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Abstract: This research addresses how the stochasticity and correlation of travel speeds affect the
shortest path solutions in sustainable environments. We consider a shortest path problem with the
objective function of minimizing a linear combination of the mean and standard deviation of carbon
emissions. By adjusting the proportion of the standard deviation in the objective function, the effects
of speed stochasticity and correlation are studied under different preferences of the decision-makers
on the fluctuations of carbon emissions. Based on 102-day real speed data from the Los Angeles
freeway network, this research conducts extensive numerical experiments on 200 randomly chosen
origin-destination pairs. Experimental results demonstrate the necessity of considering speed stochasticity
and correlation, especially when the standard deviation of carbon emissions takes a large proportion in
the objective function. As the weight of the standard deviation in the objective function increases from 0
to 1.5, the reduction of emission objective values increases from 0.03% to 0.13% by considering speed
stochasticity, and increases from 0.02% to 0.20% by considering speed correlation. Taking the city Los
Angeles with about 2361 taxis and about 525,945 passenger orders in January 2017 as an example, 0.03%
and 0.02% reductions respond to about 3156 kg and 2630 kg carbon emission, respectively.

Keywords: sustainability; shortest path problem; correlated stochastic speeds; carbon emission objectives

1. Introduction

The transportation sector is a significant emitter of greenhouse gases, which accounts for 14% of
global greenhouse gas emissions [1]. With an increasing worldwide concern for the environmental
hazards of greenhouse gases, many researchers are working to develop green logistic policies to shift the
transportation schemes to be more sustainable with fewer negative environmental impacts [2–4]. In this
context, many operational research methods have been taken to green logistics to address some routing
problems in sustainable environments [5–8], and the fundamental routing problem that determines the
travel path from an origin node to a destination node in a road network is generally modeled as the
shortest path problem with sustainable objective functions, such as minimum carbon emissions [9] and
minimum fuel consumption [10,11].

In the literature, most of papers on the shortest path problems with sustainable objective functions
are studied with the assumption of deterministic traffic environments [9,12,13]. However, traffic networks
have inherent uncertainties that are caused by random disturbances such as crashes, vehicle breakdowns,
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bad weather, and maintenance activities [14]. Although there already are a large number of shortest path
papers considering stochastic link travel times or speeds, most of them aim to find the travel path with
minimum expected travel time [15–18] or maximum travel time reliability [19–21]. Research on the shortest
path problem with both stochastic traffic environment and sustainable objective functions is still in its
infancy. To the best of the authors’ knowledge, only Ehmke et al. [22] has studied the shortest path problem
of minimizing the expected carbon emissions in a road network with stochastic link travel times. To solve
this problem, they propose a path-averaging method and an arc-averaging method by modifying the
classic A* algorithm [23]. Similar to many stochastic shortest path papers that consider travel time-related
objective functions [17,19,21], Ehmke et al. [22] also consider the correlation of link travel times. Specifically,
they set the distributions of link travel times as time dependent, and then use real time-dependent speed
data to calculate the link travel times and the expected carbon emissions of travel paths. The calculation
of travel times through some long-distance road links may involve the travel speeds in multiple time
periods, and thus different starting times may need the travel speeds in the same periods while traveling
such road links. Therefore, the time dependence of travel times implies the temporal correlation between
link travel times [15], i.e., the travel time on one road link in different time periods are correlated. Later,
Ehmke et al. extend this work to the stochastic vehicle routing problem in real road networks where the
determination of a specific travel path between two customers is modeled as a shortest path problem with
stochastic link travel times and the objective of minimizing the time- and fuel-related costs [11]. The similar
stochastic vehicle routing problem has been studied by Huang et al. [10] as well. Similar to paper [22],
Ehmke et al. [11] and Huang et al. [10] also consider the correlation of link travel times or speeds.
Ehmke et al. [11] continue to implicitly consider the temporal correlation by using real time-dependent
speed data, as in their early paper [22]. Huang et al. [10] first classify the road links into expressways,
arterial, and residential roads, and then set the average speeds of road links in each category to the
same values in each time period, which implies the spatial correlation of travel speeds, i.e., the travel
speeds on different road links are correlated. Moreover, Huang et al. also use time-dependent speed data
to calculate the travel time of each road link, such as in papers [11,22], which means the temporal
correlation is considered as well. However, in real-world traffic networks, due to the propagation
and uncertainties of traffic flow, link travel times or speeds have much complex correlation in both
temporal and spatial dimensions, which are much more complicated than the correlation considered by
Ehmke et al. [11], Ehmke et al. [22] and Huang et al. [10]. Interested readers can refer to papers [24–26] for
more details.

