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Abstract: Service management in cloud manufacturing (CMfg), especially the service selection and
scheduling (SSS) problem has aroused general attention due to its broad industrial application
prospects. Due to the diversity of CMfg services, SSS usually need to take into account multiple
objectives in terms of time, cost, quality, and environment. As one of the keys to solving multi-objective
problems, the preference information of decision maker (DM) is less considered in current research.
In this paper, linguistic preference is considered, and a novel two-phase model based on a desirable
satisfying degree is proposed for solving the multi-objective SSS problem with linguistic preference.
In the first phase, the maximum comprehensive satisfying degree is calculated. In the second
phase, the satisfying solution is obtained by repeatedly solving the model and interaction with
DM. Compared with the traditional model, the two-phase is more effective, which is verified in the
calculation experiment. The proposed method could offer useful insights which help DM balance
multiple objectives with linguistic preference and promote sustainable development of CMfg.

Keywords: cloud manufacturing; service selection and scheduling; linguistic preference;
multi-objective optimization; genetic algorithm

1. Introduction

With extensive application of the Internet, big data, and cloud computing in industry, cloud
manufacturing (CMfg), a new service-oriented business model, was proposed in 2010 [1,2]. In the
last ten years, it has received more and more attention not only from industrial enterprises but also
from researchers [3-6]. With the support of information technology, CMfg is designed to realize
sharing of resources distributed in different places [7-11]. In order to realize its objective, distributed
manufacturing resources are aggregated by a common cloud platform and encapsulated into different
kinds of manufacturing services [12,13]. These virtual services will be provided to clients or users in
the pay-as-you-go mode. Given the various needs of clients, flexible selection and scheduling of these
services become a significant challenge.

Generally, CMfg platform is operated in the following two manners [14,15]. The first one is
decentralized operating mode, in which clients can directly select the available services on the platform
and pay the services in need. In such mode, the service selection and scheduling (SSS) decisions are
made by clients independently. Another one is centralized operating mode, in which cloud platform
selects and schedules the services to satisfy clients’ requests, and clients only need to present their
demands and expectations. In the current customization and individualization development trend
of industrial product, manufacturing tasks have become more and more complex. The centralized
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operation mode has higher control over distributed resources and is more conducive to handling
complex tasks.

So far, a number of researchers have studied service selection problem or service/task scheduling
problem in CMfg with a centralized operation mode. Akbaripour et al. [16] proposed different
models for the basic service composition structures (i.e., sequential, parallel, loop, selective). In their
models, QoS metric consists of cost, time, and quality. Cheng et al. [17] consider comprehensive utility
composed of energy consumption, cost, and risk. Then four kinds of resource service scheduling
modes were studied. Liu et al. [15] present a scheduling model considering the workload of each
task. In general, the attributes or criteria, which have been considered in previous works, could be
divided into: cost-related indices [5,16,18,19], time-related indices [5,15,16,18,19], quality-related
indices [5,16], risk-related indices [5], reliability-related indices [5,18,19], trust related indices [5,20],
environment-related indices [21]. In addition, some others focus on the factors that can reflect
the characteristics of cloud manufacturing, such as demand loss probability [22], correlation [23],
and tolerance design [24].

In the above studies, all of them are based on single-objective optimization [15] or convert
multi-objective problems into single-objective optimization [5,18,25]. Multi-objective optimization is
also a concern. Xiang et al. [19] introduced group leader algorithm (GLA) into the service composition
problem, and proposed a GLA-Pareto method. Even though Pareto solution set is found, decision
makers (DM) still need to choose the optimal solution based on their preference. The articulation
of preference information can be divided into three categories: priori, progressive, and posteriori.
The priori articulation is that the DM provides the preference information before solving the problem [26].
As is typical in a priori articulation, weighted parameters are widely used to control the relative
importance of each objective [11,18]. Resources on the CMfg platform can dynamically join and
exit, which increases the difficulty for DM to specify the weight of each objective. In addition,
the optimization satisfying degree of the objective does not necessarily coincide with the importance
exhibited by the accurate weight value. As far as we know, in previous studies, the weight values are
usually given directly, ignoring the specific definition process of weight. This issue correspondingly
motivates us to consider other kinds of preference information of DM for the SSS problem in CMfg.
To assess the preference of DM, Narasimhan [27] has introduced linguistic terms. Chen and Tsai [28] put
forward the principle of transforming the importance of objectives into inequality constraints. Based on
their idea, this paper will investigate how to choose the most preferred solution for multi-objective SSS
problem if the relative importance is assessed by linguistic terms.

