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Abstract: The increasing availability of trajectory recordings has led to the mining of a massive
amount of historical track data, allowing for a better understanding of travel behaviors by revealing
meaningful motion patterns. In the context of human mobility analysis, the problem of motion
prediction assumes a central role and is beneficial for a wide range of applications, including for
touristic purposes, such as personalized services or targeted recommendations, and sustainability
studies related to crowd management and resource redistribution. This paper tackles a particular
case of the trajectory prediction problem, focusing on large-scale mobility traces of short-term foreign
tourists. These sparse trajectories, short and non-repetitive, lack spatial and temporal regularity,
making prediction analysis based on individual historical motion data unreliable. To face this issue,
we hereby propose a deep learning-based approach, taking into account the collective mobility of
tourists over the territory. The underlying semantics of motion patterns are captured by means of a
long short-term memory (LSTM) neural network model trained on pre-processed location sequences,
aiming to predict the next visited place in the trajectory. We tested the methodology on a real-world
big dataset, demonstrating its higher feasibility with respect to traditional approaches.

Keywords: deep learning; LSTM; neural networks; location prediction; trajectories; smart tourism

1. Introduction

Human mobility analysis has gained increasing popularity due to the recent growth in people’s
location information availability in the form of massive trajectory data sets. Motion behaviors can
be passively collected by mobile phones in terms of cell tower connection or GPS signal, or even
actively shared by users on social media platforms. These large volumes of geo-located data
enable the opportunity to reveal and integrate motion patterns in a wide variety of contexts [1,2],
from recommendation systems [3,4] to mobility modeling applications for smart city and smart
enterprise [5,6].

The rise of positioning technology and motion data availability has particularly boosted location
prediction analysis, which has become a very active research area in the big picture of location-based
services. Location prediction is interpreted as inferring the short-term future location of an individual,
leveraging his/her current place, past motion activity, and possibly additional side information.
Depending on the context, it may imply very different problems and approaches, comprising
motion flow modeling [7–9], individual large-scale mobility analysis [10–12], and very fine resolution
systems [13–15].

While the majority of works dealing with the prediction of individual mobility traces are set in
contexts with a high level of spatial and temporal regularity (e.g., motion activity of users in everyday
life), our paper contributes to extend trajectory prediction analysis in the opposite direction, when
individual motion regularity is lacking due to the non-repetitiveness of single mobility traces.
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Our focus and intended application is related to tourists’ mobility within the growing field of smart
tourism. Smart tourism integrates tourism resources with information technologies to design intelligent
services to provide valuable outcomes to tourists and tourism-related industries. The development
of smart tourism is particularly embodied in four main aspects, namely tourism experience, tourism
management, tourism service, and tourism marketing [16–19]. The tracking and recording activity
of space-time paths of individual tourists is inserted in this big wave of tourism mining, not as an
ultimate purpose, but as a mean of providing valuable knowledge of tourists’ mobility and travel
behaviors. However, although spatial-temporal trajectory data have been widely utilized in studies of
tourists’ behavior, their use has been mainly limited to descriptive purposes at the level of clustering
and pattern analysis [20–23]. But if forestalling actions require consideration, predictive investigations
become an essential tool.

Our case study targets short-term tourists in a foreign country. Foreign tourism is major source of
income for the tourism industry and it is an area of investigation for public and private organizations.
Most destination strategies define measures specifically designed for foreign tourists, which have
different behaviors and spending patterns compared to domestic users. For this reason, the unfolding
of their tourism experience is used to understand and possibly leverage the insights to improve tourism
policies and decision-making.

While in everyday life a person’s mobility is described by a significant probability of returning
to a limited number of highly frequented locations (e.g., home and workplace) [24–26], the natural
characterization of foreign tourists’ motion behavior is based on short and non-repetitive trajectories of
users moving in areas they have never been to. The lack of individual historical location data leads
methods relying on a set of individual pre-recorded motion trajectories to performing poorly when
applied to traces covering areas that are unfamiliar to the user; a prediction algorithm solely based on
a sequential approximation of a single probability distribution is not effective in this case. In addition,
the focus on large-scale mobility often implies a very wide territory, introducing further problems such
as trajectory data sparseness and a multitude of locations, involving the curse of dimensionality.