Modeling the stochasticity and correlation of link travel speeds in real road networks is highly
complicated because there are very high-dimensional dependent random vector [27]. For example,
a stochastic time-dependent road network with 200 road links and 10 time periods implies 2000 random
speed variables and 1,999,000 (2000× 1999÷ 2) distinct correlations. If there are sufficient time-dependent
historical speed data, the data can be used to account for the complex stochasticity and correlation of
link travel speeds, as the papers [17,19] do. However, in most cases, it is difficult to obtain real speed
data in the underlying road networks. Therefore, many papers directly assume that all link travel speeds
fit certain multivariate distributions, and then randomly sample some scenarios to model the correlated
stochastic speeds [14,28,29]. However, the random sampling method usually needs a large number of
samples (scenarios) to restore the stochasticity and correlation of the random speed variables, which
significantly increases the difficulty of solving the shortest path problems.

If the stochasticity and correlation of link travel speeds are not considered, as is the case in many
shortest path papers [23,30,31], the difficulty of modeling and solving the shortest path problems under
sustainable environments can be significantly reduced. However, does this make the resulting travel paths
different from the actual optimal travel paths in real stochastic and correlated road networks? In other
words, will the stochasticity and correlation of link travel speeds affect the obtained optimal travel path
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solutions or the corresponding carbon emission values. This is the focus of this research. In the literature,
some researchers have demonstrated the significance of considering the spatial and temporal correlation of
stochastic link speeds in shortest path problems with time-related objective functions [14,28]. For example,
the two papers [14,28] find that the spatial and temporal correlations could affect the optimal travel paths,
and the impact is associated with the levels of correlation. However, these two papers have not considered
the sustainable objective functions. Therefore, the necessity and effects of considering correlated stochastic
speeds in shortest path problems under a sustainable objective function, which is the problem studied in
this paper, is still unclear.

In this paper, the objective function of the studied shortest path problem is set to minimize a linear
combination of the mean and standard deviation of carbon emissions, and the parameter θ is defined
as the weight of the standard deviation. By adjusting the value of θ, we can study the effects of speed
stochasticity and correlation under different preferences of the decision-makers on the fluctuations of
carbon emissions. For example, when θ is equal to zero, the effects on the mean of carbon emissions can be
studied. This paper does not take the minimum standard deviation of carbon emissions as an optimized
objective function because it is unreasonable to only consider the standard deviation without the mean of
carbon emissions. For example, when minimizing the standard deviation of carbon emissions, the optimal
travel path would take a longer detour path to the suburbs, due to the low fluctuations of travel speeds in
the detour path. However, taking a detour path to the suburbs would result in more carbon emissions,
which is contrary to the original intention of the decision-makers in reality.

This paper conducts extensive numerical experiments to study the effects of speed stochasticity and
correlation on the optimal travel paths and the corresponding means and standard deviations of carbon
emissions. The test data are 102-day real time-dependent link travel speeds from the Los Angeles freeway
network. Specifically, to investigate the effects of speed stochasticity, this paper compares the optimal
travel paths from the stochastic problem with stochastic scenario sets and the deterministic problem with
a deterministic scenario. On the other hand, to investigate the effects of speed correlation, this paper
compares the optimal travel paths from the correlated problem with stochastic correlated scenario sets and
the uncorrelated problem with stochastic uncorrelated scenario sets. The path-averaging method proposed
by Ehmke et al. [22] is applied to find the optimal travel paths between an origin-destination (O-D) pair.
We thus contribute to the research on shortest path problems in sustainable environments by providing
some managerial and modeling insights into whether and how the stochasticity and correlation of link
travel speeds affect the optimal travel path solutions.

The rest of this paper is outlined as follows. The studied shortest path problem is defined in Section 2.
Section 3 introduces the test case and experimental settings. Section 4 shows the experimental results and
analyses the effects of speed stochasticity and correlation. Section 5 concludes this paper.

