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Abstract: The present paper focuses on the role covered by dynamic models as support for the
decision-making process in the evaluation of policies and actions for increasing the resilience of
cities and territories. In recent decades, urban resilience has been recognized as a dynamic and
multidimensional phenomenon that characterizes urban and metropolitan area dynamics. Therefore,
it may be considered a fundamental aspect of urban and territorial planning. The employment of
quantitative methods, such as dynamic models, is useful for the prediction of the dynamic behavior
of territories and of their resilience. The present work discusses the system dynamics model and the
Lotka–Volterra cooperative systems and shows how these models can aid technicians in resilience
assessment and also decision makers in the definition of policies and actions, especially if integrated
in wide evaluation frameworks for urban resilience achievements. This paper aims to provide an
epistemological perspective of the application of dynamic models in resilience assessment, underlying
the possible contribution to this issue through the analysis of a real case study and methodological
framework. The main objective of this work is to lay the basis for future compared applications of
these two models to the same case study.

Keywords: urban resilience; dynamic models; decision making; scenario planning

1. Introduction

Cities and territories across the world are increasingly exposed to a number of risks, hazards
and stresses [1,2]. These affect all urban system dimensions, from the environmental to the social and
economic [3,4]. Therefore, the concept of resilience is increasingly being used in urban and territorial
policy in order to prepare urban systems for hazards and uncertainties [2,5,6]. Urban resilience
is defined as a dynamic and multidimensional phenomenon that characterizes metropolitan areas
as complex systems at all scale dimensions [7–9]. Urban resilience is related to several disciplines
and domains, such as risk reduction, climate change and adaptation strategy. More recently, urban
resilience has also been involved in the definition of policies and actions for achieving urban and
territorial purposes [2,7,9]. The guidelines for increasing urban resilience are effective planning
procedures—the identification and prioritization of which require the involvement of experts with
specific competences and from different disciplines in the decision-making process [10]. This paper
explores the role of dynamic models in support of the definition of policies and actions to enhance
urban resilience. These models belong to the family of mathematical modelling, which is able to
simulate the behavior of complex systems over time by using a set of Ordinary Differential Equations
(ODEs). In this paper, dynamic models are investigated according to methodological background and
operative characteristics. The main aim is to consider their general characteristics and peculiarities
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in order to underline dynamic model (DM) features that are closely related to the decision-making
process in territorial and urban planning [11]. DMs are recognized as suitable tools to evaluate policies
and actions aimed at increasing urban resilience [12–14]. This property is related to the fact that these
models are built and grounded on dimensions related to both urban systems and urban resilience.
In fact, during the construction of the model, it is necessary to select and identify which aspects of a
territorial system have to be included with reference to the evaluation goal, from the environmental to
the economic dimension [11,12,15]. In this sense, DMs are able to reveal both the dynamic behavior of
urban and territorial systems and the impacts of policies on the key variables identified.

Specifically, the main aim of this work is to study the principal characteristics of the system
dynamics model (SDM) and Lotka–Volterra models (LV) in order to apply both to the same case study.
The final purpose of this investigation is to understand the importance of the modelling approach in
the field of resilience evaluation.

The paper is structured as follows: Section 2 describes the current state of the art of resilience and
urban resilience; Section 3 explains the role of dynamic models—the system dynamic models (SDM)
and Lotka–Volterra models (LV)—in the decision-making process and summarizes their methodological
background, state of art and some illustrative examples; Section 4 explains how the SDM models and
LV models could contribute to urban planning; a comparative matrix is developed to investigate the
utility of the considered models in predicting support in the design of future transformation scenarios;
and Section 5 includes some final remarks and future perspectives.

2. State of Art of Resilience and Urban Resilience

The concept of resilience is used in a wide range of disciplines and domains such as
psychology [16,17], ecology [18], engineering [19,20], socio-ecological systems [21–23], climate change
and adaptation [24–26], urban planning [27,28] and disaster risk management [9,29–32]. Furthermore,
in the last two decades, resilience has become an important goal for cities that are often theorized as
highly complex with an adaptive system [32–34].

The term “resilience” came from the Latin word resilio, which literally means “to bounce back” [35].
However, its origins, meanings and interpretations are quite ambiguous [36,37].

Table 1 summarizes some of the most representative definitions of resilience in different disciplines.
It reveals that engineering, ecological and socio-ecological resilience are the most used definitions in
literature [38]. Furthermore, this table makes clear the division between the dynamic and the static
interpretation of resilience [32].

The static interpretation refers to the engineering definition [9], whereas the dynamic interpretation
is related to the socio-ecological perspective [18]. Engineering resilience should be understood as
the measure of the speed with which the system can return to its previous equilibrium. Therefore,
the engineering perspective does not consider the transformation [32]. On the other hand, the
socio-ecological perspective is grounded on the assumption that a return to the previous equilibrium
may be not possible in complex ecosystems [32,39]. Socio-ecological resilience refers to the capacity of
the system to transform itself, thus returning to a previous equilibrium.