The proposed method aims to overcome these issues with the use of a deep learning-based
approach that leverages the collective mobility of users over the territory. The method consists of
a long short-term memory (LSTM) neural network trained on pre-processed location sequences to
learn the underlying patterns of tourists’ motion activity. Original traces are first transformed into
discrete location sequences, and are subsequently fed into a deep neural network model composed
of embedding and LSTM layers. The model captures motion patterns directly from mobility traces,
without requiring any manual feature extraction. Each individual user’s mobility prediction is therefore
based on the collective analysis of tourists’ behavior over the territory. For a wider application in
various contexts, we do not resort to any additional information besides the users’ motion traces, since
useful secondary information is not available in many cases. In this way, the model can be applied to a
variety of geo-located data types, as long as the recorded positional data generated by users can be
properly organized into mobility traces in the form of sequences of locations.

Experiments on a real-world large-scale big dataset prove the higher feasibility of our forecasting
method with respect to traditional approaches in this mobility regime, standing out as a potentially
beneficial methodology for many real-life applications, including touristic services for personalized
recommendations, targeted advertisement, and sustainability studies related to crowd management
and resource redistribution. In general, this study contributes to the expansion of tourists’ mobility
analysis in the direction of actively integrating artificial intelligence into the tourism sector.

2. Related Work

The rise of motion data availability has boosted the interest in human mobility analysis, establishing
various methods for trajectory data mining [27,28] to either describe the observable motion behavior [29]
or to predict future activities [30].
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Location prediction has a central role in human mobility analysis and is applied to numerous tasks
such as crowd management, congestion prediction, transportation planning, and place recommender
systems [31,32]. In the past few years, plenty of predictive models have been suggested, leveraging
various methods including Markov models [33,34] and data mining approaches [35–37]. Previous
research on location prediction can be roughly split into two broad groups: motion regularity-based
methods and multiple mobility-based methods.

The first group is based on the regularity of individual user’s motion history. Since most people
tend to follow regular motion patterns in daily life, often returning to the same few locations, their
personal past mobility is a valuable factor to predict their future trajectories [24–26]. Therefore,
the majority of works on predicting a person’s next visited location rely on historical motion data
collected from this person exclusively, evaluating the regularity patterns in human mobility by
learning individual, frequent traveling routes [38,39]. In this sense, the most common approach
is the use of Markov models, representing locations as states and movement between locations as
transitions [11,12,40]. States are defined by partitioning space into grids or reference points, and
transition probabilities are defined by counting each user’s transitions, identifying the most likely next
destinations for each current location. This type of model achieves good performances in the presence
of long, pre-recorded motion trajectories of the particular user under study.

The second group comprises methodologies combining individual past locations with collective
motion information from multiple users. A subgroup is represented by collaborative filtering to find
similarities among users’ preferences in frequently visited destinations [41]. This includes methods for
classifying users’ preferences into point of interest categories [42] and recommendation systems based
on generic, top interesting places or personalized location matching [43]. Another subgroup focuses on
geographical elements, predicting the next locations based on the definition of features for each place
and the relationships between places. These methodologies do not model individual preferences or
similar preferences among users, but make predictions by using geographical statistics [44,45]. A final
subgroup includes motion pattern mining techniques and prediction algorithms combining individual
current movements with historical collective data to find frequent patterns and co-occurrences of
locations. The methods comprise ensemble probabilistic algorithms [46,47], feature-based machine
learning methodologies [48,49], and deep learning models [50,51] to predict users’ locations over time,
based on individual and collective behaviors.

In general, when people rarely share their history of past visited places with other users, location
prediction methods based on previously seen locations of an individual user are likely to be chosen over
other methodologies. However, in the case of irregular individual motion patterns, short data history
users, and non-repetitive mobility behaviors, prediction algorithms approximating single probability
distributions are not reliable and multiple mobility-based methods may be preferred. Moreover,
it is worth mentioning that a large number of methods enrich trajectories with further context data,
such as prior knowledge of motion information (e.g., acceleration, orientation) [11], external data
(e.g., weather, social media analysis) [52,53], or user-specific features (e.g., home and workplace, user
specific preferences) [44,54–57]. In these cases, the main disadvantage is of a practical nature, since
secondary information is often insufficient or not available.

Over the last decades, academics and practitioners have increasingly approached the study of
tourists’ movements [20,58,59] and how to guide practical measures based on these findings [60–62].
Most studies focused on mapping and modeling movements between locations [21,63], as tourist
destinations are involved in a complementary relationship [64,65]. These include travel itinerary
models [66] and spatial pattern examination of travel flows [67,68], often leveraging a variety of
measures within the study framework [21,69]. Only few studies, however, exclusively involved
international visitors [70,71]. While the interest in mining movement patterns of tourists has been
prominent, and studies are developing fast for collectively estimating the overall amount of visitors
within single destinations [72], the explicit prediction of individual short-term tourists’ mobility traces
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still requires further expansion, being mainly based on Markov approaches for modeling location
transitions [47,58,59].