2. Problem Definition

The studied shortest path problem is defined in a stochastic time-dependent road network G =

(V, E, T, ξ). V is the set of nodes representing the road intersections and |V| = N. E is the set of edges
representing the road links and |E| = M. T is the set of time periods of interest and |T| = K. The travel
speed on a link (i, j) in a time period t is represented as a non-negative random variable ṽijt. Then, the travel
speeds on all links in all time periods are jointly distributed random variables that are represented by a
stochastic scenario set ξ. The scenario set ξ includes a finite number of scenarios ξs (or called support
points in papers [14,32]), s = 1, . . . , S, each of which is defined as a vector of values that all random speed
variables can take. Each scenario has a probability ps and ∑S

s=1 ps = 1. Take a small network with four
nodes, four edges, and two periods, shown in Figure 1, as an example. Table 1 shows an example of the
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scenario set ξ for the small network, which includes 8 (4× 2) random speed variables and 10 stochastic
scenarios. The probability of each scenario is 0.1.

1

2

3

4

𝑒1

𝑒2

𝑒3

𝑒4

Figure 1. A small network.

Table 1. An example of the scenario set ξ for the link travel speeds (unit:km/h) in the small network.

Period Link ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10

1

e1 57 54 52 48 54 54 58 50 52 59
e2 64 58 60 61 61 66 64 60 61 61
e3 64 58 60 61 61 66 64 60 61 61
e4 69 69 66 66 67 68 68 67 66 69

2

e1 59 57 51 55 56 55 56 53 55 57
e2 65 61 61 60 61 64 63 62 62 62
e3 68 68 66 66 68 67 69 69 67 68
e4 54 50 49 49 53 61 60 57 57 58

The investigated shortest path problem aims to find the travel path with the minimum value of a
linear combination of the emission mean µ and standard deviation σ, as formulated in Equation (1). Let θ

denote a specified weight factor representing the aversion to carbon emission variability, and es denote
the carbon emission (unit: gram) of a travel path in the sth scenario. This paper uses the well-known
MEET model [33] to calculate the carbon emission es, which is formulated in Equation (2). In the model,
the gross vehicle weight is set to 3.5–7.5 tons, and then K = 110, a = 0, b = 0, c = 0.000375, d = 8702, e = 0,
and f = 0. dij is the length of the link from node i to node j, and xijt is the decision variable. If the vehicle
travels from node i to node j directly in time period t, xijt is equal to 1, otherwise it is 0. The number
1000 in the µ and σ calculation equations are used to convert the unit of carbon emissions from gram
to kilogram to facilitate the presentation of numerical results. When θ = 0, the objective function is to
minimize the mean of carbon emissions.

F = µ + θ·σ (1)

with µ = ∑S
s=1 (e

s/1000)
S and σ =

√
∑S

s=1(es/1000−µ)2

S .

es =∑N
i=1 ∑N

j=1 ∑K
t=1(K + a·vs

ijt + b·vs
ijt

2 + c·vs
ijt

3 + d/vs
ijt + e/vs

ijt
2 + f /vs

ijt
3)·dij ·xijt, ∀i 6= j, s = 1, . . . , S (2)

3. Test Case and Settings

This paper investigates the effects of speed stochasticity and correlation on the optimal travel path
solutions by conducting extensive numerical experiments using real speed data from the Los Angeles
freeway network. This section first introduces the processes of collecting and processing the real speed
data, and then introduces the settings of following numerical experiments.
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3.1. Data Collection and Processing

Numerical experiments need a large number of real time-dependent travel speed values on each
road link in each time period to form the stochastic scenario set ξ that can reflect the real stochasticity
and correlation of link travel speeds. This paper uses the ready-made time-dependent speed data in the
Los Angeles freeway network provided by the Caltrans Performance Measurement System (PeMS) at
http://pems.dot.ca.gov/. PeMs is a public intelligent transportation system developed by the California
Department of Transportation to collect, store, and process traffic data for all California freeways in
real-time. Figure 2 shows the Los Angeles freeway network that consists of 3417 speed detection stations.
Each station can detect the travel speed of the vehicles at its location. From PeMs, we download all speed
readings of the 3417 speed detection stations over 102 days, from 1 May to 22 September in 2017 excluding
weekends and holidays. The time period of downloaded speed data is 5 minutes. Detailed procedures of
collecting and processing the speed data in PeMs can be found in paper [34].

