ambitious project to measure the carbon footprint of mobility
and housing in the 100 largest urban areas in the United States. By using multivariate Ordinary Least
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Squares (OLS) regression models, the per capita footprint is explained by built environment indicators
(population density, employment density, population concentration index) and other control variables.
The methodology used can be consulted in working papers [38–40] and in academic journals [41,42].
The main result of the project is that the concentration of population leads to a smaller per capita
carbon footprint, which coincides with the predictions that emerge from the Compact City Approach.
The problem of using a concentration index as regressor is that it is correlated with the population
density and urban spatial structure regressors [43]. In addition, the concentration indicator tells us
little about the spatial structure (monocentrism, polycentrism, or dispersion), an aspect that, according
to numerous investigations, may help to explain the variability observed in the per capita carbon
footprint [44–49].

Given these doubts, the research carried out analyzes the impact of urban form (population
density) and spatial structure (indicators of monocentrism, polycentrism, and dispersion) of larger
U.S. urban areas on their carbon footprint in mobility and housing. For this purpose, the carbon
footprint data on mobility and housing calculated in Brown et al. [38] for the year 2000 are used as a
dependent variable. In order to compare the extent to which the results are affected by the methodology
for calculating the carbon footprint, by the control variables incorporated in the models, or by the
econometric method used, we re-estimate the same models, with the same method (OLS), and with the
same explanatory variables, but in this case using the carbon footprint data in mobility and housing
calculated by the authors of Glaeser and Kahn [44].

Considering the methodology used, the CO2 emissions indicator values that appear in Glaeser
and Kahn [44] and Brown et al. [38] can be considered quasi-carbon footprints. As in the case of
carbon footprints, the emissions calculated in both investigations are accounted for at the place of
consumption. This is important, given that CO2 emissions associated with the consumption of electric
energy are charged to the households that use this energy, even if the actual CO2 emissions required
to obtain the electric energy have originated outside the metropolitan area. However, unlike carbon
footprints, they do not consider indirect emissions embodied in buildings, transport infrastructures,
and vehicles. The authors of reference [41] argue that this is the main limitation of their research for
the Brookings Institution that can be consulted in several publications [38–42]. The results obtained
in these studies are very optimistic regarding the role of Compact City policies as an instrument to
reduce the carbon footprint of cities.

The study for the Brookings Institution and Glaeser and Kahn [44] are similar in several aspects,
which facilitates their comparison. Both studies offer results for the same group of American cities,
the same type of consumption (mobility and housing); the same year (2000); and estimate the same
type of multivariate regression models (OLS). The main difference is that the Brookings Institution
studies consider average per capita carbon footprint as a dependent variable, while the authors of
Glaeser and Kahn [44] consider the marginal emissions corresponding to families living in buildings
built between 1980 and 2000. This explains the fact that the volume of per capita emissions calculated
by the authors of Glaeser and Kahn [44] is systematically higher than that calculated in the studies for
the Brookings Institution.

There are two questions that we intend to answer with this study. The first is whether density
effectively exerts a negative sign impact on the carbon footprint of American cities in mobility and
housing (higher density implies a lower footprint) considering that the statistical significance of the
parameter obtained may be affected by the combination of socio-economic and geographic control
variables included as regressors. The second is, what is the effect of spatial structure on the carbon
footprint, including the monocentric, the polycentric, and the dispersed as possible spatial structures.
This exercise therefore has the virtue of offering a framework with which to compare the studies of
the Brookings Institution and the research in Glaeser and Kahn [44]. The impact of polycentrism on
mobility is a dynamic novel line of research. Some studies found that living near a sub-center tends to
decrease commuting distance [31–36]. Therefore, it is reasonable to hypothesize that polycentrism can
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reduce the carbon footprint. For instance, authors of references [48–50] find environmental benefits
associated with polycentricity in terms of low carbon footprint.

2. Methodology and Data

2.1. Methodology

This section explains the procedure used to capture the relationship between cities’ urban form and
spatial structure and their per capita carbon footprint from mobility and housing. As Figure 1 shows,
we used multivariate regression models that explain the variability observed in the carbon footprint
according to different explanatory variables, including built environment variables. The database used
in this study is comprised of the most populous U.S. Metropolitan Areas (between 45 and 58 urban
areas depending on the estimated model). The software used to estimate the model is STATA(R).

Sustainability 2020, 12, x FOR PEER REVIEW 3 of 18 

can reduce the carbon footprint. For instance, authors of references [48–50] find environmental 
benefits associated with polycentricity in terms of low carbon footprint. 

2. Methodology and Data 

2.1. Methodology 

This section explains the procedure used to capture the relationship between cities’ urban form 
and spatial structure and their per capita carbon footprint from mobility and housing. As Figure 1 
shows, we used multivariate regression models that explain the variability observed in the carbon 
footprint according to different explanatory variables, including built environment variables. The 
database used in this study is comprised of the most populous U.S. Metropolitan Areas (between 45 
and 58 urban areas depending on the estimated model). The software used to estimate the model is 
STATA(R). 

