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Abstract: Due to rapid, sprawling urban and industrial development, urbanization in China has
led to serious environmental pollution with subsequent risks to human well-being. Landscapes
comprised of intermingled residential and industrial areas are common across China, which is a large
challenge for effective urban planning and environmental protection. Being able to identify industrial
land across the urban landscape is critical for understanding patterns of urban design and subsequent
consequences for the environment. Here, we describe a method to quickly identify industrial parcels
using points of interest (POIs) and large-scale spatial data. We used the Beijing–Tianjin–Hebei urban
agglomeration as a case study and identified 8325 square kilometers of industrial land, accounting for
30.7% of the total built land. Based on ground-truth randomly-sampled sites, the accuracy, precision,
and recall of identified industrial areas were 87.1%, 66.4%, and 68.1%, respectively. Furthermore, we
found that over 350 km2 of the industrial parcels were high human settlement risks and mainly were
distributed in Tianjin and Tangshan city. Over 28.8% of the identified industrial land parcels might
be at the risk of potential soil contamination. The results can be helpful in future urban planning
and for identifying urban areas that are targets for implementing environmental risk management
and remediation.

Keywords: industrial land identification; POIs; large-scale spatial data; environmental risk
management; Beijing–Tianjin–Hebei urban agglomeration

1. Introduction

Rapid urbanization and global industrialization in recent decades have led to extensive sprawl of
developed land and environmental risks to people living in urban residential landscapes [1,2]. From 1978
to 2017, Chinese urban dwellers have increased from 17.9% to 58.5% [3]. Chinese urbanization is always
accompanied with high energy consumption and extensive land utilization [4,5]. While urbanization
have improved economic development and the quality of life in China, it has also caused substantial
environmental degradation [6], especially in the form of air pollution, urban heat islands, greenhouse
gas emissions, and extensive landscape development for cities and industries [7,8].

In 2014, the “National New-Type Urbanization Plan (2014–2020)” was released by the Chinese
government to promote a new path toward sustainable urbanization [9]. One of the central aspects is
optimizing the spatial layout of urban landscapes and improving quality of life for urban residents.
Distinguishing the area and spatial distribution of industrial land parcels is key to optimizing intensive
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and efficient urban planning that includes creating healthy, natural, and human environments. However,
there are currently few data in China recording which partials contain industrial land use and what
their spatial distribution is in China. To date, little progress has been made in developing methods to
identify industrial land or associated environmental impacts.

Current methods for identifying land use classifications rely on remote sensing technology [10,11]
and the land use categories are commonly divided into settlements, vegetation, barren land, water, and
farmland [12,13]. However, existing remote sensing data and algorithms cannot obtain differentiate
industrial land parcels for its non-objectivity and low quality [14]. The development of Internet
information technology has produced more reliable data resources, such as points of interest (POIs) and
OpenStreetMap (OSM), and brought out the relevant methods of land use identifications using the big
data [15,16]. In this study, we propose a method to quickly identify industrial land based using large
scale spatial data, including points of interest (POIs), OpenStreetMap, land use and remote sensing
data, and parcel-scale population density information. Using the method, we identified industrial
parcels in the Beijing–Tianjin–Hebei urban agglomeration and we discuss the uncertainty and possible
applications for urban environmental risk management.

2. Orientation on Industrial Land Parcels and Environmental Risks

Built-up land comprised of intermingled residential and industrial parcels is common in China,
and this form of mixed land use is a grand challenge for urban planning and environmental
protection [17]. Megacities and surrounding regions are the hot zones for urbanization and
industrialization, which always accompany severe environmental problems [18,19]. Zhang et al.
found that Beijing–Tianjin–Tangshan region experienced rapid urbanization from 1970 to 2013, and the
newly developed land was converted from cultivated land and other built-up land [20]. Existing studies
in China show that urbanization and industrial development were the two main factors affecting health
risks of fine particle (PM2.5) [21,22]. Meanwhile, the functions and environmental impacts differ greatly
in various built-up land parcels [23]. Industrial land parcels are one of the most essential components,
with the proportion from 15% to 30% in urban planning due to national regulations. During the
past decades, the government was more likely to provide industrial land for attracting investment in
China [24], and thus industrial parcels might sprawl quickly. Jiang et al. found that the industrial and
residential parcels in Beijing presented a disordered urban spatial structure during the urban sprawl
process from 2001 to 2012, because of the different sprawl patterns [25] (Figure 1b). Sun et al. found
that the new industrial land was intensively distributed in the north and the southeast of Beijing, and
pointed out that the increase of the industrial land was negatively related to population density [26].
Otherwise, industrial parcels with polluting factories are regarded as major sources of environmental
risks in urban areas [27]. Industrial parcels with polluting emissions (e.g., power plant and steel
factory) are found to be obvious contributions to soil contamination and the effects decreased from
the emission source to the surrounding environment [28]. The Chinese government complimented
soil contamination monitoring and a remediation plan to control and reduce the environmental risks
in 2016 [29]. One of the basic tasks is to screen and confirm the potential contaminated land parcels,
mostly caused by industrial pollution [30]. Hence, industrial parcels become important restructuring,
optimizing, and monitoring objectives for urban land use and environmental risk management.