To date, there has been relatively little attention devoted to preference information of DM in CMfg.
This paper intends to consider linguistic preference in the SSS problem. In particular, the purpose
of this paper is to explain three questions: (1) How to express the linguistic preferences of decision
makers in the S55 model? (2) How to maximize the difference in satisfying degree while achieving the
overall optimization of all objectives? (3) How does DM participate in the SSS process and choose
a satisfying solution?

The rest of this paper is organized as follows. Section 2 gives a brief description of the problem.
Section 3 elaborates on the proposed SSS model and solution methods in detail. Section 4 shows
and analyzes the results of computational experiments. Finally, in Section 5, conclusions and future
research directions are described.

2. Problem Description

This paper considers a CMfg platform with centralized operating mode, and the SSS is
system-centered. The framework of centralized operating mode for CMfg platform is shown
in Figure 1 [16]. Suppose that there are M enterprises, expressed as E = {Ej,...,E;,...,Epm}.
Each enterprise provides several services. For example, SE; = {SEirl,...,SEirh,...,SEi,Hl.H is the
service set of the enterprise E;, where SE; ), represent the hth service, and H; is the total number of
service provided by E;.
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Figure 1. The framework of centralized operating mode for cloud manufacturing (CMfg) platform.

Clients can submit orders to the CMfg platform, and each order that meets the basic requirements
of the platform will be accepted and considered as a task. In order to complete these accepted tasks,
the platform mainly performs the following three processes [16]:

e  Task decomposition: Manufacturing tasks in CMfg can be divided into simple tasks and complex
tasks. Here, simple tasks can be assigned directly to available services, while complex tasks have
to be decomposed into multiple subtasks, so that each subtask can be performed by a separate
service [5,16]. There are four commonly accepted composition structures: sequential, parallel,
selective, and loop [16,18,23].

e  Service discovery and matching: for each subtask, the available services are found and put into
the service set.

e Service selection and scheduling (SSS): for each subtask, one service is chosen from the
corresponding service set, then these subtasks are scheduled onto the available time windows of
selected services, and routes required transportations, such that the overall objectives are optimized.

Suppose there are N tasks received on a platform within a certain decision period to be processed,
which are represented by T = {Tl, P TN}. Each task contains multiple subtasks, and for task

T}, the subtask set is represented as ST; = {Slel, STjp, ..., ST]-,K].}.

The objective function of SSS problem usually requires consideration of criteria, such as cost,
time, quality, and environment. For the system-centered SSS, the choice of the final solution depends
on the preference information given by decision maker (DM). Linguistic terms, as one of the power
descriptions for preference, are considered in this paper. For the convenience of modeling, the linguistic
terms are expressed by the importance parameter b. Here, we consider four linguistic terms “general”
(b = 4), “important” (b = 3), “somewhat important” (b = 2), and “very important” (b = 1). Then,
the key problem becomes how to choose the most preferred solution, which optimizes multiple
objectives in collaboration, while reflecting the relative importance based on linguistic preference.
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3. The Multi-Objective Service Selection and Scheduling Model and Solution Methods

3.1. Assumptions

e  All tasks are independent of each other.

e  The service capabilities have been fully gathered in the given period.

e  Each subtask has qualified service set and must be assigned to one service to complete.

e A started subtask cannot be interrupted.

e  Before the SSS process, the service pool for each subtask has been built. Moreover, the time, cost,
quality, and environmental cost of service for different services are already known.

e  Only the sequence model is considered in this paper, which is just to simplify the calculation and
does not affect the results of the study. Then, there is a precedence constraint relationship between
various subtasks in a task.

e  Consider a situation where there is only one DM.

3.2. Notations

st% Service time of subtask STk, if subtask ST is assigned to service SE; ..

sc;’z Service cost of subtask ST}, if subtask ST is assigned to service SE; .

qzz Service quality of subtask ST, if subtask ST} is assigned to service SE; .

ecj.’}]: Environmental cost of subtask ST}, if subtask ST is assigned to service SE; .

we'" Weight of products needed to be transported, if subtask ST’ is assigned to service SE;},.
ik Jr :

atjx  Start time of subtask ST .
ctiy ~ Completion time of subtask ST .
wt;r  Waiting time of subtask ST .

Logistics time from subtask ST} to STk 1.
Logistics cost from subtask STk to STjp+1-

dip Geographical distance between enterprises E1 and E,.
a Logistics time for unit distance.
B Logistics cost for unit distance and unit weight.

