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Abstract: The development and evolution of an urban green space system is affected by both natural
effects and human intervention. The simulation and prediction of an urban green space system can
enhance the foresight of urban planning. In this study, several land use change scenarios of the main
urban area of Xuchang City were simulated from 2014 to 2030 based on high-resolution land use data.
The layout of each scenario was evaluated using landscape indexes. A Cellular Automata–based
method (i.e., future land use simulation, FLUS) was applied to develop the urban green space system,
which we combined with urban land use evolution. Using recent data, the FLUS model effectively
dealt with the uncertainty and complexity of various land use types under natural and human effects
and solved the dependence and error transmission of multiperiod data in the traditional land use
simulation process. The root mean square error (RMSE) of probability of the suitability occurrence
module and the Kappa coefficient of the overall model simulation accuracy verification index both
met accuracy requirements. It was feasible to combine the evolution of the urban green space system
with urban land development. Moreover, under the Baseline Scenario, the urban land use layout
was relatively scattered, and the urban green space system showed a disordered development trend.
The Master Plan Scenario had a compact urban land use layout, and the green space system was
characterized by networking and systematization, but it did not consider the service capacity of
the green space. The Planning Guidance Scenario introduced constraint conditions (i.e., a spatial
development strategy, green space accessibility, and ecological sensitivity), which provided a more
intensive and efficient urban space and improved the service function of the green space system layout.
Managers and planners can evaluate the urban future land use development mode under different
constraints. Moreover, they would be able to adjust the urban planning in the implementation
process. This work has transformed the technical nature of the planning work from “static results” to
a “dynamic process”.

Keywords: green space layout; land use simulation; FLUS model; constraint condition; spatialization
of indicator; main urban area of Xuchang City

1. Introduction

In 2015, the United Nations presented seventeen sustainable development goals, three of which
were closely related to urban green space: sustainable cities and communities, climate action, and
life on land. An urban green space system serves multiple functions, including improving the urban
living environment, human health, and well-being, adjusting the urban climate, maintaining the urban
ecological biodiversity, and promoting urban sustainable development [1–4]. Urban green space
system planning guides development, establishes layouts, and manages and controls the urban green
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space [5,6]. Traditional urban spatial planning work is mainly a spatial expression of the subjective
needs and planning intentions of the government and planners; the requirements of urban residents
have often not been considered [7–9]. One issue in planning is the uncertainty of the benefits game [10].
Urban green space system planning often lags behind urban master planning and often does not
consider the coexistence and connection of various land use classification systems. As a result, urban
green space system planning can be particularly passive and negative [11,12]. At present, due to rapid
urbanization, the demands of the natural environment and the development intensity of various types
of urban land use are rapidly changing. In the past, the planning mode of an “ultimate blueprint” (i.e.,
the control index based on a plot) was too rigid to respond to the future development scenario of a city
in a timely manner. This led to contradictions between planning objectives and actual development
demand [13].

A city is an open, complex, giant system [14,15]. As a subsystem of the city, the urban green space
system is an important means for the development and evolution of the natural spatial elements of an
urban area. The evolution of the urban green space system is not a simple bottom-up self-organization
process. The construction of urban green space usually is accompanied by top-down macro-level
control [16–18]. On the basis of the natural conditions of urban development and considering the
ecological and social benefits, a future land use development scenario simulation for an urban area is
useful to realize the “multiple planning integration” of spatial planning and promote multilevel and
effective control of land and space [19,20].

The land use change scenario simulation model is an effective tool for simulating urban
land use patterns. This simulation model can optimize urban land use layout and assist with
decision-making [21–24]. In the past two decades, it has become essential to embed constraint
conditions into the Cellular Automata (CA) model. This model has improved the simulation and
prediction of urban land use development, and a growing number of studies have described related
applications [25,26]. The original study was carried out by Li and Ye [27] and regarded the development
adaptability of resources and environmental factors as constraints. They simulated the spatial layout
of urban development in the Pearl River Delta area. Verburg et al. [28] took land use demand as a
driving force to explore the conversion relationship between different land use types and simulated
the dynamic changes of land use and landscape patterns in Europe. Liu et al. [29] simulated different
scenarios considering climate change, rainfall, and socio-economic factors and analyzed the natural
and human effects on land use patterns. Meanwhile, Liang et al. [30] proposed a CA-based future land
use simulation (FLUS) model combined with regional planning to delineate multiple scenario urban
growth boundaries. Chen et al. [31] demonstrated the effects of different policies over time for the urban
future development by using CA. CA is a basic model used to simulate the spatiotemporal evolution
characteristics of urban complex systems [32–34]. The model has been continuously improved and
now includes the Artificial Neural Network-CA (ANN-CA) model [35], the Conversion of Land Use
and its Effects (CLUE) model [36], and the Geographical Simulation and Optimization (GeoSOS)
model [37]. Compared with other models that depend on historical data of land use over multiple
periods, the CA-based FLUS model is based on one phase of the data, which is combined with the
various driving factors of natural effects and human interventions. Then, the suitability probability of
each land type in the study area can be obtained, the dependence on the multiphase data and the error
propagation can be avoided, and the complexity of various land use types under natural effects and
human interventions can be processed effectively [38].