Figure 2. Los Angeles freeway network in which each red drop represents a speed detection station. (Figure
courtesy of the Caltrans Performance Measurement System (PeMS))

After downloading the speed data of all the detection stations, this paper needs to aggregate the speed
values of multiple stations to get the travel speed of an entire road link, because the road links between
two road intersections usually contain multiple detection stations, as shown in Figure 2. By analysing the
downloaded speed data, it is found that the speeds of some stations on the same road link differ greatly in
the same time period. This is understandable. For some long-distance road links, the traffic conditions
and surroundings around different stations vary a lot, which results in a large difference in the speeds of
different stations. However, when averaging the speeds of all stations to get the speed of an entire road
link, such large differences would cause the average speed to deviate from the actual speed of the link.
Therefore, in order to reduce this deviation, this paper adaptively divides the road links between two road
intersections into several shorter road links to ensure that the speed difference of all stations on each road
link is within a specific range. Specifically, the initial road network data are first obtained from the digital
map, including the longitude and latitude of each road intersection, the connection relationship of all
road intersections, and the length of each original road link between two road intersections. Furthermore,
the IDs of stations on each original road link are downloaded from PeMs. Then, we set the time period
10:00–10:05 with stable traffic flow as the research period. For each original road link, we first find the
102-day speeds of all the stations on this link in the research period and then calculate the variance of these

http://pems.dot.ca.gov/
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speed values. If the obtained variance exceeds the maximum allowable variance value, the original road
link is divided into several shorter road links to ensure that the speed variance of all stations on each link
is no more than the maximum allowable variance value. The divination position is set to the middle of
the link between two adjacent speed detection stations. By adjusting the maximum allowable variance
value, we get a reasonable road network with 138 nodes and 438 links. Finally, the speeds of all stations
on each link are averaged to be the travel speeds on each road link in each time period, for the following
experimental uses.

3.2. Experimental Settings

This paper conducts extensive numerical experiments to investigate the effects of speed stochasticity
and correlation on the optimal travel path solutions with a sustainable objective function. A total of 200
different O-D pairs are randomly selected as the test instances. The planning time horizon is the two hours
from 8 to 10 a.m., including 24 5-min time periods, and the departure times in all instances are set to 8 a.m.
Therefore, there are a total of 10,512 (438× 24) random speed variables in the stochastic time-dependent
road network.

To investigate the effects of speed stochasticity, this paper compares the optimal travel paths from the
stochastic problem (SP) and the deterministic problem (DP). Figure 3 presents the flowchart for getting
the optimal travel path of an O-D pair in the SP and DP. The SP uses all 102-day real speed data as
the stochastic scenario set, and the DP uses the deterministic scenario (S = 1) where the travel speed
on each link in each time period is the average speed of the link in that period over 102 days. Then,
the path-averaging algorithm proposed by Ehmke et al. [22] is used to calculate the optimal travel path of
an O-D pair. The path-averaging algorithm is a path-based label setting A*-variant that originally solves
the expected emissions-minimizing path problem considering stochastic time-dependent link travel speeds,
in which the carbon emissions are calculated using the MEET model. Although Ehmke et al. [22] have
not considered the standard deviation of carbon emissions in their objective function, the path-averaging
algorithm can still be employed to solve the investigated stochastic shortest path problem. The reason
is that Ehmke et al. [22] used stochastic scenarios (i.e., samples) to evaluate the emissions of a given
path as this paper does, and thus their algorithm can both capture the expected carbon emission (µ in
Equation (2)) as well as the variation of emissions (σ in Equation (2)). Please refer to [22] for the detail of
the path-averaging algorithm.

102-day real speed data

1. Calculate the optimal travel 

path using the path-averaging 

method

The optimal travel path 

in SP

Deterministic scenario

1. Calculate the optimal travel 

path using the path-averaging 

method

The optimal travel path 

in DP

(a) (b)

Figure 3. Flowchart for getting the optimal travel path of an O-D pair in (a) a stochastic problem (SP) and
(b) a deterministic problem (DP).

On the other hand, to investigate the effects of speed correlations, this research compares the optimal
travel paths from the correlated problem (CP) and the uncorrelated problem (UnCP). Figure 4 presents
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the flowchart for getting the optimal travel path of an O-D pair in the CP or UnCP. First, the Scenario
Generation (SG) method proposed by Kaut and Wallace [35] is employed to generate S (S = 10 at the
beginning) stochastic correlated scenario sets in the CP or S stochastic uncorrelated scenario sets in the
UnCP based on all 102-day speed data. Specifically, the SG method requires the correlation matrix and the
marginal distributions of all random speed variables as input. This paper calculates the Pearson correlation
between all pairs of random speed variables based on the real speed data to form the correlation matrix.
To get the marginal distributions, the Grubbs’ test [36] is first implemented repeatedly to remove the speed
outliers with a significance level of 0.05. Then, in the stochastic time-dependent road network, 49.57%
(5211) of the speed variables fit log-normal distributions, and 50.43% (5301) fit bounded beta distributions.
To generate a stochastic correlated scenario set in the CP, the input of the SG method are the obtained
correlation matrix and the marginal distributions. While generating a stochastic uncorrelated scenario set
in the UnCP, the correlations between all speed variables in the input correlation matrix are set to zeros.