 

Figure 1. Modeling scheme. 

Different multivariate regression models are estimated through Ordinary Least Squares (OLS), 
using per capita carbon footprint associated with energy consumption from housing (electricity and 
fuel), from mobility in private vehicles, and the sum of both as dependent variable. The models were 
estimated by first incorporating all the control variables, and then adding the built environment 
variables one by one, given that they are strongly correlated. Then, the control variables with no 
significant coefficients were removed. This method enabled spurious causality problems to be 
controlled. Each estimated model includes different combinations of control variables. The results of 
the models reported in this document were chosen according to the significance of the built 
environment parameters as well as the model’s overall explanatory capacity (Adjusted R2). In formal 
terms the regression model is written as follows: 𝑌௝ = 𝛼 +෍𝛽௞௞ 𝑋௞ + 𝑒௝ 
where 𝑌௝ represents the dependent variable (per capita carbon footprint), 𝛼 is the constant term, 𝛽௞ 
represents the estimated coefficient of the explanation variable 𝑋௞, and 𝑒௝ is the residual term of the 
regression equation. 

2.2. Dataset 

2.2.1. Carbon Footprint Indicators 

Two studies [38,44] are essential to this research paper, given that we use their per capita carbon 
footprint as dependent variables in the OLS regression models. There are two main differences 
between both studies. First, they differ in terms of the unit of measurement (tons vs. pounds), the 
scale used (household vs. individual), the use of logarithms, and the number of cities considered. (On 
the other hand, Glaeser and Kahn [44] offers results for the footprint from public transport, while 
authors of Brown et al. [38] do not. We have standardized emissions in per capita tons of CO2. The 
data from Glaeser and Kahn [44] were originally presented in pounds per household, so they had to 
be transformed using the corresponding conversion factors 2.204 lbs/kg; 2.58 persons/household 
(mean in the USA). This latter indicator was applied countrywide. Each state has minor differences 
in household size that we have incorporated into the calculation.) Second, Brown et al. [38] calculates 

Carbon Footprint 
Indicators.

Urban Form and 
Spatial Structure 

indicators.

Control variables.

OLS model estimation:

CarbFooti= F(urban form 
and spatial structure 

indicators, control variables) 

Figure 1. Modeling scheme.

Different multivariate regression models are estimated through Ordinary Least Squares (OLS),
using per capita carbon footprint associated with energy consumption from housing (electricity and
fuel), from mobility in private vehicles, and the sum of both as dependent variable. The models
were estimated by first incorporating all the control variables, and then adding the built environment
variables one by one, given that they are strongly correlated. Then, the control variables with
no significant coefficients were removed. This method enabled spurious causality problems to be
controlled. Each estimated model includes different combinations of control variables. The results of
the models reported in this document were chosen according to the significance of the built environment
parameters as well as the model’s overall explanatory capacity (Adjusted R2). In formal terms the
regression model is written as follows:

Y j = α+
∑

k

βkXk + e j

where Y j represents the dependent variable (per capita carbon footprint), α is the constant term, βk
represents the estimated coefficient of the explanation variable Xk, and e j is the residual term of the
regression equation.

2.2. Dataset

2.2.1. Carbon Footprint Indicators

Two studies [38,44] are essential to this research paper, given that we use their per capita carbon
footprint as dependent variables in the OLS regression models. There are two main differences between
both studies. First, they differ in terms of the unit of measurement (tons vs. pounds), the scale used
(household vs. individual), the use of logarithms, and the number of cities considered. (On the
other hand, Glaeser and Kahn [44] offers results for the footprint from public transport, while authors
of Brown et al. [38] do not. We have standardized emissions in per capita tons of CO2. The data
from Glaeser and Kahn [44] were originally presented in pounds per household, so they had to be
transformed using the corresponding conversion factors 2.204 lbs/kg; 2.58 persons/household (mean in
the USA). This latter indicator was applied countrywide. Each state has minor differences in household
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size that we have incorporated into the calculation.) Second, Brown et al. [38] calculates the carbon
footprint of the average inhabitant, while Glaeser and Kahn [44] takes a standard household with an
income of $62,500, 2.62 members, and a head of household aged 49 as the reference. In this way, the
authors in Glaeser and Kahn [44] seek to capture the marginal effect of a new household, which is
assumed to be higher than the effect of the average household. The correlation between both total
footprint indicators is 0.57.

The procedure used by Brown et al. [38] to calculate the carbon footprint of gasoline used by
private cars follows these steps: (a) calculate the average distance of journeys with data on the car fleet
on American highways; (b) rescale the results until reaching the metropolitan scale, and (c) convert
the consumption of fuels into CO2 emissions with the appropriate conversion factors. To calculate
the residential-fuel footprint, the following steps are taken: (a) estimate fuel consumption per family
for each state, (b) allocate fuel consumption by type of dwelling, (c) assign the number of households
to each type of dwelling, (d) allocate fuel consumption at the metropolitan scale according to the
different housing categories in each state; (e) estimate fuel consumption at the metropolitan scale,
and (f) convert fuel consumption into CO2 emissions. Regarding the residential-electricity calculation
carbon footprint: (a) it is based on data on household electricity consumption for each utility, (b) the
number of households for each city and for each utility is estimated, (c) the total consumption is
estimated at zip code level, (d) the results are added together at the county level; (e) the estimated
consumptions included in the rents are added as a fixed income, the results are added together at the
metropolitan level, and (f) consumption is converted into CO2 emissions.