In addition, the industrial parcels and their distribution can bring out other human settlement
risks for the surrounding environment and difficulties for urban land use planning. After rapid urban
development and construction, many industrial parcels that used to be far away from the city are
nearby or surrounded by residential and commercial parcels (Figure 1). The study of urban built-up
land sprawl in Beijing found that the structure of the built-up land changed from single residential
structure to industrial–residential structure [17]. The mixed distribution of industrial and residential
parcels could produce potential environmental and health risks to the citizens [31]. The polluting
industrial parcels might increase the exposure risk of air pollution, and cause soil contamination to
nearby residents [21,28]. Ensuring the safety of human settlements has been an essential issue for
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urban sustainability in China. Therefore, the government and urban planners begin to realize the
potential environmental risks for the mixed structure of urban land use, and to promote restructuring
and optimization for industrial parcels. One of the policies is the relocation and reuse of industrial
land parcels under progress, especially in some of the megacities (e.g., Beijing). Industrial shutdown or
relocation is treated as a crucial way to reduce environmental pressure and risks [32]. The government
proposed a decentralization strategy to transfer the low-end, heavy pollution industries from Beijing
to surrounding cities in 2015 [33]. However, after the relocations, the former industrial parcels in the
urban areas still might have potential environmental risk for a long time. The new “Beijing Urban
Master Plan (2016–2030)” has taken human settlement quality and risk control as an essential goal.
Under the background of new urban planning and land use policy in Beijing, the reuse of industrial
parcels is a crucial path for the city’s regeneration and future development. Reasonable monitoring
and remediation of industrial land parcels are fundamental before the reuse. However, it is difficult
to identify the potential objects and to promote urban environmental risk management, because of
the mixed land use and disordered spatial structure. Traditional methods mainly rely on manual
investigations and evaluations, which need a lot of time and manpower. This restriction therefore
becomes a crucial issue for promoting urban land use planning and environmental risk management.
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Figure 1. The analytical graph of the urban sprawl process in China. (a) The urban spatial pattern
before rapid urbanization; (b) industrial parcels surrounded by residential parcels after urban sprawl;
(c) industrial parcels nearby to residential parcels after urban sprawl.

Fast and accurate identification of industrial parcels might play a primary role in understanding
the internal structure of urban land use and implications for environmental risk management. As we
all know, how to classify land use and land cover (LULC) is an important topic for urban planning and
land use policy research. Current studies mainly use remote sensing data and geographic information
system (GIS) technology to identify the main categories (e.g., built-up land, forest land, etc.) to analyze
the land use and cover changes [34]. Because of the similarity of spectral characteristics, the methods
using remote sensing data cannot quickly and accurately classify the mixed land use pattern, especially
the industrial land parcels [15,17]. Using multi-source big data and new technology, researchers have
explored new methods to identify more details of built-up land [23,35]. Jia et al. advanced a method
of mapping the urban land use with more detailed classifications and higher accuracy using remote
sensing imagery and mobile phone positioning data [36]. Zhang et al. used integrated data of Google
Street View (GSV) and other high resolution orthoimagery to develop the method of parcel-based
urban land use classification (e.g., single-family house, commercial, and industrial building) [23].
Liu and Long proposed a method to automatically identify built-up land parcels using OpenStreetMap
(OSM) and points of interests (POIs) data [15]. Generally, the usage of big data and development of the
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parcel-based classification methods provide new possibilities for identifying the internal structure of
urban land use and promoting efficient environmental risk management.