Previous studies have showed that the land use change scenario simulation model can simulate
and predict the land use layout scheme of future urban development based on different constraints and
can provide scientific auxiliary decision-making for urban planning. Most of the studies, however, have
focused on large-scale land use change simulation and effect analysis. Research on high-resolution land
use and different types of land use in cities is relatively lacking. In China, due to rapid urbanization,
the development model for megacities has changed from incremental planning to stock planning,
while for small and medium-sized cities, the demand for land expansion still exists due development
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needs [39,40]. In built-up areas with high-density population, different land types have different
transformation needs. The coordination between urban and rural land use and urban internal land use
is important. The “Garden City Movement” is a generally acknowledged classical theory of urban-rural
integration put forward by Ebenezer Howard in 1898 [41]. Based on the above land use trend and the
urban-rural relationship, the planning method using the land use simulation model in this paper is a
contemporary revision of the Garden City Movement and related urban planning theories.

The urban green space constitutes the supply system of ecosystem services, and its layout plays
a critical role in ecosystem service functions [42,43]. This paper attempts to combine the evolution
mechanism of an urban green space system with the evolution process of urban land use development.
We took high-resolution land use in the main urban area of Xuchang City as the data source. Based on
the FLUS model and constraints (planning guidance, index constraints, and residential needs), we
explored the optimization scheme of the urban green space system layout in the planning period 2030.
This work serves as a reference for the healthy urbanization and urban green space system planning.

2. Materials and Methods

2.1. Study Area

Xuchang City (113◦03′–114◦19′ E, 33◦46′–34◦24′ N) is located in the Central Plains of China [44].
It is adjacent to Zhoukou City in the East; Zhengzhou, the capital of the province, to the north; Luohe
City in the south; Pingdingshan City in the west; and it is 50 km from Xinzheng International Airport.
It is one of the core cities in the Central Plains Urban Agglomeration and Central Plains Economic
Zone. With a total area of 4996 km2 and superior natural conditions, the city has a warm temperate
continental monsoon climate zone, with an annual average temperature of 14.7 ◦C. The terrain is high
in the northwest and low in the southeast [45]. In addition to other water systems in the city, the three
main rivers are Qingshu River, Qingni River, and Yinma River. According to statistics, by the end of
2014, the total population of the city was 4.87 million, and the population of the main urban area was
880,000. In recent years, Xuchang City has made remarkable achievements in green construction and
has been awarded successive titles as the “national garden city”, “national forest city”, and “excellent
tourism city of China”. As the only national ecological garden city in Central Plains, the green space
development and evolution of Xuchang City is typical. According to the construction land balance
table for Xuchang City in 2014 and 2030, the increment of green space and square land is 1599.95 ha,
accounting for 13.03% in 2030 from 8.96% in 2014. However, the increase of greening quantity does not
guarantee that the layout structure is sensible. Therefore, it is necessary to further explore the land
conversion to simulate and optimize the green space development layout of the main urban area with
high density population. The study area covered 189 km2 (Figure 1) of the main urban area.

2.2. Study Method

2.2.1. Land Use Layout Simulation

As a critical component of urban construction land, the number and layout of the green space and
square land share interrelated temporal and spatial characteristics with other land types [46,47]. In this
paper, we combined the evolution of the urban green space system with the development of urban
land use. We entered the driving factors and constraints into the FLUS model (www.geosimulation.cn/

FLUS.html) to ensure the simulation in a predetermined direction and obtained the layout scheme of
the urban green space system.

