
sustainability

Article

Artificial Neural Network-Based Residential Energy
Consumption Prediction Models Considering
Residential Building Information and User Features
in South Korea

Mansu Kim 1, Sungwon Jung 1,* and Joo-won Kang 2

1 Department of Architecture, Sejong University, Seoul 05006, Korea; fox7798@naver.com
2 Department of Architecture, Yeungnam University, Gyeongsan 38541, Korea; kangj@ynu.ac.kr
* Correspondence: swjung@sejong.ac.kr; Tel.: +82-02-3408-3289

Received: 10 December 2019; Accepted: 17 December 2019; Published: 22 December 2019 ����������
�������

Abstract: When researching the energy consumption of residential buildings, it is becoming
increasingly important to consider how residents use energy. With the advancement of computing
power and data analysis techniques, it is now possible to analyze user information using big data
techniques. Here, we endeavored to integrate user information with the physical characteristics of
residential buildings to analyze how these elements impact energy consumption. Regression analysis
was conducted to accurately identify the impact of each element on energy consumption. It was
found that six elements were influential in all seasons: the number of exterior walls, housing direction,
housing area, number of years occupied, number of household members, and the occupation of
the household head. The elements that had an impact in each period were then derived. Based
on the results of the regression analysis, input variables for the training of an artificial neural
network (ANN) model were selected for each period, and residential energy consumption prediction
models were implemented based on actual consumption. The elements identified as those affecting
energy consumption, through regression analysis, can be used for implementing prediction models
with advanced forms. This study is significant in that we derived influential elements from an
integrative perspective.
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1. Introduction

In 2019, the World Green Building Council reported that the energy used by buildings accounted
for 30% of the world’s total energy consumption, with residential buildings representing the highest
proportion (22%) [1]. The figures are similar for South Korea; the residential sector represents 17.1% of
total energy consumption, with electric energy being responsible for 38.8%. This demonstrates the
necessity of preparing energy-saving measures for residential buildings [2].

To reduce energy consumption in buildings, various systems for managing energy have been
introduced (e.g., the building energy management system (BEMS)), and energy-saving measures have
been prepared (e.g., improving physical performances related to building energy). In South Korea,
such energy-saving measures and their application scope have been gradually expanded to residential
buildings. In residential buildings, energy consumption is significantly affected by the attributes or
sociology of the inhabitants, as well as the performance of the building. Therefore, the importance
of researching energy saving using user information is increasing [3]. Moreover, it is necessary to
effectively conduct sustainable energy utilization by preparing an energy reduction plan that considers
user features.
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Thus far, research on how the physical environment affects energy consumption has been
intensively conducted; however, it is difficult to collect a large amount of user information owing to its
personal nature. It is also difficult to quantitatively reduce and analyze the information on individuals.
Nevertheless, the analysis of qualitative data has become possible through national surveys and new
methodologies that are capable of nonlinear analysis, such as artificial neural networks (ANNs). In this
study, the energy consumption in residential buildings in South Korea was investigated, by integrating
the physical characteristics of residential buildings with information on occupant behavior and
characteristics, to identify elements that affect residential energy consumption. The elements that were
found to be influential were subsequently used to construct energy consumption prediction models.

2. Literature Review

Most studies on the energy consumption of residential buildings have focused on physical
characteristics, and those that considered user behavior only considered one or two user elements.
However, user information cannot be defined with such few elements; therefore, studies that
reflect user information from various perspectives are required. In this study, elements that affect
energy consumption were derived considering both the physical characteristics of buildings and
user information.

2.1. Effects of Physical Building Characteristics on Energy Consumption

Kim [4] reported that annual power consumption varied depending on the housing type,
construction year, number of floors, building structure, and building location. It was found that
detached houses with relatively less energy-related facilities consumed more energy than apartments,
as did old buildings and those with fewer floors. Kim et al. [5] discovered that the residential area,
heating method, number of floors, and building direction all affected heating energy consumption
for 181 apartment complexes in Seoul. Similarly, Eum et al. [6] reported that the construction year,
household area, building direction, and heating method affected energy consumption in 21 apartment
complexes in Daegu, which is located in central South Korea. In another region in central South
Korea—Gyeongbuk—Lee and Chae [7] proposed that the main elements affecting energy consumption
were the heating method and exterior walls and windows.

2.2. Effects of User Sociology on Energy Consumption

Van den Brom et al. [8] analyzed the actual energy consumption data of 14,000 households to
examine how user features affect energy consumption. Schipper et al. [9] and Noh [10] mentioned that
the relationship between energy consumption and users varies because the method and pattern of
using energy are different depending on a user’s sociology [9,11].

Kim and An [12] considered the types of Korean users and reported that energy consumption was
higher as income increased, because users with higher income were more sensitive to changes in their
surroundings. Conversely, the energy consumption of users with relatively lower income was more
affected by the physical attributes of their buildings, such as building age, than by changes in their
surroundings [9].

In residential spaces, energy consumption varies depending on the residence time and lifestyle of
household members. Kim et al. [5] proposed that the occupation, type of household members, and
number of household members were influential elements [8]. In the case of occupation, office workers
consumed more energy than the self-employed. In addition, members with longer residence times
consumed more power [13].

Seo et al. [14] reported that power consumption tendency differed depending on the occupants’
income level and the type of residents. Single-person households and families without children
consumed less energy, because they were socially and economically more active and thus spent less
time in their houses. However, energy consumption increased upon childbirth, when their residence
time and economic activity patterns changed [15].
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3. Materials and Methods

Figure 1 shows the research process of this study. First, data from the Household Energy Standing
Survey were integrated with the annual regional temperature data of the Korea Meteorological
Administration. Second, multiple regression analysis was conducted using the integrated data to
obtain the elements affecting energy consumption in each season. Elements found to be influential were
then used as input data to construct an ANN model and implement energy consumption prediction
models. To accurately derive the elements and construct the prediction model, regression analysis and
prediction model construction were conducted for five periods: spring, summer, fall, and winter, as
well as annually.

Figure 1. Research process.

3.1. Household Energy Standing Survey Data

The user data used in this study were collected from the 2016 and 2017 Household Energy
Standing Survey, which is conducted annually by the Korea Energy Economics Institute. The survey
respondents were from 2520 households in 16 cities and provinces and 3 metropolitan cities, with data
on 19 physical housing elements, 14 heating, cooling, and cooking elements, and 14 household and
household member elements. The survey also provided the monthly consumption data from 18 energy
sources, including general electricity, midnight electricity, and total electricity. It was found that the
earlier data were not suitable for integrating and analyzing multi-year data because of limitations in
way the composition of items and code disclosure scope were recorded. Therefore, 5040 items of data
from 2016 and 2017 were used in this study.

3.2. Seasonal Characteristics in South Korea and their Effects on Energy Consumption

South Korea has four distinct seasons; consequently, different home appliances and energy sources
are used in each season. The seasons also affect the length of time residents spend indoors. In spring
and fall, residential energy consumption is low, because there are many clear and dry days under
the influence of migratory anticyclones. In summer, cooling-related energy consumption increases
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because the weather is hot and humid under the influence of the North Pacific anticyclone. In winter,
heating-related energy consumption increases because the weather is generally cold and dry under the
influence of the continental anticyclone [16].