This recognition is fundamental to understand which perspective may be adopted to analyze an
urban system, in order to concern about urban resilience with the correct background.

At the beginning, it was particularly referred to climate change [40,41]. Subsequently, in the latest
studies [7,9,42] it has also been related to stresses and hazards which effect the different dimensions of
an urban system [33]. From a careful literature review, what emerges clearly about urban resilience are
these highlights: (1) The most important study of resilience applied on urban systems is Holling’s
studies which referred to socio-ecologic resilience [43]; (2) Urban resilience is defined as a complex and
multi-dimensional phenomenon [9]; (3) Urban resilience is not a static condition, but it is a dynamic
process in spatial and temporal scales [8]; (4) There is not a unique definition [32]; and (5) Urban
resilience has recognized an increase in literature, in academic studies, political studies, social debate
and urban planning [9,30,36,44–46].
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Table 1. Representative resilience definition by different fields (Elaboration from Meerow, 2016 and
Bharma et al., 2011).

Author Field Definition of Resilience Static or
Dynamic

Holling, 1973 Ecology “The ability of these systems to absorb changes of states variables, driving
variables, and parameters, and still persist” (p. 17). Dynamic

Pimm, 1984 Ecology “How fast the variables return towards their equilibrium following a
perturbation” (p. 322). Static

Carpenter et al.,
2001

Social-ecological
systems

“The magnitude of disturbance that can be tolerated before a socioecological
system (SES) moves to a different region of state space controlled by a different
set of processes” (p. 765).

Dynamic

Adger, 2000 Geography “The ability of groups or communities to cope with external stresses and
disturbances as a result of social, political and environmental change” (p. 347). Dynamic

Rose, 2007 Economics “The speed at which an entity or system recovers from a severe shock to
achieve a desired state” (p. 384). Dynamic

Fiksel, 2006 Systems
engineering

“The capacity of a system to tolerate disturbances while retaining its structure
and function” (p. 16). Dynamic

Zhu and Ruth,
2013

Industrial
ecology

“The ability [for industrial ecosystems] to maintain their defining feature of
eco-efficient material and energy flows under disruptions” (p. 74). Dynamic

Zeng and
colleagues, 2013 Networks “The critical threshold at which a phase transition occurs from normal state to

collapse” (p. 12). Static

Ouyang, 2014 Engineering “The joint ability of a system to resist (prevent and withstand) any possible
hazards, absorb the initial damage, and recover to normal operation” (p. 53). Static

Adger, 2000 Social resilience “Ability of groups or communities to cope with external stresses and
disturbances as a result of social, political and environmental change” (p. 347). Static

From these aspects, this paper aims to focus on the definition of urban resilience to highlight
the communalities and differences in academic and policy debate. The objective of this analysis is to
highlight the malleability of the urban resilience concept and to stress on its implications in policy
definition [47]. Table 2 lists a series of definitions on urban resilience by considering academic and
political references with the purpose to better understand what the needs and the tools are to be
employed as support of the decision-making process for building resilient cities.

Table 2. Some peculiar definitions of Urban Resilience (Authors’ elaboration, 2019).

Authors and Year Definition Field

Meerow et al., 2016

“Urban resilience refers to the ability of an urban system—and all its constituent socio-ecological
and socio-technical networks across temporal and spatial scales—to maintain or rapidly return to
desired functions in the face of a disturbance, to adapt to change, and to quickly transform
systems that limit current or future adaptive capacity” (p. 39).

Academic

100 Resilient City
Campaign, 2013

“Urban resilience is the capacity of individuals, communities, institutions, businesses, and
systems within a city to survive, adapt, and grow no matter what kinds of chronic stresses and
acute shocks they experience” (p. 10).

Political

UN-Habitat
“Urban resilience is the measurable ability of any urban system, with its inhabitants, to maintain
continuity through all shocks and stresses, while positively adapting and transforming toward
sustainability” (p. 5).

Political

Urbact, 2004
“Urban resilience is the capacity of urban systems, communities, individuals, organisations and
businesses to recover, maintain their function and thrive in the aftermath of a shock or a stress,
regardless its impact, frequency or magnitude” (p. 6).

Political

Desouza and
Flanery, 2013 “Urban resilience is the ability to absorb, adapt and respond to changes in urban systems” (p. 89). Academic

Hamilton, 2009
“Urban resilience is the ability to recover and continue to provide their main functions of living,
commerce, industry, government and social gathering in the face of calamities and other hazards”
(p. 109).

Academic

Lu and Stead, 2013 “Urban resilience is the ability of a city to absorb disturbance while maintaining its functions and
structures” (p. 200). Academic

Thornbush et al.,
2013

“Urban resilience is a general quality of the city’s social, economic, and natural systems to be
sufficiently future-proof” (p. 2). Academic

Leichenko, 2011 “Urban resilience is the ability to withstand a wide array of shocks and stresses” (p. 164). Academic
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Table 2. Cont.