Based on the CA model, the FLUS model integrates the artificial neural network (ANN)
algorithm and the adaptive inertia competition mechanism of roulette. ANN is a type of machine
learning model with self-learning, self-organization, and self-adaptiveness; it can effectively solve the
nonlinear relationship between land use status data and spatial variables, such as terrain, location,
and traffic [48–50]. The adaptive inertia competition mechanism based on roulette selection is combined

www.geosimulation.cn/FLUS.html
www.geosimulation.cn/FLUS.html
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with neighborhood weight (the expansion capacity of land use types driven by external factors), the
inertia coefficient (the inheritance of land use types in the iterative process), the conversion cost ( the
land use conversion or not), and roulette selection (the opportunity for conversion and distribution of
each land use type) to establish a circular iteration between land demand and land status [51,52] in
order to make the output value close to the target value.

We used the FLUS model with the ANN algorithm to obtain the development probability of all
types of land use in the study scope. The ANN model used in this study included an input layer with
six neurons (corresponding to six spatial driving factors), a hidden layer, and an output layer with
two neurons (corresponding to urban construction and nonurban construction areas). In essence, the
simulation process established the intensity relationship of the interaction between driving factors and
land types, and the probability formula can be expressed as follows:

net j(p, t) =
∑

i

wi j × xi(p, t), (1)

sigmoid
(
net j(p, t)

)
=

1

1 + e−net j(p,t)
, and (2)

p(p, k, t) =
∑

j

w j,k × sigmoid
(
net j(p,)

)
, (3)

where net j(p, t) represents the transmission signal received by neuron j, xi(p, t) is the relationship
function between training time t and grid p in input layer neuron i, wi, j is the adaptive weight used for
calibration in the training process, and sigmoid

(
net j(p, t)

)
is the correlation function. Different neurons

in the output layer represent different land use types; p(p, k, t) indicates the probability of occurrence
(PoO) of land type k in t-time and grid p; w j,k is similar to wi, j and is the adaptive weight. The neural
network model of w j,k and wi, j after proofreading with training data can be used to calculate the
suitability probability of various types of land use.

Figure 1. Location of the study area, Xuchang City, China.
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The neighborhood effect is similar to the traditional CA model. The definition of neighborhood
development density of land type k in grid p is as follows:

Ωt
p,k =

∑
N×N con

(
ct−1

p = k
)

N ×N − 1
×wk, (4)

where
∑

N×N con
(
ct−1

p = k
)

represents the total number of grids when the iteration time of land use type
k is t− 1 in the N × N Moore window. In this study, we selected the 3 × 3 Moore neighborhood model;
wk is the variable weight. The inertia coefficient is based on the current land use situation through the
iterative adjustment to the preset demand conversion. The inertia coefficient is defined as:

Intertiat
k=


Intertiat−1

k i f
∣∣∣Dt−1

k

∣∣∣ ≤ ∣∣∣Dt−2
k

∣∣∣
Intertiat−1

k ×
Dt−2

k
Dt−1

k
i f Dt−1

k < Dt−2
k < 0

Intertiat−1
k ×

Dt−2
k

Dt−2
k

i f 0 < Dt−2
k < Dt−1

k

(5)

where Intertiat
k represents the inertia coefficient of land use type k when iteration time is t, and Dt−1

k
is the difference between macro demand and land use type k allocation when time is t− 1. The total
probability of the unit occupied by a specific land use type can be expressed as follows:

TPt
p,k = Pp,k ×Ωt

p,k × Inertiat
k × (1− scc→k), (6)

where TPt
p,k indicates the combination probability of grid p from the initial status to the target type k

at iteration time t, Pp,k indicates the probability of grid p appearing as the land use type k, Ωt
p,k is the

neighborhood effect of grid p appearing as the land use type k in iteration, and scc→k indicates the cost
of land use type c to k conversion.

2.2.2. Evaluation of the Simulation Scenarios

Each land use type had interrelated temporal and spatial characteristics in the development
process. We selected the landscape indexes [53–55], which combined information theory and fractal
geometry, to analyze the land use of green space and square land. The landscape indexes were divided
into three levels: patch, type, and landscape [56]. At the type level, we selected the Edge Density (ED)
in the edge index system to measure the complexity of the boundary and the fragmentation degree of
the landscape type. The Mean Fractal Dimension Index (FRAC_MN) in the shape index system was
used to measure the morphological complexity and compactness of the landscape; the Mean Euclidean
Nearest Neighbor Distance (ENN_MN) in the proximity index system was used to measure the size
of the research space and the relationship between the land patches. Three landscape indexes were
calculated by FRAGSTATS [57]. The specific simulation chart is shown in Figure 2.

2.3. Data Basis and Preprocessing

Data preparation consisted of three parts: a land use data layer, a driving factor data layer, and a
restriction and guidance data layer. We preprocessed data to rasterize all of the data. In the process
of rasterization, we resampled all of the layers at a spatial resolution of 10 m × 10 m. In addition,
we clipped all of the layers by the same research area boundary to ensure that the number of rows and
columns of all of the images were the same.
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Figure 2. Flow chart of this study.