The carbon footprint values calculated by the authors in Glaeser and Kahn [44] are obtained from
similar, but not totally coincident, procedures. In addition, the databases are different. To estimate the
gasoline footprint they: (a) estimate data on miles traveled from a model that includes socio-economic
variables of individuals and each zip code, (b) estimate the gasoline consumption of a family with an
income of $62,500 and an occupation of 2.62 individuals per household, and (c) add together the data of
each zip code until a metropolitan area is conformed. To estimate the residential-fuel carbon footprint:
(a) gas consumption is estimated based on individual characteristics for each metropolitan area for
an average household, and (b) the consumption of gas and fuel oil is converted into CO2 emissions
by applying the conversion factors. To estimate the carbon footprint of electricity, the following
steps are followed: (a) household expenditure on electricity is estimated considering individual
characteristics of each metropolitan area, (b) consumption expenditure is converted, taking into account
regional electricity markets and primary sources, and (c) electricity consumption is converted into CO2

emissions. Tables A1 and A2 in Appendix A summarize these two methodologies described above.

2.2.2. Explanatory Variables

Urban Form. Population density for 2000: this is the population per square mile from the US
Census Bureau (Population Housing Units Area and Density 2000).

Urban Spatial structure. The spatial structure indicators estimated by the authors of reference [51]
were used. The authors of reference [51] propose a simple, clear, and replicable methodology for
measuring urban spatial structure of large urban areas. The employment centers were previously
identified using a methodology based on reference [52] Geographically Weighted Regression in which
the Traffic Analysis Zones (TAZs) have an employment density significantly higher than what would
be predicted based on their location. The centrality (monocentrism) indicator is the percentage of jobs
located in the center (CBD), the polycentrism indicator is the percentage of jobs concentrated in the
employment sub-centers, and the sprawl indicator is the percentage of jobs located outside the centers
and sub-centers. These spatial structure indicators were first proposed by the authors of reference [53]
and applied in numerous studies, including the research in references [36,54–60]. Two alternative
indicators of centrality and polycentrism, very generously provided by reference [61], were also used.
The methodology may be consulted in reference [61]. They use spatial econometrics (Moran Index) to
identify the subcenters and the indices of monocentrism and polycentrism are calculated using the
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principal component method applied to various aspects that have to do with mobility and also with
the sectoral specialization in certain activities.

The control variables used in the regression models are grouped into three categories: basic controls,
historical-demographic controls, and geographic-urban planning controls.

Controls 1. Basic controls: temperature (U.S. Climate Data), per capita GDP (U.S. Department of
Commerce) and population size (U.S. Census Bureau). Three temperature measures were used: the
mean temperature in February, the mean temperature in June and the difference between the two.
We also thought about the price of energy as a control variable. However, the estimation methods
of the carbon footprint used by Brown et al. [38] and of direct CO2 emissions used by Glaeser and
Kahn [44] are partially based on data on the energy spending of households, which in turn depends on
prices. That is, we became enmeshed in another endogeneity problem. For this reason, we ultimately
decided not to include that information as an explanatory variable of the regression models.

Controls 2. Historical-demographic controls: 1900 population; population growth between 1900
and 1930; population growth between 1930 and 1960; population growth between 1960 and 1990.
Information about historical population comes from reference [62], which is a publication of the U.S.
Census Bureau.

Controls 3. Geographic-urban planning controls: Regulation and dummy variable for coastal
cities. We expected “globally more regulated” cities to have a lower carbon footprint. Following
Glaeser and Kahn [44], the regulation indicator used is the Wharton Index [63]. The Wharton Index
is calculated based on eleven sub-indexes which seek to capture different aspects of the regulatory
activity of governments, nine of them on a local scale. Their study shows a high negative correlation
between the regulation index and the increase in construction between 2000 and 2006.

3. Results

3.1. Location Patterns of Cities with Higher and Lower Carbon Footprint

Despite the differences in magnitude, (.) the correlation between the carbon footprints calculated
in Brown et al. [38] and Glaeser and Kahn [44] is positive and statistically significant, 0.57, which
indicates that cities with the highest carbon footprint according to the authors of reference [38] tend
to follow a pattern similar to those of Glaeser and Kahn [44]. The average of the estimates reported
by Glaeser and Kahn [44] is 9.5 tons of CO2 per capita, while that of Brown et al. [38] is 2.1 tons of
CO2 per capita. This may be because they use different methodologies, conversion factors, and data
sources. This difference is most likely also related to the fact that the authors of Glaeser and Kahn [44]
strictly measure the impact of households that live in homes built between 1980 and 2000. As maps in
Figures 2 and 3 show, we also find a similar spatial pattern. The cities with the lower per capita carbon
footprint are concentrated along the Pacific coast and the northern Atlantic coast. The cities with the
highest carbon footprint values tend to be in the Midwest and the south of the country. Figure A1 in
Appendix A shows the names of metropolitan areas for easy identification.
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3.2. Location Pattern of Cities According to Their Form and Spatial Structure