Then, the stability level of the S scenarios is calculated using the stability test proposed by
Guo et al. [27] to determine the number of stochastic scenarios required. The processes for calculating the
stability level of S scenarios are shown as follows: generate 2m + 1 scenario sets that have S−m, S−m + 1,
. . . , S + m− 1, and S + m stochastic scenarios (m = 4 in this paper), respectively; for each scenario set,
find the optimal (or feasible) solution; then, for each found solution, calculate its objective function values
based on the 2m + 1 scenario sets, and find the biggest (F+) and the smallest (F−) objective function values;
calculate the relative difference (F+ − F−)/F+ for each solution; finally, the biggest relative difference of
the 2m + 1 solutions is taken as the stability level of the S scenarios. Then, if the obtained stability level is
less than 2%, the S scenarios can be employed in this instance to achieve the desired evaluation stability;
otherwise, the S scenarios cannot achieve stability and more scenarios are needed. Finally, based on the
obtained S stochastic scenarios, the path-averaging algorithm is employed to calculate the optimal travel
path of the O-D pair.

102-day real 

speed data

1. Generate S stochastic 

scenarios using the SG method

2. Calculate the stability level of 

S scenarios

3. Calculate the optimal travel path 

using the path-averaging method

The optimal travel path

YES

NO Stability level is 

less than 2%?

S = S + 5

S = 10

Figure 4. Flowchart for getting the optimal travel path of an O-D pair in a correlated problem (CP) or an
uncorrelated problem (UnCP).
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The experiments are performed on a laptop equipped with an Intel Core i7-8550U CPU @2.00 GHz
and 16 GB RAM. All algorithms are coded and executed in MATLAB 2016b.

4. Experimental Results

This section shows the experimental results and analyses the effects of speed stochasticity and
correlation on the optimal travel path solutions under sustainable environments.

4.1. Effects of Speed Stochasticity

This sub-section investigates the effects of speed stochasticity. Table 2 shows the performance
comparison between the DP and the SP in terms of four different θ values. The result is the average of
200 test instances. In the table, the meanings of the µ, θ ·σ, and F are consistent with their respective
meanings in Equation (1). Taking the DP results as a benchmark, ‘Diff.’ shows the relative changes of
the SP results. Table 3 compares the optimal paths of the SP and the DP. Please note that since the DP
uses the deterministic scenario, the obtained objective values of optimal travel paths are not their actual
objective values. Therefore, all emission results of the DP in this sub-section are obtained by re-evaluating
the obtained optimal paths with all 102-day real speed data.

In Table 2, the SP generates the lower objective values F than the DP does for all θ values. Specifically,
when θ = 0, for an O-D pair, the SP can reduce the mean of carbon emissions by 0.03%. These reduced
carbon emissions result because the SP generates better solutions than the DP does for 7 O-D pairs in
Table 3. Although the 0.03% reduction looks very inconspicuous, when considering all travel demands of
an entire city, the reduction in carbon emissions is still much significant. Let us take Los Angeles as an
example. There are about 2361 taxis (not including the ride-sharing vehicles) and about 525,945 passenger
orders in January 2015 [37]. Then, in the test instances, the speed stochasticity can help these taxis reduce
the carbon emissions by about 3156 kg ((25.0018 − 24.9954) × 525,945). This indicates the necessity of
considering speed stochasticity to reduce carbon emissions. Then, let us look at the results of θ > 0, where
the standard deviation of carbon emissions is taken into the objective function. Compared to the results of
θ = 0, when θ > 0, the speed stochasticity brings more reductions in the objective values F. Moreover,
as θ increases from 0 to 1.5, the reduced objective value also increases from 0.03% to 0.13%, mainly due
to more reduction in the standard deviation of carbon emissions. For example, in Table 2, when θ = 1.5,
considering speed stochasticity helps to reduce the θ ·σ by 2.24%. This is because the 102-day speed
data used in the SP can reflect the fluctuation of path emissions in real traffic environments. However,
the average speeds used in the DP cannot. Then, when θ is large, the SP generates better travel paths than
the DP does for more O-D pairs in Table 3 and lower objective values in Table 2, which demonstrates the
necessity of considering speed stochasticity for large θ values.