3. Materials and Methods

3.1. Study Area

The Beijing–Tianjin–Hebei urban agglomeration (113◦27′36”–119◦50′53” E, 36◦2′8”–42◦37′19” N)
is located in northern China, near the Bohai Sea (Figure 2). The study region consisted of Beijing, Tianjin
municipality, and Hebei province, with a total area of 218,000 km2. The Beijing–Tianjin–Hebei urban
agglomeration is the political, cultural, and economic center of China, which encompasses a population
of approximately 112.5 million (8.1% of China’s total population) with a GDP of 8256.0 billion RMB
(accounting for over 10.0% of the national GDP). From 1978 to 2017, the proportion of population
in Beijing–Tianjin–Hebei’s urban areas increased from 17.9% to 56.1%, with an average annual
growth rate of 0.98% [37]. The rapid progress of urbanization and industrialization has resulted
in substantial burgeons on energy production and the environment. The Beijing–Tianjin–Hebei
region also experiences some of the most extreme water shortages and air and water pollution in the
country [38,39].
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Figure 2. The location of the Beijing–Tianjin–Hebei urban agglomeration. (a) The location of the study
area in China; (b) the Beijing–Tianjin–Hebei urban agglomeration.

3.2. Main Components

In this paper, we propose a method of fast identifying industrial land parcels using POIs and
large-scale spatial data, including OpenStreetMap (abbreviated as OSM), population density, and
land use data, etc. (Figure 3). The built-up land parcels are generated by the OSM and land use data.
The POIs data are classified by industrial and residential types after cleaning, and then used to identify
the possible industrial land parcels. We calculate the parcel population density (abbreviated as PPD)
thresholds using environmental statistic data, which were officially released. Using the PPD, we can
fast identify the industrial parcels from all the possibilities. The results can be validated by the random
samples. Using the results, we discuss implications for environmental risk management in this area.

3.3. Data Preparation and Analysis

3.3.1. POIs and Cleaning

Points of interest (POIs) are often used to represent spatial location of companies, commercial
points, traffic station, residential location, public services, parks, etc. [40]. POI data contain abundant
information, including geographical position and the type of service provided at the point [41].
POIs have been widely used to identify the functional categories of built-up areas.
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Figure 3. The framework for the method of quickly identifying industrial land parcels using Points of
interest (POIs) and large-scale spatial data.

In this study, we use a POI dataset from our study area that was collected by AutoNavi, a Chinese
mapping and location-based information services enterprise. The AuoNavi dataset consisted of
5,641,876 POIs records. The POIs of polluting enterprises and residences were filtered according to
type and name attributes. In addition, polluting enterprise POIs were classified into human settlement
risks, soil pollution, and other possible pollutants. The descriptions of different types of POIs are
shown in Table 1.

Table 1. The descriptions of different types of Points of interest (POIs).

Types Title 2 Descriptions

POIs of Polluting
enterprises

Human settlement risks
The enterprises with potential environmental risks
(flammable or explosive) such as chemical,
firecracker, and petroleum enterprises, etc.

Soil pollution

The enterprises with soil contamination risk which
mainly include ferrous metal mine mining and
processing industry, textile industry, paper industry,
metal manufacturing, etc.

Other pollutions

The enterprises might cause other pollutants, such as
electricity generation, plastics industry, food
processing, clothing manufacturing, cement
manufacturing, etc.

POIs of Residences The POIs that mainly represent residential parcels.

3.3.2. OpenStreetMap and Processing

OpenStreetMap (OSM) is an opening and free editable map of the world. The OpenStreetMap
database is collected and updated by volunteers using tools such as handheld GPS units, digital
cameras, and ground surveys.