Figure 2 shows the monthly average temperature data of 16 regions in South Korea in 2016 and
2017. In Seoul and Kyunggi-do, the cities with the highest population densities in South Korea, the
average annual temperatures were approximately 30.8 and 29.5 ◦C in 2016, and 31.2 and 30.5 ◦C in
2017, respectively. The lowest temperature was observed in Kyunggi-do in January 2016, and the
highest in Gwangju in July 2017.

Figure 2. Monthly average temperature distribution in 16 regions of South Korea; (a) 2016; (b) 2017.

Figure 3 shows the seasonal energy consumption data of 4943 households, excluding outliers. It
was found that energy consumption was highest in winter. Moreover, energy consumption was high in
spring and winter when relatively lower temperatures were observed compared to other seasons. This
indicates that heating-related energy consumption significantly affects the total energy consumption
of buildings.

Figure 3. Cont.
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Figure 3. Household energy consumption distribution by season; (a) spring; (b) summer; (c) fall;
(d) winter.

Analysis was conducted for each of the four seasons to reflect the influence of energy sources and
energy-using devices in each season. Annual energy consumption was examined to identify overall
influential elements.

3.3. Derivation of Significant Elements through Multiple Regression Analysis

Machine learning techniques, such as ANNs, can estimate prediction results when trained to
predict nonlinear elements. However, it is difficult for them to determine the influence of these
elements [17]. In this study, regression analysis was conducted to examine the influence of individual
elements and to derive influential elements. The elements found to affect energy consumption were
then used as input data to implement the prediction model.

The multiple regression analysis was conducted using SPSS180.0 statistical software. The coefficient
(bn) of each variable and the constant term (an) of the model were estimated by applying the seasonal
energy consumption to the dependent variable (Yk) and substituting the physical characteristics of the
building, household characteristics, and seasonal local temperature into independent variables (xn), as
shown in Equation (1):

Yk = an + b1x1 + b2x2 + · · ·+ bnxn. (1)

3.4. Prediction of Energy Consumption Using ANNs

According to Neto and Fiorelli [13], simulations and ANNs are both efficient for predicting energy
consumption; however, each has its own benefits and drawbacks. In the case of simulation, it is
possible to input the operating hours of home appliances by the user, however there are limitations in
inputting other detailed information. In the case of ANNs, energy consumption can be predicted by
quantifying nonlinear user information [13]. In this study, the ANN method was considered more
appropriate to use because a large amount of user information could be integrated and considered.

ANNs are machine-learning algorithms proposed by McCulloch and Pitts [18]. When they
were first proposed, implementing the learning models was complicated and there was lack of clear
connection between the input and output data. Nevertheless, these issues were solved with the
development of deep neural networks (DNNs) that combined the backpropagation algorithm with
multi-layers with multiple nodes [19]. Owing to the proposal of new functions and algorithms, as
well as improved computer hardware, it is now possible to implement DNN models with one or more
hidden layers. DNN models can analyze vast amounts of elements that were previously overlooked



Sustainability 2020, 12, 109 6 of 28

for analysis, and it is now possible to implement prediction models to derive outputs through the
weight of each node [20].

Figure 4 shows the basic structure of the ANN model described by Equation (2). R is the number
of input variables and S is the number of hidden neurons. p represents each input variable, b each
hidden layer, and w its weight. The weight of each calculated element is used as the input of the
activation function. The output is derived through the sum of the weighted values [15]. The activation
function utilized the most commonly used sigmoid function:

nh
k =

R∑
j=1

wh
k j

p j + bk
b′k = 1 to S. (2)

Figure 4. Artificial neural network (ANN) model structure.

When an ANN prediction model is created, hidden nodes and layers must be constructed, as
shown in Figure 5. As there is no clear standard or methodology for this, it is necessary to find the
optimal model with the lowest mean squared error (MSE) value after making as many attempts as
possible. For successful learning, the minimum numbers of hidden nodes and layers must be larger
than the number of input variables n, and the maximum number must not exceed 2n + 1 [21]. In
this study, the ANN model was examined while the number of layers was increased from 1 to 9. In
addition, for each number of layers, five cases were created with the minimum number of hidden
nodes, the maximum number of hidden nodes, and three intermediate numbers. The model with the
lowest MSE, i.e., the highest model performance, was examined.

To verify the performance of the model, three methods were used to construct the household
member information input data, and the performance of the three cases were compared. As previously
mentioned, influential elements were found through regression analysis. The performance of models
using the influential elements as input data were compared to a model that used all the original
variables as input data, as well as to a model that used the four household member data derived by a
number of previous studies as input data.

The ANN prediction model for residential buildings in South Korea by Whaid and Kim [22]
was implemented using 14,260-hour data of 20 apartment complexes in Seoul. Their model used the
physical elements of the buildings that had optimal MSE values as input data. Research on a prediction
model that integrates user information with the model based on such physical attributes is required.
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Figure 5. Structure of a seasonal energy consumption prediction model.

Lee et al. [15] derived the energy consumption from the same buildings according to the behavioral
patterns of the users, and implemented a DNN model for predicting energy consumption through
six elements, i.e., gender, age, occupation, income, education level, and length of residency. Their
prediction model exhibited 64% accuracy, indicating that the six elements had an impact on energy
consumption. As the energy consumption was derived through simulation rather than records of
actual energy consumption, the influence of the six elements must be verified through a comparison
with the actual energy consumption. In addition, as the research was conducted based on annual
energy consumption, it is difficult to determine detailed seasonal consumption and influential elements.
It is also necessary to conduct research on different types of residential buildings, such as apartments
and detached houses, as the research was based only on multi-family houses.

It is difficult to accurately measure data such as energy consumption in residential buildings owing
to its spatiotemporal variability [23]. Data-based models are widely used because they can calculate
results through repeated learning, even for cases with limited input variables. ANN techniques are
actively used in various areas, as it is easy to identify relationships between different variables, and
nonlinear correlations can be analyzed without analyzing the physical phenomena [24].

4. Results and Discussion

4.1. Derivation of Influential Elements

4.1.1. Analysis Process (Multi-Collinearity, Outliers, and Dependent and Independent Variables)

Prior to the analysis, among the 2520 households in 2016 and 2520 households in 2017, the
following were removed as outliers: 92 households with unidentifiable data in each item, 2 households
located on the 100th or higher floors, and 3 households where there were 4 or more household members
aged 65 or older.

The data from all 16 regions comprised 12 physical building elements and 12 user information
elements, as shown in Table 1. Regional variables were applied to the analysis to use them as proxy
variables that represent the geographic characteristics, social atmosphere, economic characteristics,
and annual weather of each region. Among the user information data, the gender, age, education level,
and occupation were analyzed using the information about the household head due to the nature of
the data.
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Table 1. Data construction, descriptive statistics, and variance inflation factor (VIF) analysis results.