Table 2. Performance comparison between the deterministic problem (DP) and the stochastic problem (SP).

θ = 0 θ = 0.5 θ = 1 θ = 1.5

DP SP Diff. (%) DP SP Diff. (%) DP SP Diff. (%) DP SP Diff. (%)

µ 25.0018 24.9954 −0.03 25.0018 24.9992 −0.01 25.0018 25.0083 0.03 25.0018 25.0167 0.06
θ·σ - - - 0.7563 0.7488 −0.99 1.5126 1.4859 −1.77 2.2690 2.2181 −2.24
F 25.0018 24.9954 −0.03 25.7581 25.7480 −0.04 26.5144 26.4942 −0.08 27.2707 27.2347 −0.13
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Table 3. Number of O-D pairs where the stochastic problem (SP) gets better and same paths compared with
the deterministic problem (DP).

θ = 0 θ = 0.5 θ = 1 θ = 1.5

better path 7 8 12 17
same path 193 192 188 183

This paper further analyses the carbon emission results of the O-D pairs in which the SP and the DP
generate different optimal path solutions. Figure 5 shows the emission values reduced by the SP relative
to the DP results for these O-D pairs. In the figure, the meanings of the µ, θ·σ, and F are consistent with
their respective meanings in Equation (1). In the test instances, for an O-D pair, the SP can reduce the
objective values F by up to 1.29%, 2.22%, 3.10%, and 3.93% in terms of the four θ values, respectively. It
can be found from the figure that for some O-D pairs, such as (5, 2), (160, 35), (69, 84), and (158, 110), the SP
generates better travel paths than the DP does for all four θ values. It is because these O-D pairs involve
some road links where the average speeds deviate greatly from the common traffic conditions, the DP thus
gets caught in bad solutions for all θ values. On the other hand, for some O-D pairs, such as (43, 103) and
(26, 47), when θ is equal to zero, the SP and the DP have the same optimal travel path solutions. However,
when θ is bigger than zero, the SP can adaptively find better travel paths with lower objective values
by sacrificing a small number of emission means to obtain much smaller emission standard deviations.
Moreover, when θ is equal to 0.5, 1, and 1.5, there are 2, 7, 13 such O-D pairs, respectively. The reason is
that as the proportion of the emission standard deviation in the objective function increases, the actual
optimal travel path is more likely to be the path with more stable emissions.
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Figure 5. Emission values reduced by the stochastic problem (SP) when (a) θ = 0, (b) θ = 0.5, (c) θ = 1,
and (d) θ = 1.5 relative to the deterministic problem (DP) results.

To summarize, considering speed stochasticity does help to get better solutions for certain O-D pairs
under sustainable environments, and the number of such O-D pairs increases as the parameter θ increases.
When the objective function is to minimize the mean of carbon emissions (θ = 0), the emission mean of an
O-D pair can be reduced by 0.03% on average by considering speed stochasticity. Although the percentage
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0.03% is very small, the total carbon emissions reduced are still considerable when considering all travel
demands of an entire city. On the other hand, when the emission standard deviation is also considered
in the objective function (θ > 0), more reductions in the emission objective values can be obtained from
speed stochasticity, and the reduction of emission objective values increases as θ increases.

4.2. Effects of Speed Correlation

This sub-section investigates the effects of speed correlation. Table 4 shows the performance
comparison between the CP and the UnCP in terms of four different θ values. The result is the average
of 200 test instances. In the table, the meanings of the µ, θ ·σ, and F are consistent with their respective
meanings in Equation (1). The ‘Diff.’ represents the relative changes of the CP results compared with the
UnCP results. Table 5 compares the optimal paths of the CP and UnCP. Please note that since the UnCP
uses the stochastic uncorrelated scenario sets that remove the speed correlation in the real speed data,
the obtained objective values of optimal travel paths are not their actual objective values. Therefore, all
emission results of the UnCP in this sub-section are obtained by re-evaluating the optimal paths using the
stochastic correlated scenario sets that are used in the CP. The reason why we do not use the 102-day real
speed data to re-evaluate is that the speed distributions used in the SG method are fitted after some speed
outliers are removed, and thus there are some differences between the exported stochastic scenario sets
and the real speed data. To eliminate the impacts of removing outliers, the optimal paths of the UnCP are
re-evaluated using the stochastic correlated scenario sets.