The china-latest-free.shp.zip files were download from OSM, which contain various shape layers.
Prior work has confirmed the completeness and geo-positioning information of the OSM dataset in
China [42]. The OSM road layers consist of different road types ranging from motorways to gravel
tracks as well as cycleways and footpaths. The railways layers include railways, trams, lifts, subways,
etc. The river, stream, canal, drain feature classes are contained in the waterway layer. The Merge
tool in ArcGIS was used to combine the line features from the OSM dataset (not including cycleways,
footpaths, subways, and lifts) after clipped by the study area into a single, new output file, and the
data were used to split developed land into independent parcels.
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3.3.3. Land Use and Built-Up Land Parcel Analysis

The land use vector dataset of the study area from 2015 was obtain from the Chinese Academy
of Sciences Resource and Environment Science Data Center. This dataset was produced using
human–computer interactive interpretation with Landsat TM data in a scale of 1:100,000 [43]. The data
contains 6 classes and 25 subclasses of land use, including cropland, woodland, grassland, water body,
built-up land, and undeveloped land [44]. The accuracy of the land use classifications is over 90%,
which meets the accuracy demands of land use and land cover study.

The built-upland in study area is 27,105.6km2, accounting for 12.4% of the total area. The developed
land data were split to independent parcels with the line features from the OSM dataset using the Cut
Polygons tool in ArcGIS. This yielded 247,233 developed land parcels.

3.3.4. Parcel Population Density Analysis

Parcel population density (PPD) data were calculated based on the LandScan Global Population
Database (2015). The database was developed by Oak Ridge National Laboratory (ORNL) using an
innovative approach with GIS and remote sensing. The dataset is an estimate of population per 30
arc second pixel (which is at a higher resolution than 1 square kilometer) and updated annually [45].
LandScan data are regarded as an important data resource for global population distribution and
accuracy and are regularly validated [46].

3.3.5. Other Datasets

We used environmental statistics data to calculate the threshold of population density for the
industrial land parcels. Environmental statistics data are a relatively accurate dataset that contains
basic information about most heavy polluting industries. Otherwise, we used Google Earth remote
sensing data to test the accuracy of the industrial land identification. Google Earth (GE) is a planetary
exploration tool with a high-resolution. The GIS functionality of GE has been extensively used in
remote sensing validation as a form of “ground truthing” [47,48].

3.4. Validation

Here we use three indicators to validate the identification: accuracy (A), precision (P), and recall
(R). We use visual recognition based on Google Earth remote sensing data to verify results. Here, the
number of randomly selected land parcels is N, which contains industrial parcels (N1) and other land
parcels (N0). For N1, TN1 is the number of correct results and FN1 is the number of incorrect results.
Similarly, for N0, TN0 is the number of correct results and FN0 is the number of incorrect results. We
use the results to calculate A, P, and R as below:

A = (TN1 + TN0)/(N1 + N0), (1)

P = TN1/(TN1 + FN0), (2)

R = TN1/(TN1 + FN1). (3)

4. Results

4.1. The Industrial Enterprise POIs after Cleaning and Classifications

There are 97,687 polluting enterprise POIs after filtering POI data (Table 2). The number of
polluting POIs is eleven times that contained in the environmental statistics data. The polluting
enterprise POIs were mainly distributed in Hebei province, accounting for 57.8% of the total in the
study area. There are 84,644 polluting enterprise POIs falling inside developed land parcels. The
proportion of polluting enterprise POIs in developed land parcels is 86.6% of the study area, and
relatively high in Beijing and Tianjin.
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Table 2. The numbers of the industrial enterprise POIs in the built-up land parcels.

Provinces Numbers of Polluting
Enterprise POIs

Numbers of Polluting Enterprise
POIs in Built-Up Land Parcel Percent/%

Beijing 22,288 20,394 91.5
Tianjin 18,903 17,235 91.2
Hebei 56,496 47,015 83.2
Total 97,687 84,644 86.6

4.2. Identifying the Possible Industrial Land Parcels

We identified 8939 enterprises from the environmental statistics data in the study area, Hebei
and Tianjin, accounting for over 90% of the total in the dataset (Table 3). Due to the accuracy of land
use data, 6304 enterprises (about 70.5% of environmental statistics data) fall inside developed land
parcels after the spatial analysis. The proportion of the selected enterprises in developed parcels is
59.7% in Hebei, which is far less than in Beijing and Tianjin. This is in large part due to some industry
categories, such as mineral enterprises and brick factories, being located further from downtown and
have a relatively small building volume. There are 742 mineral enterprises and brick factories which
are not in parcels, about 12.2% of the total environmental statistics data from Hebei.

Table 3. The numbers of enterprises from environmental statistics in the built-up land parcels.