Authors and Year Definition Field

Romeo—Lankao
and Gnatz, 2013

“Urban resilience is a capacity of urban populations and systems to endure a wide array of
hazards and stresses” (p. 358). Academic

OECD, 2016
“Resilient cities are cities that have the ability to absorb, recover and prepare for future shocks
(economic, environmental, social and institutional). Resilient cities promote sustainable
development, well-being and inclusive growth” (p. 3).

Political

Resilience Alliance,
2002

“A resilient city is one that has developed capacities to help absorb future shocks and stresses to
its social, economic and technical systems and infrastructures, so as to still be able to maintain
essentially the same functions, structures, systems and identity” (p. 4).

Political

ICLEI, 2015

“A resilient city is prepared to absorb and recover from any shocks or stress while maintaining its
essential functions, structures and identity as well as adapting and thriving in the face of
continual change. Building resilience requires identifying and assessing hazard risks, reducing
vulnerability and exposure, and lastly, increasing resistance, adaptive capacity and emergency
preparedness!” (p. 1).

Political

C40, 2017

“Cities are the forefront of experiencing a host of climate impacts, including coastal and inland
flooding, heat waves, droughts, and wildfire. As a result, there is widespread need for municipal
agencies to understand and mitigate climate risks to urban infrastructure and services and the
communities they serve” (p. 1).

Political

Urban Resilience
HUB, 2015

“The measurable ability of any urban system, with its inhabitants, to maintain continuity through
all shocks and stresses, while positively adapting and transforming toward sustainability” (p. 6). Political

UNISDR, 2015

“The ability of a system, community or society exposed to hazards, to resist, absorb,
accommodate, adapt to, transform and recover from its effects in a timely and efficient manner,
including through the preservation and restoration of its essential basic structures and functions
through risk management” (p. 3).

Political

These different definitions are listed to underline their communalities and differences in their
meaning. They are different from the formal point of view. However, all these definitions concern
with the multidimensional and transformative approach of urban resilience [7]. They also focus the
attention on the dynamic behavior of resilience processes both in spatial and time scales [6].

This means that building urban resilience requires looking at urban and territorial systems
holistically. It is necessary to understand cities in all dimensions and identify interdependencies and
risks they may face.

For this application, the definition of Meerow et al. [32] has been considered for its holistical view
of urban systems and its attention to both spatial and temporal scales.

Nowadays, the main problems which regard the design of policies and strategies to build urban
resilience lies in the difficulty of evaluating this process over time and in spatial dimensions.

This paper explores the DMs in order to verify their efficiency in application in scenario planning,
in order to find suitable tools which may support decision makers to define and prioritize strategies
and policies to enhance urban resilience.

3. Dynamic Models in the Decision-Making Process

The definition of effective policies needs to be informed by a holistic understanding of the system
processes. Their complex interactions and the ways they respond to various changes and inputs
have to be evaluated. In this sense, models are, in general, seen as useful tools to aid actors and
stakeholders to analyze alternative possible solutions and assess their outcomes. In fact, models
generally integrate knowledge developed across a broad range of fields. They are generally used for
different purposes. In this section, we focus on their application in management and treatment of
uncertainty. Dynamic models cover a number of different methods and approaches able to simulate
the behavior of future scenarios. Among the different methods belonging to the family of mathematical
modelling, the present paper considers the system dynamics model (SDM) and the Lotka–Volterra
model (LV). In this section, the methodological background and the state of art are investigated for
both the SDM and LV models with the aim to highlight their fundamental role in the prediction of
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possible future scenarios for exploring urban resilience. Moreover, an illustration of some relevant
applications is proposed in order to explain the methodological steps for the applications and the type
of results that can be obtained.

3.1. Urban Simulation Models

In this paragraph, an overview of the urban simulation methods is given. The selected urban
simulation methods are here discussed as reliable support in the decision-making process, especially
in the case of designing urban and territorial transformations that may solicitate perturbations on the
system on its resilience. Starting from a literature review [48], different simulation models have been
selected to be analyzed. Table 3 lists the considered models and describes them, considering field and
purpose of applications, types of data, treatment of space, time and uncertainty.

Table 3. Overview of urban simulation models (Authors’ elaboration from Kelly et al., 2013).

Model Field of Application Types of Data Treatment of
Space

Treatment of
Time Uncertainty

Bayesian
networks

Decision-making and
management, Social learning,
System understanding,
Prediction

Qualitative and
quantitative Non-spatial Non-temporal

Structural learning
from data and
knowledge is possible

Coupled
component

models

Prediction, Forecasting, System
understanding, Decision-
making and management

Mainly quantitative
but qualitative are
possible

Comprehensive
set of options Routine

Comprehensive
discrimination tests
between alternatives

Agent-based
models

Social learning, System
understanding Mainly quantitative Limited Limited

Comprehensive
discrimination tests
between alternatives

Knowledge-
based

models

Decision-making and
management, Prediction,
Forecasting

Qualitative and
quantitative Non-spatial Usually non-

temporal

Comprehensive
discrimination tests
between alternatives

This overview of different models has been useful to support the choice of the model to experiment
and use in investigating the urban resilience.