In Table 4, the CP generates lower objective values F than the UnCP does for all θ values. Moreover,
as θ increases, the objective value reduced by the CP increases from 0.02% to 0.20%. This is because although
the stochastic uncorrelated scenario sets used in the UnCP cannot express the speed correlation, they can
still account for the common traffic conditions in the road network. Therefore, when θ = 0, the UnCP can
still find the travel paths with the minimum emission means for most O-D pairs in Table 5, and considering
speed correlation only helps to reduce the emission mean by 0.02%. However, when considering all travel
demands of an entire city, the 0.02% carbon emissions are still very significant. Take the city Los Angeles
with about 2361 taxis and about 525,945 passenger orders in January 2017 as an example. The speed
correlation can help reduce the carbon emissions by about 2630 kg ((25.1505− 25.1455)× 525, 945), which
indicates the necessity of considering the speed correlation to reduce carbon emissions. When θ > 0,
the emission standard deviation is taken into account in the objective function. Since the speed values
on different links of a travel path do not change synchronously in a stochastic uncorrelated scenario
set, the evaluation of path emission standard deviation would be inaccurate in the UnCP. Therefore,
the UnCP could not find the actual optimal paths for some O-D pairs, especially when the emission
standard deviation takes a large proportion in the objective function. In this case, the CP can get better
travel paths for more O-D pairs and then more reductions in emission objective values for large θ values.
These reductions of emission objective values are mainly due to the reduction in the emission standard
deviation. For example, in Table 4, when θ = 1.5, the 0.20% reduction in objective value F comes from the
2.88% reduction in the standard deviation part θ·σ. This demonstrates the necessity of considering speed
correlation when the emission standard deviation accounts for a large proportion in the objective function.

Table 4. Performance comparison between the uncorrelated problem (UnCP) and the correlated
problem (CP).

θ = 0 θ = 0.5 θ = 1 θ = 1.5

DP SP Diff. (%) DP SP Diff. (%) DP SP Diff. (%) DP SP Diff. (%)

µ 25.1505 25.1455 −0.02 25.1554 25.1534 −0.01 25.1618 25.1767 0.06 25.1796 25.1911 0.05
θ·σ - - - 0.762 0.7583 −0.49 1.512 1.4793 −2.16 2.2638 2.1985 −2.88
F 25.1505 25.1455 −0.02 25.9174 25.9117 −0.02 26.6738 26.656 −0.07 27.4433 27.3896 −0.20
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Table 5. Number of O-D pairs where the correlated problem (CP) gets better or same paths compared with
the uncorrelated problem (UnCP).

θ = 0 θ = 0.5 θ = 1 θ = 1.5

better path 7 12 18 25
same path 193 188 182 175

This paper further analyses the carbon emission results of the O-D pairs in which the CP and UnCP
generate different optimal path solutions. Figure 6 shows the emission values reduced by the CP relative
to the UnCP results for these O-D pairs. In the figure, the meanings of the µ, θ ·σ, and F are consistent
with their respective meanings in Equation (1). In the test instances, for an O-D pair, the CP can reduce
the emission objective values F by up to 0.97%, 0.73%, 3.09%, and 5.25% in terms of the four θ values,
respectively. In the figure, for most O-D pairs, the objective values reduced by the CP are less than 0.5,
which indicates that whether or not the speed correlation is considered has a small effect on the optimal
emission objective values for most O-D pairs. The CP only reduces the objective values of the O-D pairs
(158, 110) and (43, 103) significantly for large θ values. For the O-D pair (158, 110), when θ is equal to 1.5,
the CP finds a better travel path solution with a lower emission mean and a smaller emission standard
deviation. For the O-D pair (43,103), when θ is equal to 1 and 1.5, the CP can significantly reduce the
emission standard deviations by sacrificing a small number of emission means to obtain lower objective
values. This indicates that for some specific O-D pairs and large θ values, we need to consider speed
correlation to accurately evaluate the emission standard deviations of candidate travel paths and then find
the actual optimal travel path. On the other hand, it is found that the value of θ has a significant impact on
whether or not the CP can generate a better path solution. For example, for O-D pairs (92, 69) and (146, 2),
the CP generates better paths than the UnCP does for all the three θ values greater than zero, whereas for
some O-D pairs, such as (31, 1) and (79, 145), the CP only generates better path solutions for a specific θ