2.3.1. Data Sources

The 2014 land use map of the main urban area of Xuchang City and the urban land use planning
map of 2030 were used for basic data. We regarded the Current land use classification (GB/T
21010-2017) [58], Code for classification of urban land use and planning standards of development land
(GB50137-2011) [59], Standard for classification of urban green space (CJJ/T85-2017) [60], Technical
code for delineation of urban green line (GB/T51163-2016) [61], Xuchang City Master Plan (2015–2030)
(www.xuchang.gov.cn/), Xuchang City Green Space System Plan (2015–2030) (www.xuchang.gov.cn/),
and other documents as important references. Considering the operability of the study and the elastic
adjustment of the unit control rules for the property of the plot [62,63], the land use type and the green
land rate index of the construction land types were used as the basis for the classification of the types
of land use. We extracted the following seven categories (Table 1): (1) green space and square land,
(2) residential land, (3) industrial land, (4) commercial services land, (5) water area, (6) agricultural and
forestry land, and (7) village and town construction land.

www.xuchang.gov.cn/
www.xuchang.gov.cn/


Sustainability 2020, 12, 326 7 of 19

Table 1. Reclassification of urban construction land.

Land Use Reclassification Corresponding Urban Land Classification
Scope

Code Category Name Code Category Name

1 Green space and
square land G Green space and square land

Land for urban public open space, such as park
green space, protective green space, and

square land

2 Residential land R Residential land Land for housing and corresponding services

3 Industrial land
M Industrial land Land for production workshops, warehouses

and auxiliary facilities of industrial and mining
enterprises as well as land for material storage,

transfer, and distribution
W Logistics and

warehouse land

4 Commercial
services land

A Logistics and warehouse
land

Land for administration, culture, education,
and other institutions and facilities; land for

various commerce, business affairs, recreational
and sports facilities; and land for supply,
environment, safety, and other facilities

B Commercial and service
facilities land

U Public facilities land

5 Water area E1 Water area
Rivers, lakes, reservoirs, potholes, and ditches,

excluding park green space and water areas
within the unit

6 Agricultural and
forestry land E2 Agricultural and

forestry land Cultivated land, forest land, and other land

7 Village and town
construction land H14

Urban and rural
residential settlements

construction land

Towns, villages, and independent
construction land

2.3.2. Parameter Settings

Parameter Identification of Spatial Driving Factors

Spatial factors are independent variables, which were selected by considering the inheritance
of land use conversion and the suitability of regional development [64]. We conducted uniform
sampling in the study area, excavated six inertia-influencing factors that affected spatial development
according to a logistics regression model, and identified the parameters. The constant term was −1.621.
The parameter values of spatial factors, as shown in Figure 3 and Table 2, reflect the degree of influences
of spatial factors on land use development. If the value was negative, the greater the absolute value
was, the stronger the guiding effect of this factor was on land development.

Figure 3. Various spatial variables for the model: (a) distance to old town; (b) distance to demonstration
area; (c) distance to main road; (d) distance to railway; (e) distance to highway; (f) distance to river.
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Table 2. Weights for spatial factors with logistic regression.

Spatial Factors
The Distance to
Center of Old

City (b1)

The Distance to Center
of Demonstration Area

(b2)

The Distance to
Highway

(b3)

The Distance to
Main Road

(b4)

The Distance to
Railway

(b5)

The
Distance to
River (b6)

Regression coefficient 2.622 −1.237 −0.721 −2.007 3.132 2.018

Restrictions on Space Development

From the perspective of ecological sensitivity analysis and ecological space protection, we set
the forbidden conversion area in the FLUS model. According to the “Special planning of Xuchang
City ecological restoration (2018–2035)” (www.xuchang.gov.cn/), the high-sensitivity area accounted
for 10%, the medium-sensitivity area accounted for 10%, the low-sensitivity area accounted for 29%,
and the non-sensitivity area accounted for 51%. We selected the water area as the ecologically sensitive
zone, and the land use type was prohibited from being converted in the FLUS model (Figure 4).

Figure 4. Forbidden conversion area in the FLUS model.