3.2. System Dynamics Model

3.2.1. Methodological Background and State of Art

System dynamics model (SDM) is an operative approach for helping reveal temporal behavior of
complex systems considering their non-linearity, time-delay and multi-loop structure [49,50]. SDM is
based on the System Dynamics approach which was introduced by Forrester [51,52] for investigating
the feedback information of industrial systems and improving the organizational form [53]. SDM
is an effective tool for modelling intersectional dynamics, such as the prey–predator models [54,55].
The relationships and interactions between variables in the system are analyzed by this tool (SDM)
in order to simulate its dynamic evolutions in terms of processes, information and organizational
boundaries [50].

In SDM, complex and dynamic systems are described both in qualitative/conceptual and
quantitative representations. The qualitative modelling is performed by the causal loop diagram
(Figure 1). This tool is used to graphically represent the feedback loops structure of the system.
Causal loop diagram (Figure 1) describes the basic mechanism of the system, in order to represent
the causes of its dynamics behavior over time [50,56]. The relationships between the variables can be
either positive or negative, as shown in Figure 1. A positive relationship signifies that variables change
equally. By contrast, a negative relationship means that the variables change inversely.

Quantitative modelling is represented by stock and flow diagram (Figure 2). Stock is the first
basic building block in SDM and it represents the variable which describes the condition of the system
at any particular time [12,50,57–59]. Flow is the second block in SDM and it tells how stocks change
over time.
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From a mathematical point of view, stock and flow diagrams are represented by first-order finite
difference equations. These allow to simulate the dynamic behavior of the system. The differential
equations which characterize stock and flow can be expressed as:

tock(t) = stock(t0) +
∫ t

t0
(in f low(t) − out f low(t))dt (1)

and this integration equation in the differential equation form is:

d(Stock)
dt

= in f low(t) − out f low(t).

The most frequent type of possible system behavior can be summarized as follows [60]:

• Exponential growth or decline, which is characterized by only positive or only negative feedbacks;
• Goal-seeking behavior, which is created by first-order negative feedback;
• S-shaped growth. This behavior, over time, is created by a combination of positive and negative

feedback loops. In this case, both loops struggle for dominance until the struggle ends with a
long-term equilibrium;

• Oscillations. This is one of the most common types of dynamic behaviors in the world and it
can have different forms, such as (1) sustained oscillations; (2) damped oscillations; (3) exploded
oscillations; (4) chaos. The structure that creates oscillations is a combination of negative feedback
loops and delay.

Currently, SDMs are used to support policy design and management for sustainable development
in those fields characterized by a high level of uncertainty, such as transport management [58,61,62],
land use [63], waste management [59] and also sustainable urban development [13,57,64,65]. In the
last few decades, an increase of SDM application has been observed in literature [66], especially in
the urban development field. Table 4 lists some of the prevalent SDM applications with particular
attention to urban system and urban development.

Table 4 shows that SDM is an effective tool for supporting the evaluation of different development
scenarios’ performance, considering their possible effects over time. For this reason, it is considered as
a useful tool to support decision makers in setting policies.
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Table 4. Example of recent applications of System Dynamics Model in urban planning (Authors’
elaboration, 2019).

Authors and
Year Territorial Scale Method Outcome

Wu et al., 2018 Metropolitan
(Beijing, China)

System Dynamics Model System
of urban sustainability indicators
GIS (Geographic Information
System)

Simulating different urban development scenarios to
assess their possible effects both temporally and
spatially. The objective is to choose the preferable
development strategy.

Pagano et al.,
2017

Municipal
(L’Aquila, Italy)

System Dynamics Model System
of performance criteria

Assessing the evolution of the resilience of a
drinking water supply in case of natural disaster.

Tan et al., 2018 Metropolitan
(Beijing, China)

System Dynamics Model System
of indicators

Evaluating three different urban development
scenarios considering their possible impacts over
time on social, economic and environmental sectors.

Guan et al.,
2011

Metropolitan
(Chongqing, China)

System Dynamics Model GIS
Analytic hierarchy Process (AHP)
System of indicators and indices

Development of an integrated evaluation model to
assess four different urban scenarios considering the
dynamic evolution of considered indicators in both
temporal and spatial dimensions.

Park et al., 2013 Metropolitan
(Seoul, Korea) System Dynamics Model

Quantitative analysis of self-sufficient urban
development policies for assessing their impacts
over time.