3.3. Model Formulation

For the multi-objective optimization problem, a general model is expressed as:

minfl,fz,...,fg
maxfg+1,fg+2,...,fc (1)
sit. x€ Xy Xy ={xlyi(x) <b;,i=1,2,...,m}

In which fi, fo,..., f; are the negative objectives for minimization, such as cost, time, etc.
and fo11, fe+2,- -+, fc are the positive criteria or objectives for maximization like quality, and reliability.
X, is the feasible solution set.

As an optimization problem, SSS needs to consider the construction of an objective function.
In previous works, various types of criteria for service selection or service/task scheduling have been
presented. Considering the sustainability of the CMfg, the total environmental cost and some other
system-centered criteria, such as maximum completion time, total service cost, average quality for
all tasks, are considered in this paper. Then the multi-objective model in cloud manufacturing is
as follows:

minf; = max(t]') = max(stj +1tj + wtj)(j =1,2,...,N) ()
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minf, = Zi\; ¢j = Z?I:l(scj + lc]-) 3)

N
maxf; = (Zj:l q]-)/N (4)
] N
minfy = Zj:1 ec; ®)
Subject to:
b <V =1,..,N; (6)
LN NVj=1,..,N; @)
iz g Vj=1...,N; )
ec]-Sec;“ax,ijl,...,N; )
MO HE i g g .
Zi:lzhzlx].,k—l,V]—l,...,N,k—l,...,K]-, (10)
x;ﬁ € {0/1}/v] = 1/2//N/l = 1/’M’k = ]'”K]’h = 1"”’Hi; (11)
where, x']z = lifsubtask ST  is assigned to service SE; ,, otherwise x;?{ =0.If x;i = 1, then completion
time of subtask ct; = at;; + st;}”i , Logistics time ltl;’k+1 = a X d;, Logistics cost lc’]f,k+l =B X wej.’i’< X djjr.

Objectives (2)-(5) are respectively the maximum completion time fj, total service cost f», average
quality f3, and total environmental cost f4 for all tasks. For each task T}, its completion time ¢}, task cost
¢j, and service quality q; should not exceed the limits given by the client, which is represent by t}“ax,
c;nax,q;.m“ in Constraints (6)—(8). In our model, we assume that subtask ST]-,k can be assigned to only
one service SE; ;. This can be described by Formulas (10) and (11).

In a real situation, multiple objectives might conflict with each other and cannot be optimized

simultaneously. Then, the membership function yi, for the gth objective is defined and expressed as:

1 fes i
b =g 1= U= /(™) < fe < 12
0 fo > fio
1 fg Z j:]gl‘lax
b=y Us =)/ (=) s fo< f™ a3)
0 fg < fiin

where, Formula (12) is for minimization objectives and Formula (13) is for maximization objectives.
f;‘in and fg"™ can be obtained by solving each objective or given by DM. Normalization reduces the
impact of a single objective on other objectives in the optimization process. Then the objective function
is expressed as:

max(yfl, Hfyr bhfsr Hf4) (14)

Faced with the situation that decision maker can only give linguistic preference information
rather than exact weights. According to Chen and Tsai’s [28] ideas, the relative importance could be
expressed as:

wp =, YP(f) = b (15)

where P( fg) = b mean that the gth objective’s relative importance is b, the corresponding desirable
satisfying degree is ;.

If the Formula (15) is directly given by the DM and added to the constraints of SSS problem,
the feasible region will be greatly reduced, especially when the desirable satisfying degree is too high.
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Therefore, we have to find a better solution on the basis of (15). Instead of requiring the DM to give
u, beforehand, this paper treats it as a variable. The principle that more important objectives have
a higher desirable satisfying degree is expressed as:

>, Vb < b’ (16)

However, Formula (16) only shows the different relative importance, and its strict comparative
relation is still not conducive to finding a more satisfactory solution. Therefore, in order to
avoid this situation, the variable y is introduced to relax it, forming the following importance
comparison relationship:

py =ty 27, Vb <V’ (17)

If y > 0, the importance requirement is met, else if y < 0, it does not meet the
importance requirement.