value. This is because the UnCP itself may get different optimal travel path solutions for different θ values.
Moreover, caused by the inaccurate evaluation of path emission standard deviations, the likelihood that
the UnCP generates different optimal travel path solutions for different θ values will increase. Therefore,
for some θ values, the UnCP could find the optimal travel paths, but may not for other θ values.
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Figure 6. Emission values reduced by the correlated problem (CP) for (a) θ = 0, (b) θ = 0.5, (c) θ = 1,
and (d) θ = 1.5 relative to the uncorrelated problem (UnCP) results.
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To summarize, considering speed correlation does help to get better solutions for certain O-D pairs in
sustainable environments, and the number of such O-D pairs increases as the parameter θ increases. When
the objective function is to minimize the mean of carbon emissions (θ = 0), the emission mean of an O-D
pair can be reduced by 0.02% on average by considering speed correlation. Although the percentage of
0.02% is very small, the total carbon emissions reduced are still considerable when considering all travel
demands of an entire city. When the objective function is to minimize the combination of emission mean
and standard deviation (θ > 0), more reductions in the emission objective values can be obtained by
considering speed correlation, and the reduction increases as θ increases.

5. Conclusions

This paper studies whether and how the speed stochasticity and correlation affect the optimal
travel path solution under sustainable environments. We use 102-day real time-dependent travel speeds
from the Los Angeles freeway network as test data. To investigate the effects of speed stochasticity,
this paper compares the optimal travel paths from the stochastic problem and the deterministic problem.
To investigate the effects of speed correlation, this paper compares the optimal travel paths from the
correlated problem and the uncorrelated problem.

We conducted comparison experiments on 200 randomly chosen O-D pairs in terms of four different θ

values. It is found that both speed stochasticity and correlation can affect the optimal travel path solutions
and the reduced emission objective values by considering stochasticity and correlation increase as the
parameter θ increases. Specifically, for an O-D pair, when the objective function is to minimize the mean
of carbon emission, the emission mean can be reduced by 0.03% by considering speed stochasticity and
by 0.02% by considering speed correlation. Although these two percentages look very inconspicuous,
when considering all travel demands of an entire city, the reduction in carbon emissions is considerable.
Taking the city Los Angeles with about 2361 taxis and about 525,945 passenger orders in January 2017 as
an example, the 0.02% reduction means that 2630 kg carbon emissions can be reduced in the test instances.

Moreover, when the standard deviation of carbon emissions is also considered in the objective
function, the reductions of the objective values are more significant by considering speed stochasticity
and correlation, and the reduction increases as θ increases. For example, when θ = 1.5, the emission
objective value can be reduced by up to 0.13% by considering speed stochasticity and by up to 0.20% by
considering speed correlation. This demonstrates the necessity of considering speed stochasticity and
correlation, especially when the standard deviation of carbon emissions takes a large proportion in the
objective function.

This paper studies the shortest path problem with an objective function of minimizing the combination
of emission mean and standard deviation. Our future research will extend to other objective functions,
such as minimizing expected travel time and maximizing travel time reliability.
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7. Demir, E.; Bektaş, T.; Laporte, G. A review of recent research on green road freight transportation. Eur. J.
Oper. Res. 2014, 237, 775–793. [CrossRef]

8. Lin, C.; Choy, K.L.; Ho, G.T.S.; Chung, S.H.; Lam, H.Y. Survey of green vehicle routing problem: Past and future
trends. Expert Syst. Appl. 2014, 41, 1118–1138. [CrossRef]

9. Sun, Y.; Yu, X.; Bie, R.; Song, H. Discovering time-dependent shortest path on traffic graph for drivers towards
green driving. J. Netw. Comput. Appl. 2017, 83, 204–212. [CrossRef]

10. Huang, Y.; Zhao, L.; Van Woensel, T.; Gross, J.P. Time-dependent vehicle routing problem with path flexibility.
Transp. Res. Part B Methodol. 2017, 95, 169–195. [CrossRef]

11. Ehmke, J.F.; Campbell, A.M.; Thomas, B.W. Optimizing for total costs in vehicle routing in urban areas.
Transp. Res. Part E Logist. Transp. Rev. 2018, 116, 242–265. [CrossRef]

12. Laporte, G.; Pascoal, M.M. Minimum cost path problems with relays. Comput. Oper. Res. 2011, 38, 165–173.
[CrossRef]
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