Relevant Planning Polices and Index Constraints

In this study, we integrated a spatial development strategy and planning index system by
coordinating “green space planning” with “urban planning” and “land use planning.” According to
the abovementioned plannings in Xuchang City, the spatial expansion direction of the main urban
area was a “northward, group growth, banded link”, and the spatial expansion mode was described
as follows: “the main mode is axial band expansion, and the secondary mode is compact circle
expansion” (Figure 5a). The green space system was planned as a multilevel integrated structure
of both agglomeration and division (Figure 5b), including points (garden square), lines (ecological
corridor, protective green belt, and riverside landscape belt), and areas (park green space, ecological
wetland, and peripheral ecological leisure area). Considering the service radius coverage requirements
for parks of National Ecological Garden City, the layout was guided by “300 meters green, 500 meters
garden”. The influence of the external space development of the main urban area and the improvement
of the layout of the internal green space system were transformed into parameters by the gravity field
model [65,66] (Figure 5c).

www.xuchang.gov.cn/
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Figure 5. Spatial development and gravity field effect of the main urban area, Xuchang City. (a)
External driving factors of spatial development; (b) internal factors of spatial development; (c) the
gravity field model of spatial development which obtained by considering external and internal factors.

In the current built-up area of Xuchang City, the ratio of green space is 34.73%, the ratio of greenery
coverage is 39.84%, and the per capita park green area is 9.85 m2. By 2030, the ratio of green space of
the built-up area in the Xuchang main urban area will be ≥ 44.8%, the ratio of greenery coverage will
be ≥ 50.2%, and the per capita park green area will be ≥ 16.2 m2. The balance of urban and rural land
use in the main urban area of Xuchang City is shown in Table 3. The data reflect the variation of rural
residential land, water area, and agricultural and forestry land. The balance of urban construction land
is shown in Table 4, which reflects the changing trend of the four reclassified land uses. The attached
urban green space is a vital part of the planned space and does not balance urban construction land on
its own. Because of its complexity, previous studies often have ignored the role of attached green space
in urban space. In our model, each land type change value and green space index constraint (Table 5)
were considered as the pivotal influencing factors, which affected the parameter setting of the cost
matrix and the neighborhood weight. Among these factors, the area change reflected the development
and expansion ability of the land, and the green space ratio of each land type reflected the difficulty
and the possibility of land conversion.

Table 3. The balance table of urban and rural land use in Xuchang City in 2014 and 2030.

Land Use Classification Land Area (hm2) Proportion (%)

Code Category Name Status Planning Variation Status Planning Variation

H

Construction land 13,122.71 20,308.09 7185.38 29.89 46.26 +16.37

in (which)

Urban and rural residential
construction land 12,692.14 19,278.18 6586.04 28.91 43.91 +15.00

Regional traffic facilities land 326.20 599.69 273.49 0.74 1.37 +0.63

Regional utilities land 28.41 323.38 294.97 0.06 0.74 +0.68

Special land 75.96 106.84 30.88 0.17 0.24 +0.07

E

Non-construction land 30,776.29 23,590.91 −3590.91 70.11 53.74 −16.37

in (which)
Water area 520.46 565.64 45.18 1.19 1.29 +0.10

Agriculture and forestry land 30,255.83 23,025.27 −3025.27 68.92 52.45 −2.45

Urban and rural land 43,899.00 43,899.00 — 100 100 —

Note: The planned construction land for urban and rural residential areas includes 329.18 hm2 for rural residential
areas and 18949.00 hm2 for urban construction.



Sustainability 2020, 12, 326 10 of 19

Table 4. The construction land balance table for Xuchang City in 2014 and 2030.

Land Use Reclassification Corresponding Land Use Land Area (hm2)
Proportion of Urban

Construction Land (%)

Code Category Name Code Category Name Status Planning Increment Status Planning Variation

1 Green space and square land G green space and square land 869.58 2469.53 1599.95 8.96 13.03 +4.07

2 Residential land R residential land 3466.67 6463.31 2996.64 35.72 34.11 −1.61

3 Industrial land
M industrial land 2315.64 2552.13 236.49 23.86 13.47 −10.39

W logistics and warehouse land 75.70 791.50 715.8 0.78 4.18 +3.40

4 Commercial services land

A public management and service land 797.76 1485.50 687.74 8.22 7.84 −0.38

B commercial and service facilities land 487.20 2297.29 1810.09 5.02 12.12 +7.10

U public facilities land 144.61 220.87 76.26 1.49 1.17 −0.32

Table 5. The constraint index of the greening rate of different land types of urban construction land.

Construction Land Reclassification Corresponding Urban Land Classification Green Space Ratio Index
Code Category Name Code Category Name

1 Green space and square land G green space and square land Green space ratio of square
land is about 35% to 65%

2 Residential land R residential land ≥ 30%

3 Industrial land
M industrial land

≥ 20%
W logistics and warehouse land

4 Commercial services land

A logistics and warehouse land

≥ 30% to 35%B commercial and service facilities land

U public facilities land

Note: Each land type meets the minimum green rate requirement as an indicator constraint value.