The densest cities are located on the Atlantic coast (except for San Francisco and Los Angeles)
(Figure 4). The most monocentric cities are located in the Midwest and Southwest (Figure 5); the most
polycentric cities are located in California (Figure 6) and on the east coast; and the most disperse cities
are in the Northeast, South Central, and Southwest (Figure 7).
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The values shown in Table 1 indicate that New York remains the densest city in the United States.
With 2028 inhabitants per hectare, its density doubles that of another compact city such as San Francisco
(955 inhabitants per hectare). On the other hand, the values referring to the indicators of monocentrism,
polycentrism, and dispersion indicate that the concentration of employment in CBDs is low. Las Vegas,
with a percentage of 28.2 of the total jobs in the region, is the most monocentric city. The employment
subcenters of the most polycentric cities only account for between 28 percent and 14 percent of total
jobs. In clear contrast to the previous values, in the most dispersed cities of the United States, the
weight of employment located outside the CBD and sub-centers exceeds 85 percent.
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Certain location patterns emerge when looking at the ranking of cities. The ten densest cities are
mainly in the east of the country; the ten most monocentric cities are mainly in the south; and the ten
most polycentric and dispersed are distributed evenly throughout the country. On comparing the
maps referring to the per capita footprint with those of density and spatial structure, it is observed
that on the north-east coast and in the center-north there are dense cities that also have a high carbon
footprint. There is also a coincidence in the location pattern of cities with a greater carbon footprint
and location patterns of cities with a higher rate of monocentrism, mainly located in the central and
central-eastern corridor of the country, from north to south. The greatest discrepancies are observed
when comparing the location of the most polycentric metropolitan areas with those with a greater
carbon footprint. The greatest similarities occur between the pattern of location of the most dispersed
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cities and that of the cities with the greatest footprint. The maps and the ranking table offer a first look
that allows some patterns to be identified, some connection between carbon footprint and the built
environment, but they must be corroborated by estimating a multivariate regression model.

Table 1. Ranking of shape/spatial structure indicators (top ten, from highest to lowest).

Ranking Population
Density pop/ha

Monocentrism
(CBD)

Polycentrism
(Subcenters)

Dispersion
(Disperse)

1 New York 2028.7 Las Vegas 28.2 L.A. 28.8 Allentown 95.6
2 Chicago 1322 Birmingham 22.8 San Francisco 24.2 Orlando 92.1
3 Miami 1230 Bakersfield 21.7 San Diego 22.7 Springfield 91.2
4 Philadelphia 1042.7 Austin 21.5 Detroit 22.2 Tucson 91
5 Providence 1041.5 Dayton 20.1 Houston 20.8 Harrisburg 88.4
6 Boston 1034.1 Syracuse 19.3 Omaha 20.8 Greenville 88.3
7 San Francisco 955 Charleston 16.8 Dallas 15.8 El Paso 88
8 Milwaukee 942.3 New Orleans 16.7 San Antonio 15.6 Albuquerque 87
9 Tampa 938.1 Omaha 16.4 Miami 15 Cleveland 87
10 Detroit 831.1 Columbia 16.3 Norfolk 14.3 Buffalo 86.9

Source: U.S. Census Bureau and reference [51].

3.3. Urban Form and Spatial Structure as Determinants of Carbon Footprints

The information contained in Tables 2 and 3 is the result of the estimation of many regression
models testing different combinations of control variables and built environment indicators. The value
that appears in the cells is the estimated parameter βk. This parameter is the marginal impact
of explanatory variable k on the dependent variable (carbon footprint). The value that appears
in parentheses is the Student’s “t” indicator. For instance, if it exceeds an absolute value of 1.96
(the confidence interval is 95%) then, the parameter is different from zero.

Table 2. Results of Glaeser and Kahn [44]. Dependent variable: t CO2 per capita.

Urban Model Variables Elec 1 Elec 2 Fuel 1 Fuel 2 Auto 1 Auto 2 Auto 3 Auto 4 Total

Population 0.0003
(3.0)

−0.00005
(−3.0)

Density 0.0009
(2.3)

0.0003
(1.93)

−0.0002
(−4.8)

0.0015
(2.3)

CBD

Centrali −0.022
(−2.14)

Subcentre −0.022
(−2.6)

Policentri

Dispers 0.027
(2.6)

Control Variables

Income Yes Yes Yes Yes Yes Yes Yes Yes Yes
Temp Yes Yes Yes Yes Yes Yes Yes Yes Yes
Coast Yes Yes Yes Yes Yes Yes Yes Yes Yes

Regulation Yes Yes
Historic population

growth Yes Yes Yes Yes

Pop 1900 Yes
No. obs. 58 57 45 45 58 45 45 58 58
Adj. R2 0.45 0.27 0.70 0.69 0.54 0.56 0.51 0.44 0.31

Source: Own calculations.
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Table 3. Results of Brown et al. [38]. Dependent variable: t CO2 per capita.