3.2.2. Illustrative Example

In this section, the application of SDM developed by Tan et al. [13] to the case study of Beijing
(China) is considered for the illustration of the fundamental steps of the procedure and the typology
of results that the method is able to deliver. In [13], the SDM are applied to simulate the urban
sustainability performance of the city, considering three different development scenarios. The SDM
has been developed following these steps: (1) identifying the key variables by a review of urban
sustainability indicators; (2) building the stock and flow diagram to identify the relationships between
the variables; and (3) simulating different scenarios. Figure 3 shows the stock and flow diagram of the
social sector. In particular, the stocks of the diagram are (1) Total population, (2) Urbanization rate, and
(3) GDP, whereas all the other variables represent the flows. The diagram also shows the relationships
that exist among the considered variables. As an example, we can consider the relationship that
exists between “local government annual fiscal revenue” and “financial educational investment”.
That means the investment in educational fields strictly depends on the availability of government
financial resources. It appears clear that the SDM model tries to describe the real-world functioning
through its stock and flow diagram, based on real behavior.
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HWS = DSWE per capita * Total population (Unit: ten thousand tons) (2)

where:

(1) “HWS” is the annual household’s waste emission;
(2) “DSWE” is the domestic solid waste emission.
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3.3. Lotka–Volterra Cooperative Systems

3.3.1. Methodological Background and State of Art

Lotka–Volterra models (LV) are generally employed in the field of landscape ecology for exploring
the prey–predator interactions [67,68]. These models have been integrated only recently in wide
integrated evaluation frameworks to better interpret non-linear dynamics of territories, and so, their
capability to adapt themselves to natural and/or anthropic disturbances and disasters, thus going
beyond the analyses of ecological systems [55].

In fact, the aim of Lotka–Volterra models within territorial and urban planning consist in being
a support for the investigation of a given environmental system N and the prediction of possible
future transformations.

As shown in Equation (3), these models assume the form of a pair of non-linear Ordinary
Differential Equations (ODEs) [69]:

p′1 = a1p1 + b1p2
1 + a12p1p2 + I1

p′2 = a2p2 + b2p2
2 + a21p1p2 + I2

(3)

where
a1 and a2 are Malthusian coefficients that consider the dynamic evolutions of the populations p1

and p2 in terms of natality and mortality rates;
b1 and b2 are Verhulst coefficients that considers scarce territorial resources, with b1, b2 < 0. These

coefficients are proportional to carrying capacity (c1, c2) with b1 = e
c1

and b2 = e
c2

;
a12 and a21 are the terms that characterize the interaction between the two populations. In this

way, we may consider three cases that correspond to three types of Lotka–Volterra models [69]:

• if a12, a21 > 0, p1 benefits from the presence of the second state variable p2, then Lotka–Volterra
models are defined as “cooperative”;

• if a12, a21 < 0, the first state variable competes with the second state variable, then Lotka–Volterra
models are “competitive”;

• if a12 < 0 (prey), a21 > 0 (predator), it means that the two variables are opposite, then Lotka–Volterra
models are “prey/predator”.

Lastly, I1 and I2 represent the rates of in-migration and out-migration.
Among the types of Lotka–Volterra models, this paper is focused on Lotka–Volterra cooperative

type models. An example of a Lotka–Volterra cooperative type model for the state variables V and E is:

V′ = b(1−V)V − cV
E′ = d(1− E)E− f (1−V)E

(4)

where
a1 = b − c b1 = −b a12 = 0 I1 = 0
a2 = d − f b1 = −d a21 = f I2 = 0

In Table 5, a number of literature contributions are listed, in that the outcome of Lotka–Volterra
systems may be interpreted as a resilience factor. More in details, Finotto and Monaco [70] and
Gobattoni et al. [71,72] are generally used for developing stability analyses on ecological sectors, thus
predicting future possible equilibrium states; Monaco and Servente [69] are used to simulate the
population’s mobility and Monaco [73] integrates a synthetic index calculated through a system of
indicators for investigating the population’s mobility with respect to Gross Leasable Areas (GLAs);
Assumma et al. [74,75] predicts the population’s flow over time in rural landscapes with respect to the
economic attractiveness; Assumma et al. [76] simulates the dynamics related to economic attractiveness
and ecological quality as resilience factor.
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Table 5. Application of Lotka–Volterra models applied to territorial and urban planning (Authors’
elaboration, 2019).

Lotka–Volterra Models Applied to Territorial and Urban Planning

Authors and Year Territorial
Scale Method Outcome

Finotto and Monaco,
2010 Municipal

Stability analysis for predicting the
production and the time variation of
bioenergy; Analysis of territorial
characteristics using the ecological graph

Identification of interventions to guarantee
the ecological functions of the environmental
system with attention on the reduction of the
urban sprawl.

Gobattoni et al., 2012,
2014, 2016) Provincial PANDORA model Stability analysis on ecological equilibria as

future ecological scenarios.

Assumma, Bottero and
Monaco, 2016, 2019) Sub-regional Lotka–Volterra models; System of

indicators and indices
Simulation of the population’s mobility with
respect to the economic attractiveness.

Assumma, Bottero,
Monaco and Soares, 2018 Supra-Municipal Lotka–Volterra models; System of

indicators and indices

Simulation of the population’s dynamics
related to economic attractiveness and
ecological states as resilience factor.

Monaco, 2015 Monaco
and Servente, 2006 Provincial Lotka–Volterra models; System of

indicators and indices

Customer flow is intended as the
attractiveness expressed by a system of Gross
Leasable Areas (GLAs) by considering their
degree of accessibility.