Code Variable Category Mean Standard
Deviation N Common

Difference VIF

city City

11 Seoul * − − − − −

21 Pusan 00.0647 0.24609 4943 0.703 1.423

22 Daegu 00.0475 0.21282 4943 0.778 1.285

23 Incheon 00.0477 0.21325 4943 0.774 1.292

24 Gwangju 00.0473 0.21239 4943 0.756 1.322

25 Daejun 00.0471 0.21195 4943 0.791 1.264

26 Ulsan 00.0324 0.17700 4943 0.818 1.222

31 Kyunggi 0.1107 0.31374 4943 0.628 1.593

32 Kangwon 00.0475 0.21282 4943 0.733 1.364

33 Chungbuk 00.0453 0.20802 4943 0.744 1.345

34 Chungnam 00.0637 0.24429 4943 0.667 1.500

35 Jeonbuk 00.0473 0.21239 4943 0.714 1.402

36 Jeonnam 00.0627 0.24247 4943 0.676 1.479

37 Kyungbuk 00.0803 0.27181 4943 0.636 1.573

38 Kyungnam 00.0807 0.27243 4943 0.626 1.598

39 Jeju 00.0152 0.12225 4943 0.879 1.137

B_a1 Housing type
1 Detached 0.3862 0.48693 4943 0.400 2.500

2 Apartment 0.4574 0.49823 4943 0.226 4.433

3 Others * − − − − −

B_a2 Number of floors Numeric 8.22 7.805 4943 0.182 5.485

B_a3 Floor number Numeric 4.34 4.943 4943 0.443 2.258

B_a4 Number of exterior walls Numeric 4.33 1.278 4943 0.582 1.718

B_a5 Housing direction

1 East 0.1194 0.32425 4943 0.303 3.305

2 West 00.0641 0.24501 4943 0.426 2.346

3 South 0.4200 0.49361 4943 0.162 6.189

4 North * − − − − −

5 Southeast 0.1993 0.39949 4943 0.224 4.473

6 Southwest 0.1034 0.30448 4943 0.327 30.055

7 Northeast 00.0299 0.17044 4943 0.610 1.640

8 Northwest 00.0190 0.13660 4943 0.694 1.440

B_a6 Construction year Numeric 3.82 1.298 4943 0.597 1.674

B_a7 Housing area Numeric 3.17 0.867 4943 0.411 2.432

B_a8 Number of bedrooms (rooms) Numeric 2.72 0.728 4943 0.488 20.050

B_a9 Number of exterior wall
windows Numeric 8.11 3.961 4943 0.737 1.357

B_a10 Main heating method 1 Individual 0.9092 0.28740 4943 0.785 1.274

2 Central
heating * − − − − −

B_a11 Cooling method 1 Air
conditioner 0.3045 0.46023 4943 0.180 5.558

2 No air
conditioner * − − − − −

B_a12 Air conditioner set temperature Numeric 3.13 20.049 4943 0.160 6.239

H_a1 Number of years occupied Numeric 10.91 8.722 4943 0.154 6.513

H_a2 Housing ownership 1 Owned 0.7589 0.42782 4943 0.827 1.209

2 Not owned * − − − − −

H_a3 Number of household members Numeric 2.97 1.242 4943 0.487 20.054
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Table 1. Cont.

Code Variable Category Mean Standard
Deviation N Common

Difference VIF

H_a4 Number of economically active
household members Numeric 1.45 0.767 4943 0.622 1.608

H_a5 Number of household members
aged 65 or older Numeric 0.47 0.743 4943 0.557 1.795

H_a6 Composition of household
members

1 Children 00.0500 0.21790 4943 0.756 1.322

2 No children * − − − − −

H_a7 Gender of household head
1 Male 0.7499 0.43309 4943 0.742 1.348

2 Female * − − − − −

H_a8 Age of household head Numeric 3.74 10.052 4943 0.486 20.056

H_a9 Education level of household
head

1
High school
graduate or
below

0.5855 0.49269 4943 0.624 1.602

2
University
graduate or
above *

− − − − −

H_a10 Occupation of household head

1 Regular
employee 0.4965 0.50004 4943 0.360 2.775

2 Temporary
employee 00.0558 0.22963 4943 0.770 1.298

3 Owner
operator 0.2320 0.42218 4943 0.459 2.179

4 Etc. − − − − −

H_a11 Unusual features of household
1 Unusual

features 00.0981 0.29750 4943 0.633 1.579

2 General * − − − − −

H_a12 Annual gross income Numeric 3.67 1.862 4943 0.426 2.347

Nominal variables were determined by regression analysis through dummy coding. The reference
variables of each dummy variable are as follows. The regional variables were based on Seoul, which
exhibited the largest temperature changes in 2016 and 2017. In South Korea, as energy efficiency is
lowest when a building faces north, coding was performed based on northward facing buildings. Other
variables were analyzed based on items for which it was difficult to derive meaningful conclusions
when analysis and interpretation were conducted. Variables that were relatively few in number were
not applied.

Prior to the analysis, multi-collinearity verification was performed, which could potentially
reveal independent variables with high correlations. If multi-collinearity occurs, correlations among
independent variables may affect the analysis and lead to wrong results. Consequently, independent
variables that have a significant impact on the dependent variable may appear meaningless, or the
sign of the regression coefficient may change [25]. The multi-collinearity verification showed that there
was no collinearity between the variables, because the variance inflation factor (VIF) value was less
than 10 for all items.

Table 2 shows that the regression analysis models for residential energy consumption in the
annual period, spring, summer, fall, and winter were appropriate. The Durbin–Watson results were
between 1.661 and 1.749; Durbin–Watson numbers close to 2 indicate that there is no autocorrelation.
The explanatory power for residential energy consumption, which was the dependent variable of
each independent variable, was found to be 12% (annual), 12.5% (spring), 14.2% (summer), 11% (fall),
and 12.3% (winter). These values are low compared to previous studies on energy consumption in
buildings. This appears to be because user attributes, which are sociological and humanistic elements,
were included in the analysis in large quantities.
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Table 2. Model explanatory power and suitability analysis results.

R R2 Revised R2 Estimated
Standard Error Durbin–Watson F Significant

Probability

Annual 0.346 0.120 0.111 5284.355 1.664 130.084 00.000

Spring 0.354 0.125 0.116 1643.510 1.674 140.031 00.000

Summer 0.377 0.142 0.134 7740.096 1.749 16.251 00.000

Fall 0.332 0.110 0.101 1263.190 1.661 120.081 00.000

Winter 0.351 0.123 0.114 25,570.053 1.674 13.778 00.000

4.1.2. Elements Affecting Energy Consumption

Table 3 shows the physical elements and user attributes identified through the regression analysis
as affecting residential energy consumption annually, as well as in the spring, summer, fall, and
winter periods. The detailed results are given in the Appendix A Tables A1–A3 the dummy-coded
variables were analyzed through a comparison with the reference group. It was determined that
energy consumption increased by the value of the non-standardized coefficient (B) when each of the
continuous variables increased by 1.

Table 3. List of significant variables for seasonal residential building energy consumption.