Urban Model Variables Elect 1 Fuel 1 Fuel 2 Fuel 3 Fuel 4 Auto 1 Auto 2 Auto 3 Total 1 Total 2

Population −0.00002
(−4.47)

−0.00003
(−1.98)

Density 0.00009
(2.18)

−0.0003
(−5.42)

CBD −0.006
(−2.05)

Centrali −0.0071
(−2.6)

−0.005
(−2.29)

subcentres −0.003
(−2.16)

policentri −0.003
(−2.13)

dispers 0.005
(2.43)

Control Variables

GDP Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Temp Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Coast Yes

Regulation Yes Yes Yes
Historic population

growth Yes Yes Yes Yes

Pop 1900 Yes Yes
No. obs. 53 54 75 75 75 75 54 74 54 74
Adj. R2 0.48 0.71 0.56 0.64 0.65 0.23 0.36 0.31 0.48 0.44

Source: Own calculations.

Population Density. In the case of mobility, a negative correlation is detected. Higher density
means lower per capita carbon footprint when using the carbon footprint data from both Glaeser and
Kahn [44] and Brown et al. [38]. However, the opposite holds true in housing. Greater density leads to
higher emissions, once again using the per capita carbon footprint data from both Glaeser and Kahn [44]
and Brown et al. [38]. When using the per capita carbon footprint from both mobility and housing
as the dependent variable, either the effect is not significant (with the data from Brown et al. [38])
or it is positive (with the data from Glaeser and Kahn [44]). These results could be because cities
that contain more high-density urbanized zones have an older and less energy-efficient housing fleet.
In this case, high density per se would not bring environmental advantages in the realm of housing if
not accompanied by measures that improve the energy efficiency of the buildings, regional climate
alliances, and renewable electricity standards [38,41]. The value of the parameter is low (between 0.0015
and −0.0002) and the most significant effect, with a negative sign, is obtained in the case of mobility
(with a Student t of −4.8 (Glaeser and Kahn [44] models) and −5.4 (reference [38] models).

The density variable parameter of the results obtained with the model that takes the sum of carbon
footprints of mobility and housing as the dependent variable is not significant (with the footprint data
of Brown et al. [38]), or it presents a positive sign (with Glaeser and Kahn [44] data). These results
are contrary to those obtained in reference [41] and reference [40] and in line with those obtained in
Glaeser and Kahn [44].

Monocentrism. The parameters of the two monocentrism indicators (centrality and CBD) are
generally negative, which indicates that the most monocentric cities have advantages in terms of low
per capita carbon footprint in mobility and housing. While it is important to note that the parameter
always has low statistical significance, the t statistic is in no case higher than 2.6. These results coincide
with those obtained in Glaeser and Kahn [44]. Thus, the effect is detected in the realm of housing but
not in mobility, an unexpected result given that the concentration of jobs and population in the main
urban center facilitates the use of public transport. The negative correlation between the centrality
indicators and residential per capita carbon footprint may be because urban centers usually have
smaller homes in apartment buildings than in the suburbs. The results obtained using the carbon
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footprint calculated by Glaeser and Kahn [44] as dependent variable is similar to those obtained using
the carbon footprint estimation of Brown et al. [38].

Polycentrism. The correlation between the polycentrism variables (sub-center and polycentrism)
and per capita carbon footprint is negative and affects mobility and fuel consumption in households.
This correlation is detected with the data from Glaeser and Kahn [44], the data from Brown et al. [38],
and the two variables that measure polycentrism. However, it is relevant to point out that none of the
parameters that measure polycentrism is significant if the sum of per capita residential and mobility
carbon footprint is used as a dependent variable.

Once the existence of environmental advantages associated with polycentrism has been found, we
question to what extent the most polycentric cities have a low per capita carbon footprint, not because
they are polycentric but because they are larger. There is a positive correlation between population
size and the polycentrism indicators used in our study. To discard this possibility, estimations were
performed including population size, polycentrism indicators and control variables as regressors.
The parameters obtained were altered in value, but their statistical significance was not overly affected,
which may indicate that, regardless of the city size, polycentrism may have advantages in terms of low
per capita carbon footprint.

Sprawl. Our results indicate that greater sprawl is correlated with a higher volume of emissions
from mobility (with the carbon footprint data from Brown et al. [38] and data from Glaeser and
Kahn [44]).

The most relevant control variable in this study is total population. Urban size is a widely
discussed issue in the debates on bio-regionalism within the Self-Sufficient City Approach. While
supporters of the Compact City Approach see no problem associated with mega cities, supporters of
the Self-Sufficient City Approach defend a limited urban size based on the limited natural resources of
their natural region. The coefficient referring to city size is negative and significant for mobility. A less
populous city also tends to occupy a smaller area, which lowers commuting distances compared to
large cities, and therefore also lowers the per capita carbon footprint of mobility. However, large cities
have more and better public transport infrastructures, which may result in a low per capita carbon
footprint. Our results indicate that the “public transport effect” is higher than the “distance traveled
effect”. Once again, the results obtained using the emissions data from Glaeser and Kahn [44] and
Brown et al. [38] are similar.