Capello and Faggian,
2002 Municipal Lotka–Volterra models of prey–predator

type

Urban population, urban rent and production
profits are combined for understanding urban
dynamics of Italian cities.

Therefore, Lotka–Volterra models have been employed at different spatial scales with different
purposes, thus obtaining useful insights, such as in the field of landscape ecology and landscape
economics [77]. In this section, a recent application on a supra-municipal context in Piedmont region
(Italy) is proposed [76].

3.3.2. Illustrative Example

In Assumma et al. [76], an extension of a Lotka–Volterra model by Monaco and Rabino [78] was
developed (Equation (5)) with the aim at simulating population dynamics as a resilient factor related
to ecological and economic states for the territory of the Monferrato Ovadese in Southern Piedmont
(Italy). The case study under investigation was intended as a multi-pole territorial system, where the
poles refer to 37 municipalities that were grouped into 11 territorial clusters.

P′i = AiPi(t)(1− Pi(t)/Si) +
n∑

j,i

Ai/A j [1−
(
di j/dM

)
]PJ(t) (5)

where P’i is the state variable of the population i; A represents a synthetic index of ecological quality
and economic attractiveness calculated for the poles i and j; dij consists in the distance recorded between
the poles i and j, whereas dM measures the recorded highest distance between the poles; and Si is the
carrying capacity, that is intended as the threshold number of people in a given pole.

It has to be noticed that the parameter Ai was calculated by considering a system of landscape
economic indicators and a system of ecological indicators, according to a Multicriteria approach (for
more, please see [74,79,80]). The considered systems of indicators and their indices aim to calculate
a super-index that measures the overall attractiveness of the territory by considering the ecological
quality and the economic attractiveness. The index of overall attractiveness was integrated into the
Lotka–Volterra model in order to simulate the trends of populations with respect to both ecological and
economic states. The results obtained by an evaluation procedure based on a Multicriteria approach
are illustrated in Figure 5, whereas the results of the Lotka–Volterra model simulations are shown in
Figure 6.

The results of the model are useful for predicting possible future evolutions about the mobility of
resident populations. As shown in Figure 6, the first group of populations (P1–P4) behave similarly in
the transitory time, with an exception for population (P1) because of a consistent degrowth. The second
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group of populations (P5–P8) behave differently; in fact, the population of the cluster of Novi Ligure
(P5) is interested by a slight degrowth, the population of the cluster Lerma (P6) grows significantly and
finally, populations of the clusters of Ovada and Predosa (P8 and P9) show similar growing behaviors.
In this sense, the poles were intended as receptors of the considered territory that absorb and evolve
toward a new state, as already said, with respect to ecological and economic aspects. The predicted
scenarios on population dynamics were interpreted as the effects of the non-linear interactions between
the ecological and economic components with the multi-pole territorial system. In fact, when the
multi-pole territorial system shows a good equilibrium between ecological and economic aspects, the
population grows significantly, as in the case of the population of the cluster of Predosa (P8); whereas
when one of the considered components records negative values, the population decreases, as in the
case of the population of the cluster of Novi Ligure (P1).
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4. How Can These Models Contribute for Building Resilient Systems?

SDMs constitutes a family of tools that uses the ODEs to predict the performance of a given
criterion over time and more in general cycles that depends on a number of factors, whereas the
Lotka–Volterra are models that face more complex problems.

The link between the SDMs and LV models is pointed out by Crookes and Blignaut [55], who
stated that prey–predator models are suitable to be used in system dynamics models [54], also finding
some applications in the field of economics [81,82], ecology (see e.g., [83,84]), and in multidimensional
sectors in a supply chain [85]. The most important commonality of these two methods, especially
regarding to the assessment of urban resilience referred to in urban and transformation strategies,
is that both the models can consider the interactions between the different elements and sectors in
urban contexts. This characteristic represents the real peculiarity of these systems for evaluating urban
resilience, in fact, there are no consolidated assessment methods in literature on urban resilience [86].

In this sense, a clarification about specific characteristics of SDM and LV has to be done, before the
analysis of their possible contribution in decision-making for resilience enhancing. Indeed, beyond the
similarity which concerns the mathematic bases, these models are quite different.

As shown in Table 6, a comparison matrix has been structured with the aim to investigate both
commonalities and differences between the SDM and LV models in orienting decision problems related
to urban planning, with specific attention to the resilience enhancement.
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Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix
(Authors’ elaboration, 2019).