Provinces Numbers of Environmental
Statistics Data

Numbers of Environmental
Statistics Data in Developed Parcels Percent/%

Beijing 843 786 93.2
Tianjin 2015 1887 93.6
Hebei 6081 3632 59.7
Total 8939 6305 70.5

4.3. The PPD Threshold of the Industrial Land Parcels

The PPD of the built land parcels was between 0–78,693 people/km2. We found significant
negative correlation between the spatial distribution of industrial land parcels and their population
density. To select the threshold of the PPD for industrial parcels, we analyzed the PPD changes and the
cumulative percentage of enterprises (Figure 4). Finally, we estimated that 4500 per/km2 is the PPD
threshold of industrial land parcels in this study, when the cumulative percentage is over 80%. If the
PPD value of built-up land parcels is less than 4500 per/km2, we regard the parcels as industrial land.
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4.4. Identifying the Industrial Land Parcels Using POIs

The total number of identified industrial parcels is 17,937, accounting for 7.3% of industrial land
parcels. The number of industrial parcels in Beijing, Tianjin, and Hebei are 2831, 2712, and 12,394,
respectively. The area of industrial land identified using polluting enterprise POIs data in the study
area is 8325 km2 (Figure 5a), accounting for 30.7% of the developed area. The industrial parcels
of Beijing are mainly distributed outside the fifth ring road (Figure 5b), with an area of 1034 km2.
The industrial area of Tianjin is 1336 km2, mainly distributed outside of the ring road and Binhai New
District (Figure 5c). The industrial area of Hebei Province is 5955 km2, higher than in Beijing and
Tianjin, accounting for 71.5% of the total industrial area, and widely distributed in the southeastern
Hebei Province.
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4.5. Validating Results

We randomly selected 2000 land parcels from different cities, accounting for over 0.8% of the
total land parcels in the study area. These randomly selected parcels contained 265 industrial parcels
and 1735 non-industrial parcels according to our analysis and we verified these results using visual
recognition in the Google Earth engine. Results show that the indicators of the accuracy (A), precision
(P), recall (R) are 87.1%, 66.4%, 68.1%, respectively. The values for A are high, suggesting our method
can identify industrial parcels relatively well. For the huge number of land parcels and the uncertainty
of the method, the indicator of precision (P) and recall (R) is relatively low. Overall, the results can
reflect the status of the industrial land parcels, which might satisfy the research of the distribution
characteristics and impacts of the industrial land.

5. Discussion

5.1. Distinguishing the Land Parcels with Human Settlement Risks

Urbanization in recent years has transformed landscapes into mixed industrial and residential
zones, which might led to a severe human settlement risk [49]. Using the identified industrial parcels,
we distinguished the risk industrial land parcels with distance to the closest residence POIs less than 2
km. There are over 350 km2 of risk industrial parcels mainly distributed in Tianjin Municipality and
Tangshan city, accounting for 68.0% of the total risk industrial parcels area. As shown in Figure 6,
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the high-risk industrial parcels are mainly distributed in Binhai New District and Dongli District in
the Tianjin Municipality. In Tangshan city, the high-risk industrial parcels are mainly distributed in
Luannan and Laoting counties. Tianjin and Tangshan are both important heavy industry cities in
northern China, with many polluting factories and storage parcels in the urban areas. The distribution
of the industrial parcels nearby residential areas might have potential impacts on citizens’ health and
safety. The government should pay greater attention to pollution risk management and control in
order to guarantee the safety of citizens in the above areas. We suggest to optimize the structure of
urban land use, and transfer the polluted industrial land inside the city. For the industrial parks, a
certain safe distance from urban residential areas should be maintained.
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5.2. Screening Soil Contamination Risk in Industrial Parcels

Contaminated industrial land parcels are the significant risks in the urban area, but they also
can be redeveloped as urban construction land after remediation [50,51]. According to the attributes
of industrial enterprise POIs, 9587 potential POIs were screened out with the contaminated risks.
After spatial analysis of the potential POIs and industrial land parcels, the soil contaminated industrial
land parcels were differentiated. There are nearly 2400 km2 of soil contaminated industrial parcels in
the study area, accounting for 28.8% of the total identified industrial land parcels. Beijing, Tianjin, and
Hebei have 200,425 and 1765 km2 respectively. The contaminated parcels are mainly distributed in
southeastern Beijing, southern Tianjin, and main cities of Hebei (Figure 7). Beijing is promoting the
policy of decentralization of the non-capital functions, and the industrial enterprises relocation is one
of the essential tasks [33]. The identified contaminated industrial parcels will be an important issue for
the urban planning and regeneration. We suggest soil contamination monitoring and remediation
before the reuse of the industrial parcels, and making reasonable reuse functions according to the
pollution characteristics. For other cities (e.g., Tianjin, Tangshan), the government should carry out
strict monitoring and control programs for the existing industrial parcels with higher pollution risk to
ensure that the surrounding residents are not affected.