In order to balance optimization of all objectives with different importance, and to avoid strict
Constraint (16) which may lead to no solution, we decompose the SSS problem with linguistic preference
into two sub-problems. The satisfying degree of the optimization results requires the participation of
the DM. Therefore, the two-phase interactive optimization model is constructed as follows:

Phase 1:
max A

s.t. L, >Ag=123,4
=1
(2) ~(5)
(11)and(12)
(6) ~ (10)

(18)

where x;}]i are the decision variables. The optimal solution A* is defined as the maximum comprehensive
satisfying degree, which represents the maximum satisfying degree value that can be achieved by the
worst objective of all objectives without considering preference. It should be noted that the constraint
t5(x) < 1 ensures comparability between satisfying degree of different objectives.

Phase 2:

Desirable satisfying degree is divided into different levels by Formula (17). In order to expand the
scope of feasible region, we relax the maximum comprehensive satisfying degree A*.

Hp 2 2 AT+ A8, YP(f) = b (19)

where i} is taken as a variable, A6(0 < Ao < 1) is the parameter to relax the maximum comprehensive
satisfying degree A*. Based on the Constraint (19), the second model is established as:

max Yy
st pp 22 A A5, YP(fy) =b,g =1,2,3,4,b=1,2,3,4
yz - yz, >y, Vo<V, b b =1,2,3,4
2) ~ (5
((11))11;11(1()12) (20)
pr(x) <1
0<y<1
(6) ~ (10)

where x;.’}]i, 1, v are the decision variables. As an optimization indicator, maximizing y means to
maximize differences in desirable satisfying degrees among objectives of different importance.
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3.4. Optimization Algorithm

Step 1: Set up the membership functions of the objectives based on the requirement of DM.

Step 2: Calculate the maximum comprehensive satisfying degree A* based on Formula (18)

Step 3: Set A6 = 0, list the same comparative relationships as Formula (19) according to the
linguistic preferences of DM, then construct the second Model (20).

Step 4: Solve Model (20) by a suitable single objective method.

Step 5: If no feasible solution is found, then go to step 6. On the contrary, if a feasible solution is
found, the DM will decide whether the solution is satisfying or not. If y < 0 or y > 0 but DM is not
satisfied, then go to step 6. If it does not belong to the above situations, then a satisfactory solution has
been found.

Step 6: Set the new parameter Ao to relax A*, and go back to step 4.

4. Computational Experiments and Results

A small example is first used to demonstrate the working of the two-phase method. Then a number
of computational experiments with problems of various sizes are designed to demonstrate its
effectiveness and efficiency. At last, the performance stability of the proposed method is tested.

4.1. A Small Scheduling Example

Figure 2 presents a small SSS example in system-centered CMfg with centralized operating mode.
In this example, three tasks are considered, and each consists of four subtasks. Assume that there
are two enterprises on the CMfg platform, i.e., E; to E;. Every enterprise provides two types of
service. The detail of the example is shown in Appendix A. The task and service information is shown
in Table A1, and the geographical distance between enterprises is shown in Table A2. To test the
validity of the two-phase method, the max-min method and the weighted sum method are adopted
for comparison. DM has different preferences for multiple objectives. For the two-phase method,
the relative importance of the objectives is 3-2-4-1. by = 1 means that the fourth objective is the most
important, b3 = 4 means that the third objective is the most unimportant. For the weighted sum
method, we invited 10 volunteers to be decision makers. They gave the weight of each objective
according to the relative importance (3-2-4-1). Then the average values of these 10 groups of weights
were calculated and used as final weights. The final objective weights are 0.143, 0.286, 0.095, 0.476,
respectively. It should be pointed out that the max-min method and the weighted sum method do
not need to find the desirable satisfying degree. However, in order to make a comparative analysis,
the optimal solutions obtained by the two methods are added to Model (20) as a known condition to
find the corresponding ; and y. Ad in the three method are all set as 0.9.

Three best feasible SSS results found by the above mentioned three SSS methods are shown
in Figure 2. We can see that the completion time ¢; of task T; is made up of three parts: logistics
time It;, service time st; and waiting time wt;. Through the start time at ; and the service time st;ﬁ’{,

the completion time of subtask ST could be found by the formula ctj = atj + stj.}]i. The figure also
shows three methods to find different completion times.
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Figure 2. Best feasible service selection and scheduling (SSS) results of the problem in Section 4.1 found
by (a) max-min method (b) two-phase method (c) weighted sum method.