Lotka–Volterra
Models

System Dynamic
Models

Nature Essence and characters *
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 

 
Lotka–Volterra  

Models 
System Dynamic 

Models 

Nature Essence and characters * 
  

Input 

Use of qualitative and quantitative data 
  

Participatory process 
  

Use of different spatial scales 
  

Output 
Scenario simulation 

  

Time scale 
  

Sustainability 2020, 12, 3 13 of 19 

specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 

 
Lotka–Volterra  

Models 
System Dynamic 

Models 

Nature Essence and characters * 
  

Input 

Use of qualitative and quantitative data 
  

Participatory process 
  

Use of different spatial scales 
  

Output 
Scenario simulation 

  

Time scale 
  

Sustainability 2020, 12, 3 13 of 19 

specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 
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specific software, such as STELLA, Venism and Powerism, that formulate themselves the ODEs 
from which the scenarios’ simulations are produced. On the other hand, LV models are generally 
employed through mathematical software, such as MatLab and Mathematica Software, and 
these need to write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this 
sense, both the dynamic models use the ODEs as an output, but in different ways. From the point 
of view of the availability, both dynamic models may be written through specific packages in 
open programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for 
Matlab” and “Nova modeler” for ecological modelling. 

• Integration refers to the capability of DMs to integrate different techniques and evaluation 
methodologies. For instance, the considered dynamic models are a suitable tool to being 
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models 
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different 
phases: (1) at the beginning, to support the problem articulation and the identification of the 
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation 
of the different performances through final score calculation or ranking elaboration. Shafiei et 
al. [96] integrate SDM and Agent-Based Models to better understand the effects, not only on the 
system but also on the agent of the transition to sustainable mobility. 

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and 
the possibility to interact the dynamic model and the GIS interface through a programming 
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS 
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding 
platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite 
the requirement of specific competences to manage DMs in GIS environment, the users may 
support decision makers in better interpreting certain dynamics related to urban resilience by 
visualizing spatially the output of the dynamic model in a final map and therefore, identifying 
specific policies and solutions. 

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario 
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve, 
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models 
are useful supports for the decision makers for identifying the most critical areas and adopting 
specific policies and interventions. 

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM 
considers a system as a whole, analyzing and focusing on its components and sub-components. 
In fact, SDMs are mostly applied to municipal or metropolitan scales. LV models are generally 
employed to provincial and sub-regional scales and to those territories with a rural vocation. 

Table 6. Lotka–Volterra models and System Dynamic Models: summarizing comparison matrix 
(Authors’ elaboration, 2019). 

 
Lotka–Volterra  

Models 
System Dynamic 

Models 

Nature Essence and characters * 
  

Input 

Use of qualitative and quantitative data 
  

Participatory process 
  

Use of different spatial scales 
  

Output 
Scenario simulation 

  

Time scale 
  

* Lotka–Volterra model is used to show the functioning of the system, whereas the System Dynamic Model is a tool
used to study and analyze the model or the system.

In particular, a number of criteria have been considered for this analysis. The criteria are selected
according to relevant literature review [48,54,55] and to authors’ researches:

• Nature highlights the different essence and characteristics of both dynamic models. On one hand,
the Lotka–Volterra are models that aim to explore the dynamic functions of a given environmental
system N, whereas the SDM models may be considered as a tool used to study and analyze the
model or the system.

• Input is intended as the modalities to insert and deal with data at different spatial scales, as well
as the possibility to integrate the participatory process. Generally, the considered dynamic models
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allow the insert of only quantitative data and the employment of different spatial scales (from local
to regional and superior). As far as the participatory process is concerned in the SDM models, the
decision makers may be integrated since the early phases of the process by using causal loops
(Figure 1) that facilitate the interpretation of the system functioning and the integration of different
stakeholders’ perspectives [14,50]. In the LV models, the participatory process may be integrated
only by other evaluation procedures, such as the Multicriteria Analysis (MCA), by using a system
of indicators and indices [79,87].

• Output refers to the final result produced through the considered dynamic models, such as the
scenario simulation, the use of the time scale, the spatial scale, the graphical representation and
the sensitivity analysis with the aim to validate the scenarios produced. Particularly, both SDM
and LV models simulate possible future scenarios and these represent, generally, the final output
through a graphic plot in that the linear function is represented. Unlike the LV models, the
SDM models show, since the initial phase, a graphical representation of the relations between the
considered variables and they allow to make, after the scenario simulation, a sensitivity analysis.
These two DMs use, in different ways the time scale: the SDM model use a real time scale that
may be traduced in months, years or centuries, whereas the LV model uses an arbitrary time scale
that may be subdivided in an initial phase when the function starts with the state of art conditions
(t0), transitory phase, when the linear function evolves in terms of growth or degrowth, and a
final phase, when the linear function became stable. The arbitrary time scale may be traduced in a
real time scale by considering the historical series of the analyzed parameters [74]. Sensitivity
analysis is a valuable procedure for testing the model response with respect to the variation of
parameter values, as well as to identify those parameters that have more impact than the others
on the investigated phenomenon [88]. Sensitivity analysis can increase the reliability of the model
and thus, reduce the uncertainty of parameters used in the models. A very common sensitivity
test is the One-At-Time approach (OAT) [89] that is often used in Multicriteria Analysis as final
tuning [75,90,91]. This, in fact, facilitates the scenarios’ assessment when actors and stakeholders
are involved in a participatory decision-making process [92,93].