The temperature, market regulation index, population size in 1900, and population growth
between 1900 and 1930 show a significant correlation with per capita carbon footprint. The coldest
cities have a higher per capita carbon footprint since they require more energy to warm their homes.
The hottest cities have a high carbon footprint in the summer, since part of the electricity used to
operate air conditioners comes from burning fossil fuels. In terms of market regulation, the hypothesis
of Glaeser and Kahn [44] states that the cities that regulate land use the most have a greater capacity to
accept environmental regulations. The oldest cities (with a higher population in 1900) tend to show a
low level of emissions. The urban growth rate between 1900 and 1930 also negatively influences the
per capita carbon footprint. Finally, higher per capita income should lead to a higher carbon footprint,
since it means higher energy consumption on housing and mobility (larger houses, more and larger
cars). However, Glaeser and Kahn [44] and Brown et al. [38] did not detect this correlation, and nor
did we. Cities with high per capita income may paradoxically show advantages in terms of low carbon
footprint, perhaps because families with a higher income self-select in cities with a low per capita
carbon footprint. Taken as a whole, these results seem to indicate that the most dynamic cities in
the early 20th century, when their growth was still before the automobile culture, currently have a
lower per capita carbon footprint. Therefore, the inertia effects of the built environment must be very
persistent over time.

Leaving aside the case of density, manipulation of the spatial structure can have substantial effects
for some sub-footprints (see Table A3 in Appendix A). For example, if the centrality index increased
by 10%, there would be a fall in the electricity carbon footprint of between 2.43%, with data from
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Glaeser and Kahn [44], and 3.51%, with data from Brown et al. [38]—an impact that we consider
significant. In contrast to the previous case, increasing the polycentrism index by 10% would only
reduce the heating carbon footprint by 0.36%, with data from Glaeser and Kahn [44], and 0.7%, with
data from Brown et al. [38]. The greatest impact is detected with the dispersion index. Increasing the
dispersion index by 10% means an increase of 4.64 in the car’s carbon footprint, with data from Glaeser
and Kahn [44] and a 12.2% increase in the heating carbon footprint, with data from Brown et al. [38]
(see Tables A4 and A5 in Appendix A).

4. Discussion

There are differentiated explanations of the lack of statistical significance of the population density
variable on total per capita carbon footprint. The first is that population density exerts a negative impact
on the carbon footprint of mobility, but exerts a positive impact on the residential footprint, cancelling
each other out in the estimation with the total footprint values. The second is that the population with
less environmental awareness self-selects in dense cities. The third is that the population that resides
in dense cities compensates for the lack of green spaces and excess congestion, with greater leisure
mobility during weekends and holidays, which would lead to a greater carbon footprint [33,36,64–66].
Another possible explanation is that the density indicator used is not correct. We tested three different
density measurements. The first is the gross density of the entire urban region. The second is the
density of the central metropolitan subsystem. This value is higher than the previous one. These last
two indicators, population density and the population density of the central urban subsystem, are
highly correlated. The problem is that they are less significant than the standard gross density, which
is why we have not included these models in the results tables.

The policy recommendations which can be gleaned from the results are neither obvious nor direct.
Within the tradition of urban planning, these results can be used as an argument to stop the dispersed
decentralization of cities. However, within the framework of urban economics, matters are otherwise.
Both Gaigné et al. [67] and Glaeser and Kahn [44] argue that compactness policies that seek greater
centralization and density may have a perverse effect, since by stopping the growth of urbanized
land, families and companies head towards other cities that are more permissive with their physical
expansion and less concerned about lowering their GHG emissions. Our position in this regard is in
favor of homogeneous environmental regulation upheld by sound information and knowledge. It is
not reasonable to think that the free market will solve this kind of problem by allowing the population
to “vote with their feet”. Therefore, market regulation seems the best choice.

5. Conclusions

The results of this study confirm that urban form and spatial structure affect the per capita
carbon footprint of mobility and housing. However, their impact is modest compared to other control
variables, particularly total population, per capita income, and temperature. Even though there are
numerous built environment parameters which are significant in the partial models, their statistical
significance in the model which takes the sum of emissions from mobility and housing as the dependent
variable is negligible. This is partly since they exert an effect in one direction in one partial model
and in the opposite direction in another partial model, thereby nullifying each other in the models
estimated with total per capita carbon footprint data. These results indicate that a high density and
monocentric or polycentric spatial structure are not a guarantee of low carbon footprint if they are not
accompanied by specific policies which increase the energy efficiency of housing and promote the use
of public transport.