This paper therefore introduces a deep learning model to predict individual trajectories of
short-term foreign tourists. Its characteristics comprise: leveraging the collective mobility of people
to predict individual traces, falling in the category of multiple mobility-based algorithms; learning
mobility patterns without any manual feature extraction or secondary context data by simply feeding
the model with sequences of locations, from a purely data-driven perspective; explicitly designed to
predict the next location of a user, specifically when a very short data history is known about that user.
The use of LSTM is tested in this particular mobility regime of short and non-repetitive traces to assess
its feasibility when applied to large-scale movements of visitors in a foreign country.

3. Methodology

The proposed prediction method aims to model patterns hidden in the historical motion data of
multiple people, in order to identify the most likely future movement of an individual user. Given
a short mobility trace sampled at a given time step, the solution of our model consists of inferring
the future visited location in the next time step. This section reports the details of the proposed
methodology, from trajectory pre-processing to deep learning modeling.

3.1. Trajectory Pre-Processing

The first step of the path from original mobility traces to location prediction is characterized by
trajectory discretization, a pre-processing phase transforming raw traces into the input for the neural
network model.

An original mobility trace is described by a series of chronologically ordered track points
T =

{
pi
∣∣∣i = 1, 2, 3, . . . , N

}
, generated by an individual user, whereby each point is defined by a

coordinate pair enriched with a time stamp pi = (loni, lati, ti). The trajectory discretization task consists
of aggregating continuous values of longitude and latitude into discrete locations and transforming
the continuity of time into fixed time steps. This results in a pre-processed trajectory in the form
of a sequence of locations (LOC1, LOC2, . . . , LOCN), where, given a time step unit t, locations refer
to time (t, 2t, . . . , Nt). Time information is therefore encoded in the position along the sequence
and the location associated to each time step is chosen as the one identified by the majority of track
points recorded within that time period. The length of the time step is case specific, depending on
the data source and the prediction problem: a short unit increases fragmentation in the presence of
discontinuous traces and low time resolution data, a long unit may compromise a proper trajectory
representation affecting prediction results. Moreover, even spatial resolution varies according to
the data source, and may be further discretized (e.g., through clustering, reference point definition,
and grid-based approaches) in relation to the time resolution and the specific purpose of different
applications (e.g., prediction of motion traces over a whole country or mining city-level mobility).
This is particularly suggested when trajectories are very sparse and there are many locations with only
very few occurrences. In addition, because human mobility is not generally uniformly distributed over
the territory, locations that are potentially inaccessible or irrelevant should be discarded; only those
locations that are seen by a sufficient amount of people should be considered, avoiding bias samples in
the data and worthless computational effort. The result should consist of a set of fixed points (or areas)
over the territory, each of them associated with a particular unique identifier. A pre-processed trajectory
is made of a sequence of these discrete locations unfolding in fixed time steps.

3.2. Deep Learning Model for Trajectory Prediction

The collection of the pre-processed trajectories from multiple users, in the form of sequences of
unique location identifiers, is used as input data to the deep neural network model. The model is
made of three building blocks: an embedding layer, a block of one or more LSTM layers, and a softmax
layer. Each location identifier is initially associated to a particular corresponding embedding vector,
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encoding input trajectories into sequences of embeddings that are subsequently fed to the LSTM block,
made of stacked LSTM neural network layers. The final trajectory representation, output vector of the
last LSTM layer, becomes the input of a softmax layer for generating the probability distribution of
the next predicted location in the trace. A graphic exemplifying overview of the whole model, with a
block of two LSTM layers, is illustrated in Figure 1.
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Figure 1. Exemplifying overview of the deep neural network model using a block of two long short-term
memory (LSTM) layers and a four-location trajectory.

3.2.1. Embedding Layer

To limit the problems of the curse of dimensionality, trajectory sparseness, and computational
inefficiency, we replace traditional representations such as one-hot by associating each discrete location
with a low-dimensional dense vector (embedding). This is done by means of an embedding layer,
transforming sequences of discrete location identifiers into sequences of dense vectors before they are
fed to the LSTM block, as depicted in Figure 2. In particular, each location is initially defined by a
random vector of a pre-defined size, whose values are updated during the training process; just like
other model parameters, embeddings are tweaked, through backpropagation, on the basis of the
prediction outcomes. Over training, they assume a meaningful mathematical representation as vectors
of continuous values, whereby locations that are often co-occurring in the same traces share similar
representations in this embedding space.
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Figure 2. Embedding layer representation: from a sequence of discrete locations to a sequence of
dense vectors.