• Software refers to the availability of software and the modalities to solve the Ordinary Differential
Equations (ODEs). On one hand, the SDM models are characterized by the use of specific software,
such as STELLA, Venism and Powerism, that formulate themselves the ODEs from which the
scenarios’ simulations are produced. On the other hand, LV models are generally employed
through mathematical software, such as MatLab and Mathematica Software, and these need to
write manually the ODEs to obtain the prediction of scenarios (Figure 6). In this sense, both
the dynamic models use the ODEs as an output, but in different ways. From the point of view
of the availability, both dynamic models may be written through specific packages in open
programming languages, such “deSolve” for R, “Simupy” for Python, “Mat Cont for Matlab” and
“Nova modeler” for ecological modelling.

• Integration refers to the capability of DMs to integrate different techniques and evaluation
methodologies. For instance, the considered dynamic models are a suitable tool to being
integrated with Multicriteria Analysis (MCA) [75], as well as with the Agent-Based Models
(ABM) [94] and Hedonic Price Model (HPM) [95]. Specifically, MCA can be used at two different
phases: (1) at the beginning, to support the problem articulation and the identification of the
variables to be included in the model; (2) after the scenarios’ simulation to support the evaluation of
the different performances through final score calculation or ranking elaboration. Shafiei et al. [96]
integrate SDM and Agent-Based Models to better understand the effects, not only on the system
but also on the agent of the transition to sustainable mobility.

• Mapping is intended as the possibility to visualize the scenarios using GIS-based methods and
the possibility to interact the dynamic model and the GIS interface through a programming
language (e.g., QGIS and Python). Actually, the integration of DMs simulation results into GIS
is developed by users in specific plug-ins (e.g., PANDORA 3.0 [97]) or by using specific coding
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platforms (e.g., QGIS Python console) and to get a spatial visualization of the output. Despite the
requirement of specific competences to manage DMs in GIS environment, the users may support
decision makers in better interpreting certain dynamics related to urban resilience by visualizing
spatially the output of the dynamic model in a final map and therefore, identifying specific policies
and solutions.

• Scenario planning refers to the prediction of future scenarios and the definition for each scenario
of objectives and strategies. Both SDM and LV models allow to predict the way variables evolve,
starting from the state of art conditions (t0) [50]. In this sense, both the SDM and the LV models
are useful supports for the decision makers for identifying the most critical areas and adopting
specific policies and interventions.

• Scale refers to the application of dynamic models at different scales. Moreover, the SDM considers
a system as a whole, analyzing and focusing on its components and sub-components. In fact,
SDMs are mostly applied to municipal or metropolitan scales. LV models are generally employed
to provincial and sub-regional scales and to those territories with a rural vocation.

5. Conclusions and Future Perspectives

This paper explored the role of the family of dynamic models (DMs) and their characteristics
as support in the decision-making process for evaluating complex phenomena, as in the case of the
resilience of urban and territorial systems. Particularly, the study on the state of the art of resilience,
urban resilience, dynamic models and urban simulation methods provided an epistemological
contribution to the issue. The examples considered in this paper can be useful to further explore the
opportunities of analysis application to investigate the key variables of issues in cities and territories.
The comparison matrix highlighted commonalities, differences and potential synergies between the
SDM and LV models. Both the SDM and LV models may be considered reliable supporting tools for
policy planning, thanks to their ability to predict possible future behaviors of selected key variables,
thus helping actors and stakeholders to identify and prioritize shared objectives and strategies for
increasing urban resilience. In fact, these DMs are able to integrate the scientific knowledge available in
literature within the evaluation procedure with specific expert knowledge elicited in the participatory
modelling processes [98]. Some final remarks with respect to building more resilient systems [99]
could be:

• These DMs are currently considered as some of the most promising models for understanding
multi-dimensional problems related to urban and territorial systems.

• If experiments are impossible in the real world, simulations become the main way we can learn
effectively about the dynamics of complex systems. Dynamic models are the most appropriate
techniques to simulate complex and dynamic systems with the aim of developing policy and
learning to effectively manage the system [50,100].

• These models are able to predict the effects of the actions over time on the state of the system.
For this reason, both the DMs considered can be applied to evaluate the possible effects of urban
and territorial policies in order to enhance urban resilience.

• The integration of dynamic models with urban simulation methods makes it possible to support
data collection and elaboration, problem structuring, and facilitate the involvement of actors and
stakeholders [12,88,101–103].

The authors have applied both SDM and LV models to a common case study, of a city with more
than 50,000 inhabitants, with the purpose of evaluating urban resilience performance. The aim of the
authors consists in effectively testing the multi-scale by aggregating or disaggregating the data as
variables of the models [103]. A set of urban development scenarios will be predicted, considering
the short-, medium- and long-term period [64] and a set of objectives and strategies for enhancing
urban resilience will be prioritized. From the methodological point of view, this will be developed
as an interactive procedure through dynamic models that may interact with GIS software from the
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early stages of the process. Finally, an integrated tool will be developed to evaluate possible effects
of natural or anthropic disasters that could compromise the resilience performance of systems, also
evaluating the economic losses caused by the perturbations of the system.
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