This study has a series of limitations which cannot be ignored. The first is that we estimated the
models solely based on the information on large cities. The sample of cities does not include any with
a population under 350,000. The second limitation is that we used spatial structure indicators which
could be improved. The polycentrism indicators could also include productive specialization and
mobility flows to capture not only the urban morphology but also its functionality. In terms of the
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dispersion indicator, it only includes the spatial behavior of economic activity, ignoring issues like the
discontinuity of the built area or the low density of suburban neighborhoods. Nor have we borne in
mind other possible spatial structures such as linear, cellular, vertical, or fractal structures, all of which
have been subject to debate in the field of urban planning in recent decades. Including these aspects
would enrich the analysis, although homogeneous access to all the information needed and for all
cities is virtually impossible. The third limitation is that our study is static, when it would be more
interesting to question whether the changes in cities’ form and spatial structure give rise to changes in
the volume of per capita carbon footprint. A dynamic model would provide the rigor needed to truly
discuss causality. The fourth limitation is that we found no adequate instrumental variables to consider
all endogeneity issues more effectively. In future work we want to address some of these issues.
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Appendix A

Table A1. The carbon footprint values calculated by Glaeser and Kahn [44].

Data and
Sources

Original
Indicator

Primary Conversion
Factors

Secondary
Conversion

Factors
Summary

Mobility. Gas
consumption.

National
Household

Transportation
survey (NHT)

2001

Miles of travel

NHT estimates
gasoline

consumption based
on the type of

vehicle. From the
consumption of
gasoline, CO2
emissions are

estimated.
Gallons of gasoline:

lbs. CO2 *19,564

To incorporate
indirectly

emitted CO2,
20% is added to

the previous
values.

Data miles traveled. NHT
converts them into gasoline

consumption. General model
where gasoline consumption is
explained by socio-economic

variables and characteristics of the
ZIP code (population density and

distance to the CBD).
Consumption of gasoline by a

standard family ($62,500 rent and
2.62 members) is estimated for

each census tract. Finally, census
tracts aggregate metropolitan

areas are formed.

Housing.
Heating. Fuel
consumption.

Census 2000
IPUM

(sample 5%).

House owners
and tenant

expenditure

Fuel oil 22.39 lbs. of
CO2 per gallon.

Natural gas 120.59
CO2 per 100 cubic

feet.

To incorporate
indirectly

emitted CO2,
20% is added to

the previous
values.

With a sub-sample of IPUM for
owners who live in the 66

metropolitan areas studied, a
regression is carried out where the

consumption of fuel oil and
natural gas depends on individual

characteristics for each
metropolitan area. They use the

coefficients to estimate the
consumption of gas and fuel oil

for a family of 2.62 members with
an income of $62,500, controlling
for individual characteristics and
temperature but not for the type
of building. CO2 is estimated by
applying the conversion factors.
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Table A1. Cont.

Data and
Sources

Original
Indicator

Primary Conversion
Factors

Secondary
Conversion

Factors
Summary

Housing.
Electricity.

Census 2000
IPUM

(sample 5%)
North

American
Electricity
Reliability

Corporation
(NERC).

House owners
and tenant

expenditure.

Conversion of
electricity

expenditure to
electricity

consumption.

Conversion of
electricity

consumption
into CO2

emissions.

With a sub-sample of IPUM for
owners who live in the 66

metropolitan areas studied, a
regression is carried out where

electricity consumption depends
on individual characteristics for

each metropolitan area. They use
the coefficients to estimate the

consumption of gas and fuel oil
for a family of 2.62 members with
an income of $62,500, controlling
for individual characteristics and
temperature but not for the type of
building. Consumption spending

is converted by considering
regional electricity markets.
Primary energy sources are

controlled for.
CO2 is estimated by applying the

conversion factors

Source: Glaeser and Kahn [44].

Table A2. The carbon footprint values calculated by Brown et al. [38].

Data and Sources Original
Indicator

Transformed
Indicators

Primary
Conversion

Factors

Secondary
Conversion

Factors
Summary

Mobility.
Gas

consumption
Reference

[40]

1. Daily Vehicle Miles of
travel (DVMT) (Highway
Performance Monitoring
System (HPMS); Federal

Highway national
Administration (FHWA);

Highway Statistics
(FHWA).

2. Conversion into
gallons of fuel consumed

(Oack Ridge National
Laboratory (ORLN);

Transportation Energy
data Book; FHWA
Highway Statistics

Publications
Tracks: US Census

Bureau 2002 Vehicle
Inventory and US Survey
(VIVS); FHWA’s Highway

Statistics.

Daily Vehicle
Miles of

travel
(DVMT).

Gas
consumption
by cars and
small trucks

Caloric
content of

fuels
(Btu/gallon)

Conversion
of caloric

content into
CO2

(TgCO2/QBtu).

1. DVMT calculation at
urban area scale
2. Rescale at the

metropolitan area scale
3. Conversion of fuel

consumption into CO2.

Heating Fuel
Reference

[39]

EIA (Fuel consumption
per household. Census,

2000.
Environmental Protection

Agency (EPA) 2007
conversion factors.

Households’
fuel

consumption
at state level

Fuel
consumption
considering
differences
in housing
typologies.