3.2.2. LSTM Block

The next stage consists of the LSTM block. LSTM [73] is a complex recurrent neural network type,
whose repeating module is composed of four different neural networks interacting between each other.
The network processes an input sequence one element at a time, receiving, at each step, two sources
of input data: the current vector of the data sequence concatenated with the output vector of the
network module at the previous step. The information flows through the network modules, encoded
in the cell state, and is modified by the four neural network structures until the end of the sequence
is reached. The output at the last step is the final vector characterization of the sequence, which is
subsequently used for the actual prediction task. If the LSTM block contains multiple LSTM layers, the
final trajectory vector is represented as the output, at the last step, of the last layer. In general, the first
LSTM layer is fed with the input sequence, the second layer is fed with the output of the first layer,
and so on. Figure 3 displays a visual representation of the LSTM block; the example shows the last two
steps of an embedding sequence and a block of two LSTM layers.Sustainability 2020, 12, x FOR PEER REVIEW 7 of 19 
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Equations (1)–(6) report the formulas describing the functioning of a repeating module of LSTM,
given an input vector xt; the forget gate (1) defines the information to be deleted from the cell state;
the input gate (2) decides which values to update; the tanh network (3) determines a vector of new
values to be added to the state; the new cell state (4) is obtained by filtering the old cell state through
the forget gate, and by adding the combination outcome between the input gate and the tanh network;
the output gate (5) defines which parts of the cell state to output; and the final LSTM output (6) results
from the multiplication between the output gate and the tanh of the new cell state.

ft = σ
(
W f · [ht−1, xt] + b f

)
(1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tan h(WC · [ht−1, xt] + bC) (3)

Ct = ft ∗Ct−1 + it ∗ C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ∗ tan h(Ct) (6)

3.2.3. Softmax Layer

The predicted next location is explicitly disclosed by means of a softmax layer on top of the LSTM
block. The softmax layer is a simple, fully-connected neural network followed by a softmax activation
function. It receives the final trajectory vector characterization as an input, and outputs the predicted
probability distribution for the next potential location, as shown in Figure 4.
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Equation (7) reports the description of the softmax layer, where hlast represents the output of the
last LSTM layer at the last step and n_LOC is the total number of locations.

(LOC = j | hlast) =
exp

(
W jh′last + b j

)
∑n_LOC

k=1 exp(Wkh′last + bk)
(7)

3.2.4. Model Training

Prior to being fed into the neural network model, location sequences are scanned by a sliding
window, determining the training features and the target variable. The window moves forward by one
location until the end of each sequence, defining multiple segments of fixed length as input sequences
to the deep learning model. The segment length represents the amount of past motion activity taken
into account for learning to predict the future location (e.g., predicting the next location based on the
last six hours of a user’s mobility). Its choice, besides strongly depending on the applications and
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dataset restrictions, is closely related to the time resolution of the sequence, whereby a higher time
resolution determines a larger number of locations describing the past motion activity.

The deep learning model is fed with a collection of these segments, where, for example, a window
length equal to four locations would define a sequence (LOCt−3, LOCt−2, LOCt−1, LOCt) as input
features to the model and the location LOCt+1 as the target variable. The model training maximizes
the log probability, with respect to the weights of every layer (embedding, LSTM, and softmax),
of observing the correct next location, given the sequence of past locations. The process relies on
backpropagation and mini-batch stochastic training to determine in which direction the weights
are adjusted.

The prediction of a location sequence is therefore based on the collective historical mobility of
people, identifying the most likely next location as the one having the highest probability according to
the output of the model.

4. Experiment

The current section introduces the dataset used for the prediction task and reports the description
and results of the experiments conducted. A particular focus is given to the evaluation of results, which
are compared to traditional approaches and are analyzed according to different motion characteristics.
The proposed model was implemented and executed on TensorFlow (Google Brain, Mountain View,
CA, USA), using AWS EC2 p3.2xlarge GPU instance.