Section Code Variable Spring Summer Fall Winter Annual

Temp Temperature O O

city City O O O O O

Building
factors (12)

B_a1 Housing type O O O O

B_a2 Number of floors O

B_a3 Floor number

B_a4 Number of exterior walls O O O O O

B_a5 Housing direction O O O O O

B_a6 Construction year O O O O

B_a7 Housing area O O O O O

B_a8 Number of bedrooms (rooms) O

B_a9 Number of exterior wall windows O O

B_a10 Main heating method O O O

B_a11 Cooling method O O O

B_a12 Air conditioner set temperature O O

User
features

(12)

H_a1 Number of years occupied O O O O O

H_a2 Housing ownership

H_a3 Number of household members O O O O O

H_a4 Number of economically active
household members

H_a5 Number of household members
aged 65 or older O

H_a6 Composition of household members O

H_a7 Gender O O O

H_a8 Age of household head O

H_a9 Education level of household head O

H_a10 Occupation of household head O O O O O

H_a11 Unusual features of household O O

H_a12 Annual gross income O O O O

Total 11 15 15 17 12
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In addition to the regional variables, it was found that among the physical elements of the
building, the number of exterior walls, housing direction, and housing area were influential in all
seasons. Among the user attributes, the number of years occupied, number of household members,
and occupation of household head were found to be influential in all seasons. Figures 6–11 show the
annual and seasonal energy consumption distribution charts for these six elements.

Figure 6. Seasonal energy consumption according to the number of exterior walls: (a) annual; (b) spring;
(c) summer; (d) fall; (e) winter.
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Figure 6 shows the seasonal energy consumption distribution charts for the number of exterior
walls. Exterior walls refer to walls that directly face the outside air. The number of exterior walls is
a continuous variable, from 0 (for the basement) to 6. As shown in the figure, energy consumption
showed a tendency to increase as the number of exterior walls increased, because exterior walls are
vulnerable to insulation and release heat to the surroundings [19].

The housing direction is the direction that the front of the building faces. In South Korea, it is
usually determined based on the position of the living room [26]. This is because Korean users spend a
considerable amount of time in the living room. In South Korea, north-facing walls have the lowest
daily average solar radiation, resulting in low energy efficiency. Hence, houses are usually designed
to avoid the north. The reference variable therefore considered buildings in a north facing direction.
The analysis results in Figure 7 show that energy consumption was highest in the northwest direction
and lowest in the south direction. This indicates that the northwest direction is more vulnerable to
residential energy consumption than the north direction, which is the reference variable, in South Korea.

In South Korea, the “pyeong” unit is usually used in calculating the area of a building. 1 pyeong
corresponds to 3.3 m2. Five groups were prepared with intervals of 33 m2 (10 pyeong) to analyze the
effect of housing area. As the area relates to the volume of the building and therefore the volume of
internal air, buildings with larger areas are more vulnerable to energy consumption [27]. Figure 8
shows that energy consumption generally increased as the building area increased.

Time-related variables, such as construction year and number of years occupied, may form a
curved distribution. In such cases, general regression analysis for analyzing linear samples may not
produce significant results. Nevertheless, regression analysis can be used if the data is converted to a
linear distribution by squaring the value of each point. In the case of the construction year, significant
results were not obtained. However, for the number of years occupied, a point of inflection appeared
between 4 and 6 years, as shown in Figure 9, indicating that the variable had a curve-type distribution.
This suggests that energy consumption increases with an increase in number of years occupied up to
4–6 years, but decreases afterward.

Energy consumption increases as the number of household members increases, because there
are more users that directly consume energy. As shown in Figure 10, energy consumption showed
a tendency to increase as the number of household members increased in the annual period and all
seasons. Moreover, the number of household members appear to be more influential in winter and
spring, when energy related to heating and hot water are consumed more frequently, than in summer,
when cooling-related energy is consumed.

For ordinary households in South Korea, the household head is responsible for all household
members. The occupation of the household head was applied as occupational data in this study; the
occupation was classified as regular employees, temporary employees, business owners, and others.
The analysis results showed that business owners had an influence on energy consumption in most
periods as shown in Figure 11. This is because many business owners in South Korea use homes for
business and residence, and thus their residence time is longer than that of other occupations.

In addition to the six common influential elements, the elements that had an influence in each
season are as follows. The temperature was found to be more influential in spring and fall when
considered in a comprehensive manner. Detached houses were found to be more vulnerable to higher
energy consumption in all periods other than spring. Energy consumption showed a tendency to
increase for all seasons as buildings became older, but the influence of building age was lower than that
of other elements on an annual basis. The number of exterior walls was only influential in winter and
annual periods, while the main heating method was influential in the spring, summer, and fall. The
cooling method was influential in summer, fall, and the annual period, and energy consumption was
affected by the air conditioner set temperature in fall and winter. Occupant gender had an influence on
energy consumption in fall, winter, and the annual period, and the unusual features of household were
influential in summer and winter. The annual gross income was influential in all periods except fall.
Several elements exhibited an influence in specific seasons. In summer, energy consumption varied
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depending on the number of bedrooms and the number of household members aged 65 or older. In
fall, it varied depending on the composition of household members. In winter, the number of floors,
the age of household head, and the education level of the household head were found to be influential.

Figure 7. Seasonal energy consumption according to building direction: (a) annual; (b) spring;
(c) summer; (d) fall; (e) winter.
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Figure 8. Seasonal energy consumption according to building area: (a) annual; (b) spring; (c) summer;
(d) fall; (e) winter.
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Figure 9. Seasonal energy consumption according to the number of years occupied: (a) annual; (b)
spring; (c) summer; (d) fall; (e) winter.
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Figure 10. Seasonal energy consumption according to the number of household members: (a) annual;
(b) spring; (c) summer; (d) fall; (e) winter.



Sustainability 2020, 12, 109 17 of 28

Figure 11. Seasonal energy consumption according to the occupation of household head: (a) annual;
(b) spring; (c) summer; (d) fall; (e) winter.

4.2. Energy Consumption Prediction Model

4.2.1. Input/Output Data

The ANN model was constructed for five periods (annual, spring, summer, fall, and winter).
Elements that were found to be influential in each season were selected as input variables for the
analysis. In the case of nominal variables, the ANN model was constructed by including the reference
group as input variables after performing dummy coding. When the input variables of each model
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were examined based on the significant elements, it was found that the number of input variables were
as follows: 42 for the annual model, 38 for the spring model, 46 for the summer model, 47 for the fall
model, and 48 for the winter model.

As shown in Table 4, 4943 data were used for the analysis, excluding outliers. Among them, 3461
data were used for training, 741 for validation, and 741 for testing.

Table 4. Information on the use of data.

No. of Samples Training Validation Testing

4943
70% 15% 15%

3461 741 741

4.2.2. Hidden Layer and Node

Table 5 shows six cases with the highest model performances for each seasonal prediction model
according to the number of layers. Gradient vanishing, in which prediction models cannot be used
when the number of layers exceeds the number presented in the table, occurred.

Table 5. Performances of seasonal energy consumption prediction models according to the hidden layers.