EPA (2007)
CO2/fuel

type.

1. Fuel consumption per
family at state level.
2. Fuel consumption
according to type of
housing nationwide.

3. Number of households
for each metropolitan area
according to housing type.

4. Assign fuel
consumption at the
metropolitan scale

according to the weight of
each type of housing in
the metropolitan area

5. Fuel consumption at
metropolitan scale

6. Conversion of fuel
consumption into CO2
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Table A2. Cont.

Data and Sources Original
Indicator

Transformed
Indicators

Primary
Conversion

Factors

Secondary
Conversion

Factors
Summary

Electricity
Reference

[39]

Platts Analytics
Census 2000

Brooking Institution
EIA (Annual Energy

Outlook)
EIA (state electricity

profiles).

Utilities $
and MWh

Direct
payments

Household
and

consumption
estimation of
households
that pay for

their
electricity

consumption
in the rental

of the
property.

Conversion
MWh/Btu
(10776).

Tones
CO2/MWh

(0.62).

1. MWh for each utility in
100-m areas (Platts

Analytics).
2. Estimate the number of

households with the
scope map of the different

utilities.
3. Total consumption ZIP

code = average
consumption per number

of households.
4. Aggregation at county

level.
5. Adjust consumption

included in rentals.
6. Add to metropolitan

scale.
7. Convert MWh into CO2

emissions.

Source: Brown et al. [38].

Sustainability 2020, 12, x FOR PEER REVIEW 15 of 18 

code = average 
consumption per 

number of 
households. 

4. Aggregation at 
county level. 

5. Adjust 
consumption 

included in rentals. 
6. Add to 

metropolitan scale. 
7. Convert MWh 

into CO2 emissions. 

Source: Brown et al. [38]. 

 

Figure A1. Metropolitan areas. Source: Own elaboration. 

Table A3. Manipulation of the spatial structure Increase of 10%. 

Variable Obs. Mean Std. Dev. Min. Max. 10% 
cbd 75 10.76 4.93 2.8 28.2 1.08 

centrali 74 34.98 14.27 6.18 85.84 3.50 
subcenters 75 7.78 6.47 0 28.8 0.78 
policentr 74 26.69 17.76 0 59.27 2.67 
dispers 75 81.47 6.03 62.9 95.6 8.15 

Source: Own calculations. 

Table A4. Spatial structure Increase of 10% and change in dependent variable: results with the 
estimation in Table 2. 

  Descriptive Statistics 10% Increase in x Variable  

Variable Obs. Mean Std. Dev. Min Max   % Change Var. Exp. 
Elec. 2 58 3.164 1.236 1.107 5.035 −0.08 3.09 −2.43 centrali 
Auto 3 58 4.745 0.602 3.191 5.860 −0.02 4.73 −0.36 subcenters 
Auto 4 58 4.745 0.602 3.191 5.860 0.22 4.97 4.64 dispers 

Source: Own calculations. 

Table A5. Spatial structure Increase of 10% and change in dependent variable: results with the 
estimation in Table 3. 

Figure A1. Metropolitan areas. Source: Own elaboration.

Table A3. Manipulation of the spatial structure Increase of 10%.

Variable Obs. Mean Std. Dev. Min. Max. 10%

cbd 75 10.76 4.93 2.8 28.2 1.08
centrali 74 34.98 14.27 6.18 85.84 3.50

subcenters 75 7.78 6.47 0 28.8 0.78
policentr 74 26.69 17.76 0 59.27 2.67
dispers 75 81.47 6.03 62.9 95.6 8.15

Source: Own calculations.
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Table A4. Spatial structure Increase of 10% and change in dependent variable: results with the
estimation in Table 2.

Descriptive Statistics 10% Increase in x Variable

Variable Obs. Mean Std. Dev. Min Max % Change Var. Exp.

Elec. 2 58 3.164 1.236 1.107 5.035 −0.08 3.09 −2.43 centrali
Auto 3 58 4.745 0.602 3.191 5.860 −0.02 4.73 −0.36 subcenters
Auto 4 58 4.745 0.602 3.191 5.860 0.22 4.97 4.64 dispers

Source: Own calculations.

Table A5. Spatial structure Increase of 10% and change in dependent variable: results with the
estimation in Table 3.

Descriptive Statistics 10% Increase in x Variable

Variable Obs Mean Std. Dev. Min Max % Change Var. Exp.

Elec 1 75 0.708 0.298 0.16 1.3 −0.025 0.683 −3.51 centrali
Fuel 2 75 0.333 0.194 0.022 0.71 −0.006 0.326 −1.94 CBD
Fuel 3 75 0.333 0.194 0.022 0.71 −0.002 0.330 −0.70 subcenters
Fuel 4 75 0.333 0.194 0.022 0.71 0.041 0.373 12.25 dispers
Auto 3 75 1.078 0.176 0.664 1.435 −0.008 1.070 −0.74 policentr
Total 2 75 2.118 0.401 1.245 2.804 −0.017 2.101 −0.83 centrali

Source: Own calculations.
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