4.1. Dataset

To properly describe the general large-scale motion activity of foreign tourists, we used a real-world
dataset comprising seven months of anonymized mobile phone call detailed records (CDRs) of roamers
in Italy. In order to present meaningful findings, it is indeed important, especially when dealing with
wide territories, to make use of a sufficiently large and complete dataset, whose trajectories redundantly
cover the study area. CDRs have been widely used in human mobility studies [74–77], reporting the
detected mobile phone activities enriched with the time stamp and the position of the device in terms
of the coverage area of the principal antenna. We only took into account short-term visitors, recorded
to be located in the country for a maximum of two weeks. In addition, we discarded those users that
appeared to be completely stationary. Foreign visitors’ mobility was therefore represented by short
traces and non-repetitive behaviors.

The erratic profile of mobile activity, represented by sparse connection events, may critically
fragment mobility traces, making it difficult to create continuous location sequences. To limit the
fragmentation problem and define proper trajectories, we pre-processed traces into sequences unfolded
in 1 h time step; the prediction problem is formulated as predicting the location of a user in the next
hour. In particular, if more than one track point was recorded in the same hour, the location associated
to the majority of those recordings was chosen to identify the current position of the user. Given the
wide territory, the choice of the time step unit, and our focus on large-scale movements, a minimum
spatial resolution of 2 km was selected. Reference points were defined as the antennas subjected to the
highest number of connections within the minimum spatial resolution, projecting the other ones to the
closest reference point. Furthermore, we discarded very rare locations, identified by just a few tens
of recorded events. Being mostly randomly visited, they are not significantly involved in the overall
travel behavior of foreign visitors in Italy. Nevertheless, specific characteristics of different datasets
may provide an influence on parameters such as time and space resolution, and a choice of different
values can be suitable for different applications.

The final dataset consists of 1 h encoded sequences of 5903 possible unique locations over the
Italian territory. To appropriately focus on short motion behaviors and to make complete and proper
utilization of the dataset, represented by relatively short continuous traces, we set a window length
equal to 6 h (6 locations), determining a total of 13 million trajectory segments (with a median



Sustainability 2020, 12, 349 9 of 18

displacement per segment of 36.1 km) generated by 1.4 million users. We believe this large amount of
data is representative of the overall real motion behavior of foreign tourists.

4.2. Experimental Settings

We designed the neural network model using an embedding size of 100 dimensions and a block
of two LSTM layers having a hidden size of 4000 neurons each. The training process was based on
cross-entropy cost function, mini-batches, and Adam optimizer [78]. To evaluate the performance of
the model on previously unseen data, we randomly split the dataset into a training set and a test set,
containing 80% and 20% of the users, respectively.

For a better evaluation of the results, we compared the achieved prediction accuracy with
traditional approaches involving the use of Markov modeling, which is widely applied in location
prediction problems. Locations are represented as states and movements between locations as state
transitions. The creation of a transition matrix identifies the most likely next destinations for each
current location [33]. We reported three different Markov model types as comparison baselines for
our methodology:

- Personal Markov model. Transition probabilities were calculated by counting each single user’s
transitions, modeling individual movement patterns.

- Global Markov model. First-order probability distributions were calculated by counting the
collective state transitions of all users, modeling collective movement patterns.

- Variable-order global Markov model. The principle of the longest match was applied to select
which global Markov model order to adopt to calculate the transition probabilities; for a given
location sequence, the collective prediction probability distribution was computed on the set of
training sequences matching its longest suffix.

4.3. Results

Table 1 reports the comparison results in terms of accuracy and accuracy in top 3 (if the correct
label corresponds to one of the top three predicted locations, the accuracy is 1, otherwise it is 0;
the result is the average for each testing trajectory). Our model (LSTM) outperformed the Markov
approaches, yielding a 5% improvement compared to the best baseline, the global Markov model
(GMM), 10% improvement compared to the variable-order Markov model (VGMM), and 33% to the
personal Markov model (PMM). The accuracy in top 3 confirmed this trend, showing a 7% improvement
of our model with respect to GMM, 8% to VGMM, and 47% to PMM.

Table 1. Overall performance comparison between our methodology (LSTM) and the Markov baseline
approaches, namely personal Markov model (PMM), global Markov model (GMM), and variable-order
global Markov model (VGMM).

Accuracy Accuracy in Top 3

PMM 0.3373 0.3717

GMM 0.4822 0.6508

VGMM 0.4553 0.6445

LSTM 0.5076 0.7013

Reasonably, PMM, which was solely based on individual mobility and ignored the collective
motion behavior, had the lowest scores in this regime of short and non-repetitive traces. GMM
and VGMM, which considered the collective mobility of all users, greatly improved performances,
with the first-order model surpassing the variable-order model. LSTM determined a further increment,
exceeding the best baseline of 2.5 percentage points in terms of accuracy and 5 percentage points in
terms of accuracy in top 3.
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Moreover, we analyzed how different trajectory characteristics affect prediction. The idea was to
evaluate the influence of different values of motion features, such as the traveled distance and radius
of gyration, on the prediction performances.