Period Min Max Layer Neuron R Value of
Training

R Value of
Validation

R Value
of Test MSE Terminated

Epoch

Annual 42 85

1 70 0.257 0.303 0.278 107
× 2.5250 12th

2 35 0.351 0.279 0.306 107
× 2.7545 5th

3 21 0.419 0.299 0.312 107
× 3.4674 5th

4 11 0.361 0.288 0.262 107
× 2.6649 4th

5 13 0.427 0.270 0.272 107
× 2.8077 7th

6 14 0.535 0.348 0.256 107
× 3.1436 12th

Spring 38 77

1 47 0.363 0.296 0.235 106
× 2.6339 14th

2 24 0.391 0.284 0.279 106
× 2.5981 5th

5 8 0.477 0.312 0.246 106
× 2.7300 7th

6 12 0.457 0.256 0.331 106
× 2.7304 4th

7 6 0.376 0.283 0.324 106
× 2.7068 8th

8 7 0.404 0.278 0.317 106
× 2.6193 9th

Summer 46 93

1 58 0.322 0.315 0.283 105
× 5.3157 12th

2 23 0.543 0.264 0.243 105
× 7.9380 5th

3 16 0.382 0.318 0.270 105
× 5.1060 7th

4 17 0.382 0.247 0.213 105
× 6.1292 2nd

5 10 0.450 0.389 0.353 105
× 5.4341 8th

6 8 0.442 0.342 0.372 105
× 5.9818 6th

Fall 47 95

1 47 0.336 0.278 0.217 106
× 1.4318 27th

2 30 0.152 0.158 0.131 106
× 1.6054 19th

3 16 0.399 0.273 0.201 106
× 1.6571 3rd

4 17 0.288 0.208 0.167 106
× 1.8019 3rd

5 10 0.423 0.248 0.293 106
× 1.6133 4th

6 15 0.565 0.244 0.316 106
× 1.8063 7th

Winter 48 97

1 84 0.336 0.287 0.261 106
× 6.1731 15th

2 24 0.287 0.234 0.212 106
× 5.7602 8th

3 24 0.732 0.359 0.336 106
× 5.9531 2nd

4 18 0.425 0.293 0.256 106
× 5.9060 11th

6 16 0.402 0.182 0.241 106
× 7.2293 3rd

7 13 0.485 0.252 0.293 106
× 6.3134 4th
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4.2.3. ANN Simulation Result

Figure 12 shows the R-values of the training, validation, and test data of the highest performing
annual energy consumption prediction model. The R-value was found to be 0.25745 for the training
data, 0.30359 for the validation data, and 0.27886 for the test data. The MSE value was 107

× 2.5250.
This model had one layer and 70 nodes. It was found that the neural network (NN) model exhibited
the highest performance.

Figure 13 shows the R-values of the training, validation, and test data of the highest performing
spring energy consumption prediction model. The R-value was found to be 0.39154 for the training
data, 0.28441 for the validation data, and 0.27913 for the test data. The MSE value was 106

× 2.5981, and
the model had two layers and 24 nodes. It was found that the DNN model with two layers exhibited
the highest performance.

Figure 12. Annual energy consumption prediction model (layer: 1, node: 70); (a) Training data
regression result; (b) Validation data regression result; (c) Test data regression result.

Figure 13. Spring energy consumption prediction model (layer: 2, node: 24); (a) Training data regression
result; (b) Validation data regression result; (c) Test data regression result.

Figure 14 shows the R-values of the training, validation, and test data of the highest performing
summer energy consumption prediction model. The R-value was 0.38204 for the training data, 0.31832
for the validation data, and 0.27092 for the test data. The MSE value was 105

× 5.1060, and the model
had three layers and 16 nodes. It was found that the DNN model with three layers exhibited the
highest performance.
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Figure 14. Summer energy consumption prediction model (layer: 3, node: 16); (a) Training data
regression result; (b) Validation data regression result; (c) Test data regression result.

Figure 15 shows the R-values of the training, validation, and test data of the highest performing
fall energy consumption prediction model. The R-value was 0.33652 for the training data, 0.2783 for the
validation data, and 0.21787 for the test data. The MSE value was 106

× 1.4318, and the model had one
layer and 47 nodes. It was found that the NN model with one layer exhibited the highest performance.

Figure 15. Fall energy consumption prediction model (layer: 1, node: 47); (a) Training data regression
result; (b) Validation data regression result; (c) Test data regression result.

Figure 16 shows the R-values of the training, validation, and test data of the highest performing
winter energy consumption prediction model. The R-value was 0.28741 for the training data, 0.23453
for the validation data, and 0.21289 for the test data. The MSE value was 106

× 5.7602. This model
had two layers and 24 nodes. It was found that the DNN model with two layers exhibited the
highest performance.

For the annual and fall periods, the performances of the NN models with one layer were found to
be excellent. However, the DNN models with two or more layers did not have significantly different
MSE values. This indicates that if a sufficient amount of data from the Household Energy Standing
Survey were used, the model performance would be improved and the application of DNN models
will be possible.
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Figure 16. Winter energy consumption prediction model (layer: 2, node: 24); (a) Training data
regression result; (b) Validation data regression result; (c) Test data regression result.

Table 6 compares models with three input data types. The type A prediction models were
constructed by conducting regression analysis on the household information elements of the original
data, with the influential elements from each season set as input data. The type B prediction models
were constructed using all 12 sets of household data as input data for all seasons. The type C prediction
models were constructed by applying elements commonly derived as influential elements in previous
studies as input data, i.e., the income, number of household members, occupation, composition of
household members, etc.

Table 6. Performances of seasonal energy consumption prediction models according to the input
data type.

Period Input
Type Layer Neuron R Value of

Training
R Value of
Validation

R Value
of Test MSE Terminated

Epoch

Annual
A 1 70 0.257 0.303 0.278 107

× 2.5250 12th

B 1 70 0.327 0.238 0.262 107
× 3.160 17th

C 1 70 0.320 0.215 0.270 107
× 4024 24th

Spring
A 2 24 0.391 0.284 0.279 106

× 2.5981 5th

B 2 24 − − − − −

C 2 24 0.724 0.363 0.297 106
× 3.2416 9th

Summer
A 3 16 0.382 0.318 0.270 105 x 5.1060 7th

B 3 16 − − − − −

C 3 16 0.629 0.279 0.339 105
× 7.6997 6th

Fall
A 1 47 0.336 0.278 0.217 106

× 1.4318 27th

B 1 47 0.260 0.168 0.297 106
× 1.5061 15th

C 1 47 0.374 0.326 0.245 106
× 1.6476 15th

Winter
A 2 24 0.287 0.234 0.212 106

× 5.7602 8th

B 2 24 0.588 0.375 0.220 106
× 6.4005 4th

C 2 24 0.477 0.287 0.318 106
× 6.3853 6th

To compare standards for household information, influential elements for each season were
applied to models A, B, and C in the same manner as the physical elements of buildings. The same
numbers of layers and neurons were also applied to types A, B, and C to control the influence of
other factors except the input data of the model. The analysis results showed that type A, which used
significant household information as input data in all seasons through regression analysis, exhibited
the highest model accuracy. For type B, which used the original data, gradient vanishing occurred in
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the spring and summer models. Type C had higher prediction accuracy than type A, except in the
annual period; however, there was a significant difference in prediction accuracy between the training
and test models, resulting in an overfitting problem.

Based on the comparison and analysis results of each model, it was found that identifying the
most significant variables through regression analysis could improve model performance, especially
when variables that are difficult to quantify, such as household information, are included as input data.

5. Conclusions

An increasing number of studies have been conducted on the energy consumption of residential
buildings. This study is different from previous studies in three aspects. First, this study was conducted
based on the actual energy consumption of residential buildings in South Korea. Furthermore, the
elements were derived by integrating the physical information of buildings with user information and
reflecting mutual influence. Finally, energy consumption prediction models were implemented by
dividing energy consumption into four seasons and deriving influential elements for each season.