Model Parameter Settings

In the FLUS model, the number of iterations, size of the neighborhood range, acceleration factor
of the model and quantity target, cost matrix, and neighborhood factor all needed to be tested. We set
the initial iteration number as 300, the Moore neighborhood as 3 × 3, and the acceleration factor as 0.1.
We determined the input of the target pixel quantity according to the quantity demand for each type
of land use in the master plan (Table 6). To determine the cost matrix and neighborhood factors, we
considered variations in each land type, land cost, and green land ratio, and assigned values according
to the difficulty and expansion ability of each land type [67]. In addition, in the process of urban land
expansion, green space and square land, ecological space generally cannot be occupied. Considering
the land cost and the conversion threshold between each land type—that is, commercial services land
> residential land > industrial land—we did not convert residential land and commercial services
into industrial land. The specific restriction matrix is shown in Table 7. If conversion was allowed
among different types of land, the parameter was 1, and if it was not allowed, the parameter was 0. For
neighborhood weight, we took the scale variables of the base period and target year of each land use
type as the reference to set conversion intensity parameters. The specific settings are given in Table 8.

Table 6. Input of the target pixels.

Land Use Demand Green Space and
Square Land

Residential
Land

Industrial
Land

Commercial
Services Land

Water
Area

Agricultural and
Forestry Land

Village and Town
Construction Land

Initial Pixel Number 72,965 266,343 182,429 68,585 51,991 3,504,665 226,382
Future Pixel

Number 411,554 640,723 326,228 362,465 51,991 2,505,443 91,448
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Table 7. Conversion cost of land use pairs.

Land Use Demand Residential
Land

Commercial
Services

Land

Industrial
Land

Green Space and
Square Land

Water
Area

Agricultural and
Forestry Land

Village and Town
Construction Land

Residential land 1 1 0 1 0 0 0

Commercial services land 1 1 0 1 0 0 0

Industrial land 1 1 1 1 0 0 0

Green space and square land 0 0 0 1 0 0 0

Water area 0 0 0 0 1 0 0

Agricultural and forestry land 1 1 1 1 1 1 1

Village and town construction land 1 1 1 1 0 1 1

Note: “1” means the conversion is allowed while “0” indicates that the conversion is not possible.

Table 8. Weight of neighborhood.

Land Use
Demand

Residential
Land

Commercial
Services

Land

Industrial
Land

Green Space and
Square Land

Water
Area

Agricultural and
Forestry Land

Village and Town
Construction Land

Weight of neighborhood 1 0.7 0.6 0.7 0.2 0.5 1

3. Results and Analysis

3.1. Scenario Simulation of Land Use Layout

Based on the status 2014, this study simulated different urban land use layout scenarios under
natural effects and human interventions. We developed three scenarios according to different spatial
planning policies and constraint conditions: (1) the 2030 Baseline Scenario, (2) the 2030 Planning
Guidance Scenario, and (3) the 2030 Master Plan Scenario. In the first scenario, there were no constraint
variables such as ecological space protection and residents’ demands for green space. The developed
land use model was based on natural spatial driving factors. However, in order to avoid the generation
of urban land use scenario with unconstrained form, the quantitative index in planning was used as
the reference to set the transformation parameters among each land type. The suitability probability
map (Figure 6) was obtained by training the ANN model; the higher the value was, the greater the
probability of each land use type occurred. The map had seven bands, each of which corresponded
to the PoO of one land use type. Additionally, we transformed the quantitative constraint indexes
of relevant planning (mentioned in Section 2.3.2) into a combined parameter of the adaptive inertia
competition mechanism. Based on the Status Scenario in 2014 (Figure 7a), the 2030 Baseline Scenario
(Figure 7b) was generated by introducing planning rules developed by planner agents [5,68].

In order to prevent the occupation from the construction land to the ecological space, the ecological
space protection was considered as a variable in constraint layer. Besides, the relationship between the
accessibility of urban green space and residents’ well-being was taken into consideration. Taking the
residents’ demand for green space as a variable, the possibility and potential of providing services
to residents of urban park green space were measured so as to optimize the layout of urban green
space. Therefore, we designed the second scenario. We embedded the constraint layers into the FLUS
model through the gravity field model and generated the urban land use layout scheme in the 2030
Planning Guidance Scenario (Figure 7c). This scenario coordinated the transformation relationship of
urban and rural land in the main urban area and coordinated the relationship of urban green space and
other land types in construction land. In addition, according to Xuchang City Master Plan (2015–2030)
(www.xuchang.gov.cn/), the 2030 Master Plan Scenario is shown as Figure 7d.