Figure 3 shows the satisfying degree and desirable satisfying degree corresponding to the best
feasible SSS results. From the perspective of actual satisfying degree i, , the difference of satisfying
degree in (a) is not consistent with the relative importance of the objectives (3-2-4-1), and the minimum
satisfying degree pj};“ = min(y fg) = 0.5714 is the largest of the three methods. The difference of
satisfying degree in (c) is the most obvious, however it does not fully conform to “objectives with
higher importance have greater satisfying degree values.” Compared with (a) and (c), the satisfying
degree in (b) not only achieves the overall optimization, but also maintains the important difference.
The concept of redundant satisfying degree (rs) is introduced to compare the three methods from the
perspective of a desirable satisfying degree 1, which means the difference between an actual satisfying
degree and a corresponding desirable satisfying degree. For the gth objective, rsg = s, — p1;, P( fg) =b.
The total redundant satisfying degree for all objectives is rs = Zé:l rs¢. The smaller the rs is, the closer
the satisfying degree and expectation satisfying degree are, and the more consistent the SSS scheme
is with the preferences of decision makers. By comparison, we can find that both (a) and (b) have
higher 1}, however in (b), y is bigger and rs is the smallest, which indicates that the difference of
importance between objectives in (b) is more obvious. (c) has the largest y, indicating that the difference
of importance between objectives is the most obvious, but 1 is low, and rs is the largest.
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Figure 3. The satisfying degree and desirable satisfying degree corresponding to the best feasible SSS
results found by (a) max-min method (b) two-phase method (c) weighted sum method.

o

Table 1 shows the optimal results found by the two-phase method with different A. It can be
seen that the smaller Ao, the larger y is, which also means more search space.

Table 1. The optimization results found by the two-phase method with different Ao for example 4.1.

Ab Y Desirable Satisfying Degree Satisfying Degree s
0.95 0.011 [0.547 0.558 0.536 0.569] [(())579381 (()) 7515;3]] 0.396
0.9 0.058 [0.577 0.635 0.519 0.692] ([)06%727 007612} 0.156
0.85 0.059 [0.575 0.634 0.517 0.692] 505?5?57 006%92% 0.101
0.8 0.086 [0.547 0.633 0.462 0.718] 50456797 00771185] 0.120
0.75 0.086 [0.547 0.633 0.462 0.718] 506%185 00771%% 0.286
0.7 0.089 [0.514 0.603 0.425 0.692] [005?5757 006%92% 0.283

In this example, it can be seen that different SSS methods result in different satisfying degree
tf, and desirable satisfying degree p;. It is necessary to investigate the performance of different
SSS methods on multiple objectives in different dataset sizes. More results are presented in the
next subsection.

4.2. Computational Experiments

4.2.1. Data Generation

Problems of different sizes were generated to compare the three methods. The main difference is
that these problems have a different number of tasks, subtasks, and services. The number of services
includes 6, 12, and 18, the number of tasks includes 5, 10, and 15, and the number of subtasks includes
8,10, and 12. Therefore, there are 3° = 27 possible combinations. We chose 9 of the 27 to test these
three methods, i.e., 6s5t8st, 6s10t10st, 6s15t12st, 12s5t10st, 12s10t12st, 12s15t12st, 18s5t8st, 18s10t8st,
18s15t10st. For each combination, one group of datasets is generated, in which the relative important
of the objectives, the service eligibility to fulfill each subtask. The available services and related
information for each subtask are randomly generated in a uniform distribution. At the same time,
two cases, A0 = 0.9, and A6 = 0.7, are set to test the effect of different A6 value on the final solution.
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Table 2 summarizes the ranges of st (service time), sc (service cost), g (quality), ec (environmental cost),
we (weight) and d (distance) based on which the datasets are generated.

Table 2. The ranges of parameters.

st sc q ec we d
[1,10] [40,80] [0.5,1] [5,15] [10,30] [1,500]

4.2.2. Define GA in Full Term

The genetic algorithm used in the experiment contains 50 individuals per generation, up to
100 iterations, with a crossover probability of 0.8 and a mutation probability of 0.1. The selection
of these parameters was based on published studies and preliminary tests were performed [29-31].
Here we no longer adjust the parameters because it takes a lot of time. However, by adjusting the
parameters, it is entirely possible to find better results than in this paper. In order to get the statistical
results of the optimal solution, each method runs 10 times for each selected problem. The experiments
are all on Matlab. The operating environment of the computer is Intel (R) Core (TM) i5-7200U CPU @
2.50Ghz, 16 GB RAM and Windows 10 operating system.