This study found that user information has as much influence on energy consumption as the
physical elements of buildings. In each season, the influence of the physical characteristics of buildings
and household characteristics as well as the importance of each element was identified. The three
representative elements that exhibited the highest influence in each season are as follows.

1. In spring, the building direction was found to be the most influential element, followed by the
occupation and cooling method. Buildings facing northwest—the direction with the lowest
annual average solar radiation—exhibited the highest energy consumption. Buildings inhabited
by to business owners, who typically have longer residence times than other occupations, also
consumed more energy. Households that used air conditioners for cooling consumed more energy.

2. In summer, the heating method was the most influential, followed by the cooling method and
housing area. For residential buildings in South Korea, individual heating and central heating
are the two representative heating methods. Households with individual heating were found
to consume more energy. Heating energy was mostly concentrated on the use of hot water in
summer, indicating that individual heating was more vulnerable to the use of energy related to
hot water. As in spring, households that used air conditioners consumed more energy, as did
households with larger areas.

3. In fall, the housing area was the most influential factor, followed by the housing type and
occupation. Households with larger areas consumed more energy, as did detached houses that
managed energy individually. As in spring, buildings inhabited by to business owners exhibited
the highest energy consumption.

4. In winter, the building direction was the most influential, followed by the housing area and
occupation. As in spring, the northwest direction with the lowest solar radiation exhibited the
highest energy consumption. As the housing area increased, energy consumption increased. As
for the occupation, to business owners with the longest residence time exhibited the highest
energy consumption, as in spring and fall.

As seen above, different elements affected energy consumption in each season. The various
elements had different influences depending on the season. This must be reflected when preparing
systematic energy saving and management measures in the future. Providing data on seasonal energy
usage will be possible when people with households displaying specific features will live in the target
residential area. If enough information is obtained via matching these users with residential buildings,
more sophisticated policies can be implemented, and greater awareness of energy use can be aroused
individually. Such measures could be further developed by adding impact-reflecting factors and
expanding the scope of the analysis in order to continuously reduce energy.
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The suitability of the energy consumption prediction models implemented in this study was
compared through a comparison of three types. For type A, a prediction model was constructed using
the influential variables of each season derived through regression analysis as input data. For type B, a
prediction model was constructed using the four representative user information elements derived
in previous studies, i.e., the income, occupation, composition of household members, and number
of household members. For type C, a prediction model was constructed using all the household
information included in the original data. When the models were compared, it was found that type A
exhibited the highest suitability. This indicates that prediction models with a higher performance can
be implemented by verifying the influence of individual elements through regression analysis. It can
then be applied to future prediction models that measure how atypical data affects energy consumption,
such as the household member information. Predictive models of type B can identify influential factors
and provide information that can be utilized when drafting a plan for continuous energy reduction
from simple usage forecasting. Based on the influence of these individual factors, it is possible to
formulate countermeasures in related fields when developing sustainable energy saving measure.

Currently, in South Korea, when evaluating the energy impact of users and buildings, the
post-occupancy evaluation (POE) method is used to evaluate the energy impact of users and buildings.
If the energy impact of the building and the user can be predicted using the model such as the one
proposed in this study, a novel form of energy impact assessment can be conducted. Such assessments
can reduce the unreasonable energy consumption of post-occupancy assessments and, furthermore,
provide a way to create customized energy-saving residential spaces provided by both, the state or by
individuals to create their own living environments.

In the model of this study, although the prediction rate increased by using only influential factors
through regression analysis, the performance of the predictive model was limited because only two
years’ worth of data were used. However, the dataset used in this study, the Household Energy
Standing Survey, is conducted annually; hence, the current limitations owing to this lack of data will
be eventually overcome.

The seasonal influential elements derived in this study are expected to be utilized as basic elements
that can be used for further research on more accurate energy prediction if they are integrated with
the information on detailed climate and building information, such as microclimate information, and
information on the ownership and usage of home appliances. Such attempts will be useful as basic
research to derive and predict common elements that have an influence on energy consumption on a
national level, beyond residential energy research in the scope of single buildings and survey-based
investigations in small areas.
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Appendix A

Table A1. Results of deriving elements that affect energy consumption in the annual period and spring.

Annual Spring

Unstandardized Coefficient Standardized
Coefficient

t p
Unstandardized

Coefficient Standardized
Coefficient

t p

B Standard Error B Standard Error

item 0.357 20.728 00.000 00.017 0.986 430.039 14.879 00.051 2.893 *** 00.004

cityD2 −1814.663 364.398 −00.080 −4.980 *** 00.000 −907.482 113.356 −0.128 −80.006 *** 00.000

cityD3 −1016.515 400.446 −00.039 −2.538 ** 00.011 −391.367 126.351 −00.048 −30.097 *** 00.002

cityD4 814.586 400.820 00.031 20.032 ** 00.042 308.361 127.427 00.038 2.420 ** 00.016

cityD5 −11310.071 4070.010 −00.043 −2.779 *** 00.005 −741.729 126.291 −00.090 −5.873 *** 00.000

cityD6 −7080.094 398.812 −00.027 −1.776 * 00.076 −300.561 124.220 −00.036 −2.420 ** 00.016

cityD7 433.798 469.603 00.014 0.924 0.356 −83.532 145.999 −00.008 −0.572 0.567

cityD8 291.769 302.461 00.016 0.965 0.335 −830.080 94.586 −00.015 −0.878 0.380

cityD9 2138.199 412.616 00.081 5.182 *** 00.000 219.506 129.448 00.027 1.696 * 0.090

cityD10 −1339.813 419.101 −00.050 −3.197 *** 00.001 −508.758 130.348 −00.061 −3.903 *** 00.000

cityD11 −40.925 376.899 −00.002 −0.109 0.914 −509.335 124.624 −00.071 −40.087 *** 00.000

cityD12 271.929 4190.089 00.010 0.649 0.516 −376.520 138.285 −00.046 −2.723 *** 00.006

cityD13 −9540.095 3770.056 −00.041 −2.530 00.011 −805.814 119.814 −0.112 −6.726 *** 00.000

cityD14 −260.189 346.897 −00.013 −0.750 0.453 −297.113 109.483 −00.046 −2.714 *** 00.007

cityD15 −1647.383 348.892 −00.080 −4.722 *** 00.000 −751.381 109.655 −0.117 −6.852 *** 00.000

cityD16 −30600.076 655.856 −00.067 −4.666 *** 00.000 −1345.139 202.957 −00.094 −6.628 *** 00.000

B_a1D1 732.460 244.133 00.064 30.000 *** 00.003 76.721 75.923 00.021 10.011 0.312

B_a1D2 −734.310 317.726 −00.065 −2.311 ** 00.021 117.963 98.802 00.034 1.194 0.233

B_a2 33.173 22.561 00.046 1.470 0.142 2.494 70.016 00.011 .356 0.722

B_a3 −12.186 22.855 −00.011 −0.533 0.594 −3.610 7.105 −00.010 −0.508 0.611

B_a4 269.490 77.128 00.061 3.494 *** 00.000 81.979 240.000 00.060 3.416 *** 00.001