5.3. Uncertainty and Disadvantages

We can identify industrial parcels using POIs and high-resolution spatial data, but the accuracy of
our approach might be influenced by many factors, such as data completeness and PPD threshold
selection. The OSM data used in this study currently does not contain all the line features in the study
area [52,53]. Due to low-resolution Landsat remote sensing images, some developed land parcels
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cannot be accurately identified [54,55]. Furthermore, the accuracy of industrial land identification is
influenced by the selection of PPD thresholds because of differences in population densities in different
regions. Missing OSM data, selection of PPD thresholds, and mixed land use might cause declines in
identification accuracy, especially in urban-rural interfaces or small towns. Our current results can be
used to guide urban planning and environmental protection but future research should aim to improve
and optimize this approach.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 14 
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6. Conclusions

6.1. Main Conclusions

In order to better understand the internal composite structure of urban land use and its effect on
the human settlement environment, we propose a method of quickly identifying industrial land parcels
using POIs and large-scale spatial data, and discuss the implications of the results for environmental
risk management. We find that our method can easily detect more industrial parcels using POIs
than might using environmental statistics data. The accuracy and precision of the industrial parcel
identifications is satisfactory for future research on the internal structure of urban land use and the
impact of urban industry on residential areas. Using this method, we identify the total industrial land
parcels with an area of 8325 km2 in the Beijing–Tianjin–Hebei urban agglomeration, accounting for
30.7% of the area of built-up land, mainly distributed outside the fifth ring road of Beijing, Binhai new
district of Tianjin, and main cities of Hebei. According to the result, we can find that there are over
350 km2 of industrial land parcels with high human settlement risks in Tianjin and Tangshan. Thus, the
optimization of the land use structure, strict monitoring, and reasonable transformation of industrial
parcels should be promoted in the area. Furthermore, over 28.8% of the industrial land parcels might
be soil contaminated, mainly distributed in southeastern Beijing, Tianjin, and Tangshan. We suggest
soil contamination monitoring and remediation before the reuse of industrial parcels in Beijing, and
stricter monitoring and control programs for the existing industrial parcels in other cities (e.g., Tianjin,
Tangshan). The results and implications might be used for urban planning, regional environmental
pollution prevention, and human settlement risk control.
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6.2. Policy Implications

(1) The industrial land parcels are widely distributed in urban areas, with the characteristic of
mixed structure with residential parcels. Identifying industrial parcels is essential for urban planners
and land use researchers to study the internal structure of urban land use and its effects on human
settlement environment. Using the POIs and large-scale spatial data (e.g., OSM, land use and population
density dataset), we suggest that policy makers pay more attention to industrial parcels and their risks.
Optimization of urban land use structure, regeneration of relocated industrial parcels, and monitoring
for high-risk parcels should be important tasks for the government.

(2) In urban agglomeration and megacities (e.g., Beijing), the industrial parcels normally have
disordered distribution and greater environmental risks for nearby residents. Therefore, the government
should promote the relocation of the pollution intensified industrial parcels and implement much
stricter supervision and monitoring, potentially for all industrial parcels. Meanwhile, the reuse of the
industrial parcels must be evaluated firstly, considering their contamination characteristics and all the
potential effects on human health. Reasonable restructuring and regeneration for urban land use can
reduce environmental risks in the urban areas with mixed industrial and residential parcels.

(3) It is crucial for some heavy industry oriented cities (e.g., Tianjin, Tangshan) to develop more
integrated management towards efficient environmental risk control, for their concentrated and
numerous industrial parcels in urban areas. For industrial parks or concentrated industrial parcels, a
security distance from urban residential areas should be defined and well maintained. We suggest
planning more green space surrounding industrial parks and heavy polluting industries (e.g., steel
factory, petrochemical park).
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