3.2. Analysis of Simulation Results

We used the root mean square error (RMSE) of the probability of suitability occurrence module
and the Kappa coefficient of the overall model simulation accuracy verification index to evaluate
the feasibility of the FLUS model. The mode of ANN training samples includes uniform sampling
and random sampling; uniform sampling (10/1000) was used in this study. The Kappa coefficients of

www.xuchang.gov.cn/
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the Baseline Scenario and the Planning Guidance Scenario were 0.5814 and 0.6036, respectively. The
RMSE of this operation was 0.2589. The simulation accuracy of the model was within the precision
range. Compared with the Master Plan Scenario in 2030, the simulation results were complied with the
objective rules of current urban development.

Figure 6. The possibility of occurrence of seven land use types. (a) The PoO of green space and square
land; (b) the PoO of residential land; (c) the PoO of industrial land; (d) the PoO of commercial services
land; (e) the PoO of water area; (f) the PoO of agricultural and forestry land; (g) the PoO of village and
town construction land.

The calculation results of spatial index are shown in Table 9. We combined these results with
the multi-scenario simulation and planning scheme. The characters of the Baseline Scenario could
be described as urban land use development that was coordinated with the spatial factors. New
land development was more likely to occur near the current traffic network. The spatial expansion
of the city showed a trend that looked like a “spreading pancake”, which depended significantly on
the distribution of the urban traffic network. Residential land expanded to the southwest, whereas
industrial land expanded to the northeast. Commercial land tended to be distributed toward the
margins, and the green space and square land showed a disordered development trend. Overall, the
distribution of urban land was relatively scattered, which did not meet the development needs of
Xuchang City in the planning period and did not consider urban residents’ demand for urban parks
and green space. Under the Master Plan Scenario, urban space represented an ideal expansion trend.
Compared with the Baseline Scenario, urban construction land as a whole was characterized by a more
compact evolution, and green space and square land was characterized by a networked and customized
layout. These trends guaranteed the basic quantitative index requirements of urban space development
and green space system evolution; however, because of other spatial restrictions, the actual urban land
development will not evolve completely in accordance with the planning. In addition, this scenario
lacks the consideration of the service capacity of urban green space. Under the Planning Guidance
Scenario, we combined the expansion strategy of urban space with the development process of urban
space. The expansion mode was mainly northward and axially banded, which made the evolution
simulation result more intensive and efficient. To meet the coverage rate of 90% of the service radius
for parks in Xuchang City, we guided the layout evolution of green space and square land to improve
the service function of the urban green space system.
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Figure 7. Land use planning and simulation scenarios of the main urban area of Xuchang. (a) the
Status Scenario in 2014; (b) the Baseline Scenario in 2030; (c) the Planning Guidance Scenario in 2030;
(d) the Master Plan Scenario in 2030.
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Table 9. Evaluation results of overall layout.

Scenarios Land Use Type ED FRAC_MN ENN_MN

Baseline Scenario

Green space and square land 10.23 1.30 50.32

Residential land 8.95 1.03 40.33

Industrial land 22.89 1.03 43.75

Commercial services land 52.01 1.10 40.67

Agricultural and forestry land 2.92 1.05 340.29

Planning Guidance Scenario

Green space and square land 8.01 1.10 40.11

Residential land 7.21 1.02 41.98

Industrial land 20.11 1.02 44.64

Commercial services land 50.78 1.04 38.01

Agricultural and forestry land 2.35 1.02 350.77

Master Plan Scenario

Green space and square land 8.56 1.20 47.82

Residential land 7.25 1.02 42.65

Industrial land 20.32 1.03 45.14

Commercial services land 49.64 1.20 36.47

Agricultural and forestry land 2.34 1.04 347.86

Note: ED represents Edge Density; FRAC_MN represents Mean Fractal Dimension Index; ENN_MN represents
Mean Euclidean Nearest Neighbor Distance.

4. Discussion

In previous studies, urban construction land usually has been regarded as a land type with which
to explore the expansion process and its impact on natural resources [69]. The innovation in this study
was that the evolution process of all kinds of land types within the main urban area of a city was
considered and the constraint conditions were embedded into the FLUS model. These constraints
included an urban development strategy [70,71], the accessibility of the green space of the park [72],
and the sensitivity of the ecological space [73]. Additionally, while considering different goals, this
study discussed the possibility of the development and evolution of an urban space and urban green
space system, which mainly served the needs of urban residents.