4.2.3. Test Results

The following performance indicators are considered:

e uy: The desirable satisfying degree of the least important objectives, representing the overall
optimization level of all objectives.

e  y: Parameter of importance, which means the difference of satisfying degree between objectives
with different importance.

e rs: Redundant satisfying degree, which means the difference between an actual satisfying degree
and a corresponding desirable satisfying degree.

The results from ten runs are recorded, and the average of “Z' y, rs, CPU time are calculated
separately. The results are shown in Table 3, and the following can be observed.

Compared with the weighted sum method, the max-min method and two-phase method can
always find a larger (. In most cases, pi; in the two-phase method is slightly larger than the max-min
method, but the difference is not very stable.

The y in the two-phase method is always not less than the max-min method, and most of the cases
are greater than. The weighted sum method can find a larger y than the two-phase method, but there
are some exceptions, especially when A6 = 0.7.

rs in the two-phase method is generally smaller than the max-min method, especially when the
task size is larger, but there are exceptions when the task size is small. s in the weighted sum method
is much larger than the other two methods.

As the size of tasks, subtasks and services increases, the time spent by the three methods also
increases, and the size of tasks and subtasks has a greater impact than the number of services.

Compared to Ad = 0.9, when Ad = 0.7, all three methods can find lower 1, higher y. The CPU
time consumed by the two-phase method increases significantly as A5 becomes smaller, while it does
not change too much under the other two methods.

In conclusion, the two-phase method outperforms the other two methods in finding the desirable
satisfying degrees, which reflect the linguistic preference of decision makers. The two-phase method
can not only achieve the collaborative optimization of all desirable satisfying degree, but also ensure
the difference between them. In addition, the difference between a desirable satisfying degree and an
actual satisfying degree is relatively small. The two-phase method has a good performance, but it takes
more time, especially A¢ is relatively low. It should be noted that by adjusting the weight value, the
weighted sum method can also get more satisfactory results for decision makers, but the inconsistency
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between the objective weight and the actual satisfying degree still exists. In addition, it is difficult
for decision makers to translate linguistic preferences into precise weight values. Hence, for the SSS5
problem in cloud manufacturing, when the preference information of DM is expressed by linguistic
terms, the two-phase method provides a better choice.

Table 3. Effects of different scheduling methods.

Max-min Two-phase Weighted Sum
yz b4 rs CPU(s) FZ b4 rs CPU(s) Uy b4 rs CPU(s)
09 0476 0.030 0.115 0.881 0491 0.032 0129 1.252 0396 0.038 0.664  0.901

Dataset AO

6s518st o7 038 0086 0147 0931 0377 0093 0150 11938 0283 0101 0703  0.941
cioroe 09 0436 0028 0173 2034 0426 0032 0097 2388 0299 0031 0889 2041
sI0t0st 07 0341 0079 0254 2108 0336 0101 0135 1525 0265 0093 0717  2.066
s 09 0439 0034 0169 338 0446 004 0144 3668 0197 0211 057 3558
sIStI2st 07 0345 0082 0386 3340 0336 0116 0212 18083 0119 0267 0638  3.538
estioe 09 0512 0020 0203 1060 0524 0025 0108 1591 0281 0114 04% 1100
510st o7 0412 0062 0301 1087 0408 0071 0226 19172 0243 0155 0416  1.063
Deloa 09 0452 002 0189 2289 0439 002 0152 254 0283 0030 0985 2285
sI0t2st 7 0329 0054 0259 2533 0321 0068 052 9450 0136 0050 1241 2492
Dalstne 09 0453 0029 0142 350 0440 0037 0128 4323 0192 0110 0688 3621
sISti2st o7 0355 0064 0334 4018 0345 0100 0133 32194 0153 0168 0503  3.580
s 09 0430 0052 0155 0950 0443 0075 0165 1381 0325 0125 0694 1023
S8t 7 035 0155 0235 1049 0374 0189 0167 13.606 0250 0177 1.009  0.940
leloge 09 048 0019 0142 1655 0408 0019 0111 1882 0213 0012 1267 1637
sI08st 7 0325 0051 0166 1666 0340 0061 0099 9125 0203 0044 1036 1702
09 0480 0027 0159 3190 0487 0036 0119 3492 0297 0070 0950  3.260

18515t10st

0.7 0350 0.065 0.270 3.532 0368 0.080 0.144 13430 0.217 0.085 0.842 3.242

4.3. Performance Stability of Different Scheduling Schemes

To verify the stability of the three methods, larger scale services, tasks, and subtasks were tested,
and finally, the results of different numbers of relative importance levels were observed.