Table 2 shows the accuracy and accuracy in top 3 (in brackets) for different values of traveled
distance within six hours prior to prediction. Five bins were selected: ≤10 km, 10–25 km, 25–50 km,
50–100 km, and ≥100 km. Comparing accuracy, despite an overall tendency of decreasing performance
when the traveled distance increases, PMM always performed very poorly, while GMM and VGMM
achieved remarkable results for mid and short distances, respectively. In particular, GMM substantially
outperformed VGMM for mid-range values (10–100 km), but was overcome by the latter for very short
distances (≤10 km). LSTM always exceeded every baseline, even if it only slightly outperformed GMM
for mid-short distance values (10–50 km). It is worth noticing how LSTM largely overcame the other
methods for very long distances (≥100 km). Moreover, its accuracy in top 3 was consistently much
higher than every baseline for each distance bin.

Table 2. Accuracy (and accuracy in top 3 in brackets) comparison for different values of traveled distance.

Trav. Dist. = ≤10 km 10–25 km 25–50 km 50–100 km ≥100 km

PMM 0.4645
(0.5088)

0.4240
(0.4901)

0.3260
(0.3639)

0.2613
(0.2796)

0.1665
(0.1689)

GMM 0.5495
(0.7805)

0.5648
(0.7412)

0.4988
(0.6534)

0.4494
(0.5845)

0.3391
(0.4582)

VGMM 0.5788
(0.7945)

0.5033
(0.7201)

0.4312
(0.6270)

0.3979
(0.5656)

0.3212
(0.4630)

LSTM 0.5938
(0.8172)

0.5696
(0.7933)

0.5061
(0.7036)

0.4633
(0.6293)

0.3803
(0.5270)

Table 3 reports the accuracies for different values of radius of gyration (ROG), in bins of ≤3 km,
3–10 km, 10–32 km, and ≥32 km. These results reinforce the observations reported in the previous
case, such as the general tendency of decreasing performance as the ROG value increases, the overall
poor achievements of PMM, the good results of VGMM for very small values (≤3 km), and the
remarkable performance of GMM for mid-range values (3–32 km). Again, LSTM always outperformed
the baselines, only slightly beating the GMM accuracy for the 3–10 km bin, but greatly overcoming the
other methods for very large ROG values (≥32 km). As in the traveled distance case, its accuracy in
top 3 was consistently much higher than the baselines for each of the ROG bins.

Table 3. Accuracy (and accuracy in top 3 in brackets) comparison for different values of radius
of gyration.

ROG = ≤3 km 3–10 km 10–32 km ≥32 km

PMM 0.4539
(0.5213)

0.3650
(0.4078)

0.2974
(0.3089)

0.1880
(0.1899)

GMM 0.5496
(0.7859)

0.5246
(0.6880)

0.4719
(0.6038)

0.3548
(0.4729)

VGMM 0.5661
(0.7923)

0.4578
(0.6668)

0.4218
(0.5846)

0.3371
(0.4781)

LSTM 0.5891
(0.8229)

0.5299
(0.7480)

0.4849
(0.6426)

0.3955
(0.5404)

In addition, we observed the prediction variability at different hours of the day. Figure 5 displays
the accuracy and accuracy in top 3 of the four methods over time, starting from midnight. Rush hours
in the afternoon appeared to be more predictable than the ones in the morning, while accuracies
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significantly increased in the evening and night due to the higher regularity of mobility patterns during
these hours. LSTM was shown to outperform the baselines for every hour of the day.
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of the day.

Performances were further explored based on the imbalance of the dataset, by evaluating results
corresponding to popular and rare locations. Table 4 reports the accuracies for different ranges of
location occurrences in the data, defining frequently visited locations and less visited ones. The columns
from left to right identify specific groups of locations, where each location of each group represents,
respectively, over 0.5% of the whole dataset, between 0.1% and 0.5%, between 0.05% and 0.1%, and less
than 0.05%. As expected, there is a general drop of performance when passing from popular locations
to rare ones. However, the superiority of LSTM is once again clearly exhibited.