The function of ecosystem service is affected by the dynamic change of landscape pattern [74].
Improving the service function of an ecosystem is not only the goal of urban planning but also an
important basis by which urban planning is evaluated. The layout of urban land has an impact on the
ecological processes such as material exchange, soil and water conservation, and biological cycle [75].
Through the adjustment of the land conversion process, the transformation of ecosystem service type
can be realized. In this study, we used the landscape index to evaluate the simulation results. However,
the existing landscape indexes were redundant [76]. On the basis of fully understanding the previous
studies as well as the ecological significance of landscape indexes, we selected the ED, FRAC_MN, and
ENN_MN from the type levels, which objectively reflected the rationality of the land use patterns.

Urban planning is a continuous process. The unit control plan guided by the “dynamic balance
control of unit total amount” is an effective layer, which links the two levels, that is, master planning
and detailed planning. This plan can be used to effectively allocate urban land resources and promote
multilevel effective control of land and space. On the basis of the “multiple planning integration” of
spatial planning and the elastic adjustment of the plot nature, this study reclassified urban land and
compared the land simulation results with the existing planning. This simulation provided a means to
actively explore and promote the technical transformation of the planning work from “static results”
to a “dynamic process”.

Future research will focus on the following:

(1) Model parameters setting. In addition to spatial location influencing factors, driving factors, such
as economy and population, could be added as well as time variation and spatial differentiation
of planning policies and constraint indicators [77]. While considering the protection of ecological
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space and the accessibility of green spaces, the connectivity of green space also could be taken
as an important variable to optimize the layout from the perspective of biodiversity [78–80].
In addition, this study also tested the parameter combination of self-adaptive inertia and the
competition mechanism of the CA module to obtain an optimal combination. It should combine
planning rules to improve the accuracy of the simulation results.

(2) Research object level. According to the latest Standard for classification of urban green space
(CJJ/T85-2017) [60], this research can be extended to examine the relationship between regional
green space and urban construction land development, as well as the external correlation and
agglomeration effect of various green space types within urban construction land. In addition,
the layout optimization, as well as intensive and efficient development of urban land should be
discussed at multiple levels and scales [81,82].

(3) Planning rigidity and flexibility. The requirements of land use properties and development
intensity of various types of urban land are dynamic. The control indicators based on the land
plot are too rigid to respond in a timely fashion to the future development scenario of the city.
Thus, the planning of “blank” and elastic spaces should be considered to better connect the
planning system [83,84].

5. Conclusions

We presented a new method to simulate the evolution of urban green space system in the main
urban area of Xuchang City based on the FLUS model. In this approach, we calculated the probability
of the occurrence of future land use according to ANN. We simulated the spatial layout of land use
in 2030 using an adaptive inertia competition mechanism and planning rules. The Baseline Scenario
and Planning Guidance Scenario were generated. Then, we used landscape indices to evaluate these
scenarios combined with the Master Plan Scenario. We reached the following main conclusions.

The RMSE of probability of the suitability occurrence module and the Kappa coefficients of
the Baseline Scenario and the Planning Guidance Scenario were all within the range of accuracy
requirements. The results show that the FLUS model, which embeds the variables, including ecological
space protection, accessibility of park green space, and planning quantitative index, can realize the
simulation of urban land use development in medium- and long-term planning.

Under the Baseline Scenario, the spatial expansion was similar to that of a “spreading pancake”
without spatial constraints contributed to the scattered layout of the urban land and the disordered
development of urban green space. Compared with the Baseline Scenario, the Master Plan Scenario had
a more compact urban land use layout, and the green space system was characterized by networking
and systematization, but the service capacity of green space was not considered. The Planning
Guidance Scenario considered the introduction of constraint conditions had more intensive and
efficient use of urban spaces and provided a better functioning green space system layout. Through
the multi-scenario simulation, we concluded that urban development schemes under the natural
spatial driving factors and the existing planning were not the recommended model for the efficient
development of urban land. The urban development scheme, which considered ecology (ecological
space protection), production (urban-rural relationship coordination), and life (residents’ demand for
the urban green space), had better structural and functional characteristics. This is in accordance with
the current emphasis on “ecological-production-living space” in the optimization of China’s national
territory spatial pattern [85,86].

The research results enable managers and planners to evaluate the development mode of the
urban green space system coupled with land use evolution and to adjust the implementation process
of urban planning so as to promote efficiency, scientific nature, and flexibility.
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