B_a5D1 −308.573 421.521 −00.018 −0.732 0.464 −156.118 1310.077 −00.029 −1.191 0.234

B_a5D2 173.711 4700.051 00.008 0.370 0.712 51.469 146.164 00.007 0.352 0.725

B_a5D3 −825.806 378.932 −00.073 −2.179 ** 00.029 −243.738 117.820 −00.069 −20.069 ** 0.039

B_a5D4 −577.103 3980.033 −00.041 −1.450 0.147 −1270.065 123.751 −00.029 −10.027 0.305

B_a5D5 −353.640 431.583 −00.019 −0.819 0.413 −87.611 134.185 −00.015 −0.653 0.514

B_a5D6 35.501 564.874 00.001 00.063 0.950 −42.340 175.641 −00.004 −0.241 0.810

B_a5D7 27400.077 660.559 00.067 4.148 *** 00.000 798.281 205.397 00.062 3.887 *** 00.000

B_a6 −64.802 74.977 −00.015 −0.864 0.387 53.711 23.309 00.040 2.304 ** 00.021

B_a7 617.644 135.289 00.096 4.565 *** 00.000 1800.037 420.047 00.089 4.282 *** 00.000

B_a8 124.599 147.855 00.016 0.843 0.399 48.553 45.975 00.020 10.056 0.291

B_a9 50.639 22.108 00.036 2.291 ** 00.022 10.929 6.854 00.025 1.595 0.111

H_a2 146.845 193.209 00.011 0.760 0.447 −0.575 600.077 00.000 −0.010 0.992

H_a1 81.183 21.999 0.126 3.690 *** 00.000 31.475 6.839 0.157 4.602 *** 00.000

H_a1′ −0.747 .495 −00.050 −1.509 0.131 −0.435 0.154 −00.094 −2.823 *** 00.005

B_a10D1 171.356 295.268 00.009 0.580 0.562 393.854 91.814 00.065 4.290 *** 00.000

B_a11D1 −6680.002 385.133 −00.055 −1.734 * 00.083 −127.971 110.536 −00.034 −1.158 0.247

B_a12 6.388 91.652 00.002 00.070 0.944 2.708 25.294 00.003 0.107 0.915

H_a3 462.611 86.738 0.103 5.333 *** 00.000 132.854 26.966 00.094 4.927 *** 00.000

H_a4 −44.999 124.266 −00.006 −0.362 0.717 −31.374 38.633 −00.014 −0.812 0.417

H_a5 −28.372 135.552 −00.004 −0.209 0.834 −39.405 42.151 −00.017 −0.935 0.350

H_a6D1 −29.574 396.759 −00.001 −00.075 0.941 70.830 123.367 00.009 0.574 0.566

H_a7D1 341.354 201.582 00.026 1.693 * 00.090 15.726 62.698 00.004 0.251 0.802

H_a8 1570.023 102.477 00.029 1.532 0.126 220.078 31.828 00.013 0.694 0.488

H−a9D1 −255.470 193.122 −00.022 −1.323 0.186 −78.738 600.050 −00.022 −1.311 0.190

H_a10D1 211.767 250.475 00.019 0.845 0.398 52.686 77.883 00.015 0.676 0.499

H_a10D2 4670.059 3730.087 00.019 1.252 0.211 126.967 1160.006 00.017 10.094 0.274

H_a10D3 762.147 262.911 00.057 2.899 *** 00.004 156.110 81.754 00.038 1.910 * 00.056

H_a11D1 −430.564 317.554 −00.023 −1.356 0.175 −143.325 98.641 −00.024 −1.453 0.146

H_a12 192.451 61.871 00.064 3.111 *** 00.002 53.379 19.237 00.057 2.775 *** 00.006

Note. * 90% Confidence interval (p-value < 0.10). ** 95% Confidence interval (p-value < 00.05). *** 99% Confidence
interval (p-value < 00.01).
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Table A2. Results of deriving elements that affect energy consumption in summer and fall.

Summer Fall

Unstandardized Coefficient Standardized
Coefficient

t p
Unstandardized

Coefficient Standardized
Coefficient

t p

B Standard Error B Standard Error

item 1.718 1.751 0.016 0.981 0.327 −6.695 30.084 −0.036 −2.171 ** 0.030

cityD2 −30.664 53.397 −0.009 −0.574 0.566 −71.580 87.106 −0.013 −0.822 0.411

cityD3 −9.140 58.628 −0.002 −0.156 0.876 −204.944 960.022 −0.033 −2.134 ** 0.033

cityD4 2360.065 58.826 0.061 40.013 *** 0.000 181.359 95.966 0.029 1.890 * 0.059

cityD5 340.312 59.359 0.087 5.733 *** 0.000 400.273 96.896 0.064 4.131 *** 0.000

cityD6 47.889 58.428 0.012 0.820 0.412 −75.236 95.503 −0.012 −0.788 0.431

cityD7 391.711 68.883 0.083 5.687 *** 0.000 255.787 112.213 0.034 2.279 ** 0.023

cityD8 103.617 44.592 0.039 2.324 ** 0.020 120.392 72.378 0.028 1.663 * 0.096

cityD9 185.195 60.793 0.047 30.046 *** 0.002 938.350 98.907 .150 9.487 *** 0.000

cityD10 −1100.012 61.396 −0.028 −1.792 * 0.073 −126.288 100.152 −0.020 −1.261 0.207

cityD11 −64.592 55.404 −0.019 −1.166 .244 388.833 900.043 0.071 4.318 *** 0.000

cityD12 1640.007 61.551 0.042 2.665 *** 0.008 492.574 100.279 0.079 4.912 *** 0.000

cityD13 162.858 55.292 0.047 2.945 *** 0.003 292.507 90.636 0.053 3.227 *** 0.001

cityD14 −46.584 50.822 −0.015 −0.917 0.359 102.193 82.815 0.021 1.234 0.217

cityD15 14.558 510.090 0.005 0.285 0.776 −108.530 83.428 −0.022 −1.301 0.193

cityD16 −201.902 95.623 −0.030 −2.111 ** 0.035 −94.801 156.221 −0.009 −0.607 0.544

B_a1D1 −34.260 35.755 −0.020 −0.958 0.338 260.596 58.346 0.095 4.466 *** 0.000

B_a1D2 125.811 46.530 0.075 2.704 *** 0.007 −220.313 75.932 −0.082 −2.901 *** 0.004

B_a2 −0.182 3.304 −0.002 −0.055 0.956 8.567 5.392 0.050 1.589 0.112

B_a3 1.888 3.347 0.011 0.564 0.573 1.167 5.462 0.004 .214 0.831

B_a4 20.318 11.292 0.031 1.799 * 0.072 59.347 18.429 0.057 3.220 *** 0.001

B_a5D1 −1050.092 61.738 −0.041 −1.702 * 0.089 −28.303 100.742 −0.007 −0.281 0.779

B_a5D2 −89.253 68.842 −0.026 −1.296 0.195 29.479 112.338 0.005 0.262 0.793

B_a5D3 −144.406 55.502 −0.086 −2.602 *** 0.009 −184.830 90.565 −0.068 −20.041 ** 0.041

B_a5D4 −101.954 58.298 −0.049 −1.749 * 0.080 −1480.091 95.132 −0.044 −1.557 0.120