Table 4. Accuracy (and accuracy in top 3 in brackets) comparison for visited locations in different ranges
of occurrence in the data. The percentage value in the first row refers to the amount of occurrences of
each location in that column with respect to the whole dataset.

Amount of Data: ≥0.5% 0.1–0.5% 0.05–0.1% ≤0.05%

PMM 0.5169
(0.5485)

0.3809
(0.4147)

0.3280
(0.3600)

0.2624
(0.2986)

GMM 0.6872
(0.9305)

0.5398
(0.7659)

0.4745
(0.6511)

0.3925
(0.5095)

VGMM 0.7172
(0.9146)

0.5448
(0.7624)

0.4462
(0.6456)

0.3336
(0.5049)

LSTM 0.7372
(0.9459)

0.6024
(0.8210)

0.5039
(0.7151)

0.3925
(0.5660)

Finally, we focused on the prediction errors to study the performance of our model in the particular
case when it was not able to correctly identify the future visited location. We compared LSTM with
GMM, the best baseline in terms of accuracy, to assess how their predicted locations differed when a
misprediction occurred in both models. Figure 6 reports the bar graphs representing the error distance
distribution of the segments that are wrongly predicted by both models. The error distance was
calculated as the absolute distance between the wrongly predicted location and the real future location
(to calculate the error distance of wrong predictions in top 3, we considered the predicted location,
within the first three, having the shortest distance with the real location). The bar graphs highlight the
overall tendency of LSTM to make mistakes with a shorter error distance than GMM.
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Figure 6. Bar graphs representing the error distance distribution of LSTM and global Markov model
(GMM) when both models predicted wrongly (wrong predictions in the left graph, wrong predictions
in top 3 in the right graph).

We also studied the difference of error distance between the two prediction models, analyzing the
corresponding mispredictions on the same segment. The bar graphs in Figure 7 display the subtraction
error_distance(GMM) − error_distance(LSTM) for wrong predictions and wrong predictions in top 3;
a negative value indicates that the baseline provided a shorter error distance on a wrongly predicted
segment; a positive value is in favor of our model. As depicted by the high bars on the right part of
both graphs, there were a remarkable number of samples on which GMM tended to make prediction
mistakes in the order of a few tens of km more than LSTM. Overall, our model, besides the higher
prediction accuracy, also presented better results in terms of the shortest error distance.
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4.4. Discussion

We proposed a method to predict individual mobility traces of short-term foreign tourists
leveraging the collective large-scale motion behavior of people and a deep learning-based methodology
adapted to process motion trajectories. The model relies on a recurrent neural network architecture
composed of embedding and LSTM layers. We assessed the feasibility of such methodology on short,
non-repetitive traces, revealing its potentiality for human mobility studies and applications.
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In particular, our method was shown to outperform the widely used Markov model approaches
based on location transition probabilities. The results reported how a probabilistic approach built on
the motion behavior of a single individual performs very poorly in this mobility regime, proving the
need for collective motion information. This collective mobility, however, consists of non-repetitive
traces that clearly influence prediction performances; the simpler first-order Markov model generally
overcame the variable-order model based on the longest common suffix. LSTM, specifically designed to
find patterns along series, outperformed every baseline, demonstrating a higher capability of correctly
predicting individual mobility traces, represented as ordered sequences of locations.

We also observed how predictability varied for different trajectory characteristics. Despite the
general tendency of decreasing performances for longer traveled distances and larger explored areas
(local movements were more predictable than long-distance movements), our model always achieved
a better accuracy than the baseline approaches. Reasonably, local movements rely on a restricted set
of likely future locations, whereas long-distance movements are more unpredictable since the broad
explored area could determine a large number of possible future visited locations. However, our model
achieved the largest accuracy gap over the baselines exactly in correspondence of very high values of
traveled distance and ROG, showing a particular potential for long distances and large covered areas.
Moreover, its accuracy in top 3 was always significantly higher than the other models independently
from trajectory characteristics. This also includes predictability over time, where results were split on
the basis of the hour of the day. Besides the fact that our methodology constantly performed better than
the comparison methods, we observed that rush hours in the morning were generally less predictable
than rush hours in the afternoon. This is caused by the fact that the traces preceding the early morning
hours contain less meaningful past information with regard to future activities. Due to the higher
stationarity and regularity (individual and collective) during the night hours, trajectories sharing the
same locations during the night can easily lead to different destinations in the morning; therefore,
the recent past motion activity becomes less important in predicting the next location. However,
the recent past visited locations gain more importance for predicting the afternoon hours because
they carry information about motion behavior in the morning, which is more often meaningful and
indicative of future movements. Finally, predictability increases in the night due to the intrinsic higher
regularity of mobility patterns during these hours, which is also represented by the better performance
of the variable-order Markov model over the first-order model in the late night and morning hours,
and in correspondence of small values of traveled distance and ROG.