4.3.1. Different Scales of Services and Tasks/Subtasks

Here, we have greatly increased the number of services, from the previous 6, 12, 18 to 60 and 600.
The ranges of service time, service cost, quality, environmental cost, weight and distance follows data
in Table 2. The range of parameters here and the definition of GA, is the same as in Section 4.2.

The results are shown in Table 4, the max-min method does not perform well than the two-phase
method both in terms of increasing y or decreasing rs, especially when Ad is small. As the number
of tasks in the problem increases, all three methods need to consume more CPU time. However,
only the increase in the number of services does not necessarily lead to an increase in CPU time.
Specifically, the weighted sum method requires relatively little computation time, and the advantage
of the two-phase method is reflected in the efficiency of finding a satisfactory solution.
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Table 4. Performance stability of different methods for different scales.

Max-min Two-phase Weighted Sum
PZ b4 rs CPU(s) PZ b4 rs CPU(s) :“Z b4 rs CPU(s)
09 0472 0057 0210 4729 0470 0.090 0.143 5317 0401 0.147 0554  4.611

Dataset AO

60s15t15st 0.7 0362 0.161 0.400 4.229 0364 0206 0.231 44.98 0.288 0.197 0.886 5.093
60015158t 09 0405 0.015 0.247 4.746 0412 0.019 0.180 4.939 0.180 0.018 1.506 4.257
s s 0.7 0346 0.052 0314 5.014 0.341 0.057 0.242 16.57 0.084 0.031 1.690 4.416
600s15t30st 09 0460 0.024 0.169 10.61 0.437 0.023 0.183 10.35 0285 0.032 0.925 9.817
S s 0.7 0331 0.050 0.343 9.724 0345 0.070 0.246 42.96 0.202 0.084 0.841 9.318
600s30¢15st 09 0463 0.023 0.245 10.20 0.444 0.026 0.200 12.47 0.233  0.153 0.566 10.90
S s 0.7 0325 0.051 0.166 1.666 0.340 0.061 0.099 9.125 0203 0.044 1.036 1.702
600s50t50st 09 0423 0.019 0.131 112.7 0.401 0.018 0.131 114.1 0281 0.024 0.844 112.2

0.7 0302 0.045 0.222 113.4 0313 0.063 0.124 246.5 0.157  0.060 0.830 118.7

4.3.2. Different Numbers of Relative Importance Levels

In the above-mentioned experiments, we considered four levels of relative importance, i.e.,
b =1,2,3,4. In this section, the number of relative importance levels changed from three to seven.
In order to test the performance of different methods, we chose combination 12510t12st to conduct
the experiment. All other parameters are the same as Section 4.3.1, and the results obtained by the
three methods are shown in Table 5. It can be discovered that: the two-phase method is obviously
superior to the other two methods when the number of levels is three, four, and five. However, for the
situation that the number of level equals six and seven, the rs increases obviously in the two-phase
method, even though the solution still keeps a higher p; and a larger y. It indicates that the deviation
between expectation satisfaction and actual satisfaction increases significantly. This is mainly because
the number of levels is relatively large, resulting in the satisfying degree of the most important objective
and the least important objective being too different. Therefore, the two-phase method is suitable
for multi-objective optimization problems which need to achieve the optimization of all objectives,
while maximizing the difference in optimization effects among objectives of different importance.

Table 5. Performance stability of different methods for different levels.

Max-min Two-phase Weighted Sum
™ y rs  CPUG) g y rs  CPUG) p y rs  CPU(s)
0.9 0474 0.035 0.158 2416 0.465 0.046 0.163 3.222 0250 0220 0.371 2.369

Level Ad

3 0.7 0365 0.089 0.351 2.566 0362 0.121 0.164 14992 0.185 0278 0477 2.352
4 09 0450 0.018 0.167 2.402 0.487 0.027 0.124 2.724 0249 0.023 1.129 2.368
0.7 0361 0.054 0276 2.676 0350 0.070 0.142 15191 0.145 0.057 1.205 2.542
5 09 0446 0.014 0.117 2.247 0.452 0.018 0.121 2.581 0.193 0.010 1.401 2.240
0.7 0353 0.043 0.187 2.333 0356 0.047 0.118 15812 0.175 0.034 1.185 2.447
6 09 0464 0.016 0.164 2472 0.449 0.027 0.567 3.214 0.142 0.052 1171 2.426
0.7 0358 0.042 0.350 2.551 0349 0.062 0545 20.836 0.125 0.107 0.784 2.301
7 09 0461 0.012 0.189 2.381 0.470 0.018 0.572 2.892 0.135 0.035 1.097 2.375