B_a5D5 −20.276 63.213 −0.007 −0.321 0.748 −106.717 103.150 −0.024 −10.035 0.301

B_a5D6 −7.870 82.730 −0.002 −0.095 0.924 93.114 1350.002 0.012 0.690 0.490

B_a5D7 239.719 96.752 0.039 2.478 ** 0.013 550.689 157.874 0.056 3.488 *** 0.000

B_a6 28.788 10.979 0.045 2.622 *** 0.009 −60.368 17.921 −0.059 −3.369 *** 0.001

B_a7 60.879 19.819 0.063 30.072 *** 0.002 117.791 32.336 0.077 3.643 *** 0.000

B_a8 37.742 21.655 0.033 1.743 * 0.081 20.892 35.337 0.011 0.591 0.554

B_a9 2.548 3.241 0.012 0.786 0.432 3.274 5.284 0.010 0.620 0.535

H_a2D1 −14.784 28.296 −0.008 −0.522 0.601 34.190 46.176 0.011 0.740 0.459

H_a1 120.076 3.222 0.127 3.748 *** 0.000 120.068 5.258 0.079 2.295 ** 0.022

H_a1′ −0.223 0.073 −0.101 −30.070 *** 0.002 −0.076 0.118 −0.021 −0.640 0.522

B_a10D1 253.457 43.243 0.088 5.861 *** 0.000 −242.139 70.567 −0.052 −3.431 *** 0.001

B_a11D1 −207.917 56.601 −0.115 −3.673 *** 0.000 −308.712 92.132 −0.107 −3.351 *** 0.001

B_a12 −20.675 13.500 −0.051 −1.531 0.126 −40.965 21.942 −0.063 −1.867 ** 0.062

H_a3 69.217 12.703 0.103 5.449 *** 0.000 76.511 20.732 0.071 3.690 *** 0.000

H_a4 7.816 18.199 0.007 0.429 0.668 31.957 29.700 0.018 10.076 0.282

H_a5 −33.428 19.852 −0.030 −1.684 * 0.092 −10.478 32.396 −0.006 −0.323 0.746

H_a6D1 −54.115 58.107 −0.014 −0.931 0.352 −54.274 94.823 −0.009 −0.572 0.567

H_a7D1 12.509 29.522 0.007 0.424 0.672 133.117 48.173 0.043 2.763 *** 0.006

H_a8 9.950 150.009 0.013 0.663 0.507 23.400 24.493 0.018 0.955 0.339

H_a9D1 18.369 28.285 0.011 0.649 0.516 −23.159 46.154 −0.009 −0.502 0.616

H_a10D1 8.149 36.683 0.005 0.222 0.824 88.442 59.861 0.033 1.477 0.140

H_a10D2 0.109 54.641 0.000 0.002 0.998 187.926 89.164 0.032 2.108 ** 0.035

H_a10D3 70.701 38.506 0.036 1.836 * 0.066 166.152 62.833 0.053 2.644 *** 0.008

H_a11D1 −82.654 46.515 −0.030 −1.777 * 0.076 −109.995 75.904 −0.025 −1.449 0.147

H_a12 44.186 90.060 0.099 4.877 *** 0.000 180.026 14.788 0.025 1.219 0.223

Note. * 90% Confidence interval (p-value < 0.10). ** 95% Confidence interval (p-value < 00.05). *** 99% Confidence
interval (p-value < 00.01).
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Table A3. Results of deriving elements that affect energy consumption in winter.

Winter

Unstandardized Coefficient Standardized
Coefficient

t p
B Standard Error

item −0.723 16.868 −0.001 −0.043 0.966

cityD2 −7930.038 197.362 −0.072 −40.018 *** 0.000

cityD3 −363.774 199.398 −0.028 −1.824 * 0.068

cityD4 158.162 202.879 0.012 0.780 0.436

cityD5 −1142.696 223.802 −0.089 −5.106 *** 0.000

cityD6 −371.881 197.825 −0.029 −1.880 * 0.060

cityD7 −113.413 243.285 −0.007 −0.466 0.641

cityD8 179.269 1510.027 0.021 1.187 0.235

cityD9 738.232 214.639 0.058 3.439 *** 0.001

cityD10 −581.945 213.632 −0.045 −2.724 *** 0.006

cityD11 263.793 192.844 0.024 1.368 0.171

cityD12 118.786 218.915 0.009 0.543 0.587

cityD13 −546.911 195.663 −0.049 −2.795 *** 0.005

cityD14 −72.352 188.881 −0.007 −0.383 0.702

cityD15 −758.888 184.372 −0.076 −4.116 *** 0.000

cityD16 −1359.103 341.562 −0.061 −3.979 *** 0.000

B_a1D1 432.979 118.122 0.078 3.666 *** 0.000

B_a1D2 −761.329 153.708 −0.140 −4.953 *** 0.000

B_a2 22.486 10.915 0.065 20.060 ** 0.039

B_a3 −11.662 110.057 −0.021 −10.055 0.292

B_a4 105.273 37.345 0.050 2.819 *** 0.005

B_a5D1 −24.133 203.936 −0.003 −0.118 0.906

B_a5D2 179.642 227.420 0.016 0.790 0.430

B_a5D3 −255.944 183.316 −0.046 −1.396 0.163

B_a5D4 −203.349 192.537 −0.030 −10.056 0.291

B_a5D5 −143.873 208.770 −0.016 −0.689 0.491

B_a5D6 −7.363 273.268 0.000 −0.027 0.979

B_a5D7 1141.306 319.547 0.057 3.572 *** 0.000

B_a6 −86.523 36.265 −0.041 −2.386 ** 0.017

B_a7 256.882 65.425 0.082 3.926 *** 0.000

B_a8 18.179 71.536 0.005 0.254 0.799

B_a9 340.052 10.677 0.050 3.189 *** 0.001

H_a2D1 129.345 93.460 0.020 1.384 0.166

H_a1 25.484 10.642 0.082 2.395 ** 0.017

H_a1’ −0.010 .240 −0.001 −0.042 0.966

B_a10D1 −232.919 142.860 −0.025 −1.630 0.103

B_a11D1 −13.605 176.178 −0.002 −0.077 0.938

B_a12 68.367 40.644 0.052 1.682 * 0.093

H_a3 185.219 41.961 0.085 4.414 *** 0.000

H_a4 −54.963 60.132 −0.016 −0.914 0.361

H_a5 560.098 65.579 0.015 0.855 0.392

H_a6D1 6.379 191.959 0.001 0.033 0.973

H_a7D1 175.735 97.560 0.028 1.801 * 0.072

H_a8 103.519 49.491 0.040 20.092 ** 0.037

H_a9D1 −172.529 93.428 −0.031 −1.847 * 0.065

H_a10D1 64.481 121.169 0.012 0.532 0.595

H_a10D2 151.951 180.518 0.013 0.842 0.400

H_a10D3 371.304 127.200 0.058 2.919 *** 0.004

H_a11D1 −94.230 153.444 −0.010 −0.614 0.539

H_a12 77.452 29.931 0.053 2.588 ** 0.010

Note. * 90% Confidence interval (p-value < 0.10). ** 95% Confidence interval (p-value < 00.05). *** 99% Confidence
interval (p-value < 00.01).
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