Furthermore, another meaningful performance indicator was defined by assessing the results in
relation to the class imbalance, to observe how the model behaves with respect to frequent locations and
rare locations. While better results were expected in correspondence to those locations that are often
visited, it was worth verifying that the model did not totally drop in performance for very rare locations.
In general, besides a tendency to obtain very accurate predictions for popular locations, LSTM was
shown to still outperform the baselines, achieving acceptable results even for very rare locations.

Another meaningful matter to mention is related to the prediction error. While the main goal is to
correctly detect the next location, it is also important, when the prediction is wrong, to assess how
wrong it is. Comparing our model with the best baseline, we verified that the error distance of our
methodology is generally smaller, in particular a few tens of kilometers smaller for a large number of
observations, whereas far more rarely the error is strongly in favor of the Markov model. This shows
that LSTM implicitly makes less serious mistakes in terms of the error distance with respect to Markov,
further emphasizing its superiority.

In conclusion, the presented deep learning methodology shows advantages in location prediction
of non-repetitive traces generated by short-term foreign tourists. This fits in the field of deep
learning-based artificial intelligence for smart city research and smart tourism, e.g., for enhancing user
experiences or providing advanced decision making. In particular, this work brings a contribution to
the computer science side of the variety of disciplines involved in smart city research [79], specifically
falling into the field of analytics technologies, comprising decision-making oriented approaches to



Sustainability 2020, 12, 349 14 of 18

discover hidden patterns over big data. These approaches have recently gained critical interest and
development, especially for social impact implications [80,81]. Nonetheless, their contribution is
only a facet of the multi-disciplinary reality of smart city and smart tourism, and synergies with
the other disciplines need to be carefully evaluated to guarantee valuable outcomes [82]. In any
case, the proposed research opens a wide variety of potentially suitable applications, ranging from
personalized location-based services, to crowd control, to destination planning and management.
The most straightforward implementation option is related to the optimization of the quality of
individual touristic experiences. Personalized information and recommendations can be provided to
a specific tourist along the path, highlighting optional spots and attractions within the next visited
area predicted by the model. In addition, collecting the predictions of individual spatial choices can
reveal potential crowded areas, giving rise to congestion warning information for those tourists that
were forecasted to visit those areas. Combining individual predictions can indeed be used to study the
future spatial collective distribution of tourists, which is certainly important for several tasks, including
the adjustment of supply of facilities and services, and sustainable countermeasures complying with
real-time crowd control.

More broadly, this study fits in the background of trajectory prediction employing machine
learning methodologies, particularly contributing to highlighting the potential of deep learning on
human mobility studies, disclosing recurrent network models as a promising tool for pattern recognition
in trajectory analysis.

5. Conclusions

This paper presented a deep learning model to mine human motion patterns, aimed at predicting
short-term foreign tourists’ next location from place-based trajectories. The model was trained on the
collective behavior of users to capture the dependency of track points and infer the latent patterns of
motion traces to predict individual trajectories. The process follows a purely data-driven perspective,
whereby the model is able to grasp mobility patterns directly from location sequences, without
requiring any manual feature extraction or external information. We initially transformed raw traces
into sequences of locations unfolding in fixed time steps, and then applied a deep neural network
model composed of embedding and LSTM layers to correctly predict the next location in the sequence.
Adopted in the context of short non-repetitive traces, our methodology was shown to outperform
traditional approaches, expressing a potential that is worth examining in depth.

Possible extensions of this paper can explore augmentation of trajectory data with further
information. A research direction may consist of explicitly integrating time information in the
sequence, assessing probable performance improvements. In addition, other factors can be taken into
consideration, including tourist characteristics such as nationality or age. Furthermore, it could be
appropriate to study tourists’ mobility at a smaller scale, investigating the predictability of finer traces
in time and space (e.g., in an urban environment); in this case, GPS data would allow more detailed
resolutions than telecom data. Lastly, the same methodology could be tested for different use cases
dealing with short and non-repetitive traces, not limited to tourism analysis.

In conclusion, the use of recurrent network architectures should be further explored in the field of
human mobility, since the current promising results can potentially become successful applications in
a variety of tasks related to trajectory analysis and motion behavioral studies.
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