0.7 035 0.032 0.350 2.592 0356 0.050 0.510 22373 0.092 0.048 1.114 2.375

5. Conclusions

For the multi-objective service selection and scheduling (SSS) problem with linguistic preference
in cloud manufacturing (CMfg), a novel two-phase interactive optimization method is proposed in this
paper. Whether the decision maker (DM) is satisfied is the final choice criteria. In the proposed method,
the order of the desirable satisfying degrees is introduced and used to express the vague relative
importance among the objectives showed by linguistic information. Next, the original problem is
decomposed into two sub-problems and solved sequentially. The first-phase model aims to maximize
overall satisfaction and achieves that all objectives are as close to the ideal value as possible. Then,
in the second-phase model, the objective value of the first phase is taken as the constraint of the second
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phase and gradually relaxed until a solution that satisfies the DM is found. In the problem-solving
process, the second phase is the most important, and if the DM is not satisfied, the next relaxation
parameter will be given. Through these two phases, the optimization of all objectives and difference
control of satisfying degrees are both achieved. The current method is easy to be implemented and
applied. In order to apply the current method to cloud manufacturing, what needs to be done is to
identify the number of relative importance levels and DM’s linguistic preference for each objective.
The benefit of quantifying the difference between satisfying degrees is that the DM can control the
objective value more accurately in the process of decision-making, while avoiding giving the exact
weight value before decision-making.

In the future, we can conduct deeper research from multiple directions. First, it is desirable to
investigate other types of preference information, such as different priority of objectives. Secondly,
the influence of adjustment of preference information in the decision-making process is also worth
exploring. Furthermore, more advanced algorithms can be explored to reduce computation time.
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Appendix A

Table A1 presents the information about tasks and services, such as: alternative services, time,
cost, quality, environmental cost, weight of product. Let’s take the subtask 4 of task 2 as an example.
This subtask could be executed on service SE; 1, SE1 5, SEy1, SEp». If subtask ST, 4 is assigned to

. 21 21 _ 21 _ 21 _ 21
service SEj 1, then stz, =2 SCyy = 74, Ty = 0.92, ecy, = 15, wey, = 14.

Table A1l. Task and service information.

5 STk ST; ST, ST ST
T3 SEij (L), (1,2), 21), (22)] (L), (1,2),21), (22)] [(1,1), (1,2), (2,2), 22)] [(L,D), (1,2), (2,1), 22)]
st 9 9 8 9 5 8 10 7 9 10 5 7 7 6 8 4
sc 6 60 73 74 4 44 6 77 59 6 71 64 72 52 6 42
g 097 094 067 072 097 097 08 085 097 068 071 076 086 090 070 0.2
« 6 4 14 4 1B 7 8 6 6 15 8 6 6 7 15 5
we 2 18 2 19 2 18 2 21 24 2 19 23 21 19 25 17
T, SEs (LD, (1,2, 1), 22)] [(1L1), (1,2), 21), 22)] (1), (1,2, 1), 22)] (1), (1,2, 21), 22)]
s 9 8 9 4 1 4 2 2 4 8 6 7 3 12 4
sc 4 78 75 55 73 66 78 41 63 71 42 8 54 69 74 68
g 091 061 063 090 062 05 058 050 097 050 082 095 072 067 092 062
¢ 13 12 13 10 12 14 11 14 8 5 12 12 10 1 15 8
we 24 19 23 21 23 2 26 2 25 19 25 2 20 21 14 12
T3 SEij (LD, (1,2), 21), (22)] (L), (1,2), 1), (22)] (L), (1,2), 21), (22)] [(LD), (1,2), (2,1), 22)]
st 4 2 3 5 3 73 3 6 4 7 6 5 8 8 8
sc 58 76 45 55 50 75 67 55 58 60 75 76 54 69 72 49
g 056 065 068 095 064 053 063 068 100 089 091 074 089 071 083 0.2
¢ 10 14 5 5 6 12 7 12 7 8 12 11 14 8 13 9
we 15 19 15 15 17 17 14 12 28 23 2 2 18 20 2 17

The distance between enterprises is shown in Table A2. For example, d;, = 222. The logistics
time parameter a = 0.08, the logistics cost parameter § = 0.005.

Table A2. Geographical distance d; ; between enterprises.

Enterprise Eq E,

Eq 0 222
E, 222 0
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