
sustainability

Article

Align My Curriculum: A Framework to Bridge the
Gap between Acquired University Curriculum and
Required Market Skills

Ahood Almaleh, Muhammad Ahtisham Aslam * , Kawther Saeedi and Naif Radi Aljohani

Faculty of Computing and Information Technology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia;
aalmaleh0001@stu.kau.edu.sa (A.A.); ksaeedi@kau.edu.sa (K.S.); nraljohani@kau.edu.sa (N.R.A.)
* Correspondence: maaslam@kau.edu.sa; Tel.: +966-5633-21977

Received: 7 April 2019; Accepted: 30 April 2019; Published: 7 May 2019
����������
�������

Abstract: With the advancement of technology, academics and curriculum developers are always
under pressure to provide students with skills that match the market’s requirements. A systematic
and continuous examination of the market is needed, to stay up to date with the required skills,
and then to update the curriculum to train the students with required market skills. In this article,
we present a framework referred to as Align My Curriculum (AMC). The AMC framework aims to
facilitate alignment between acquired university curriculum outcomes and required market skills. It
can be used to classify, compare and visualize the data of a university curriculum and job vacancies in
the market. The presented framework benefits academics and curriculum developers by improving
the courses and therefore bridging the skills gap. Stakeholders from both academia and industry can
gain insights into the predominant required and acquired skills. In addition, it may be useful for
analysts, students, and job applicants. This article describes the architecture, implementation and
experimental results, with visual analysis to help decision and policy-makers.

Keywords: Naïve Bayes; cosine similarity; text mining; word cloud; classification; comparison; job
postings; curriculum

1. Introduction

In recent years, the Internet has changed many aspects of our lifestyle, from how we communicate
to how we look for a job. This change has led to a revolution in information and the appearance of
quantities of online data, to the extent that finding information became a non-trivial task [1]. With
this advancement of technology, academics and curriculum developers are always under pressure to
provide students with skills that match the market’s requirements. The study of the job market is an
area of particular and increasing interest, using innovative data sources and analytical methods [2,3].
This pressure is more relevant in applied areas, such as computing [4]. Staying up to date with the
demands of the job market involves retrieving, sifting, and analyzing data of online job notifications [5].
Job ‘postings’ are viewed as an important source of information for the examination of the required
skills, and hold great promise for job market research [6–8]. In the 1990s, job postings on the Internet
began to prevail because the costs and time plunged, relative to traditional job advertisements. This
provided opportunities to access and analyze job postings to better understand the market trends and
demands [6] to bridge the gap between the education offer and market demands [9], and is considered
to be a tool to align the education curriculum to the market, preparing students for employment [3].
However, the investigation into the information in online job postings by manual content analysis
is a hard task, involving much time and effort due to its dynamic nature, rapid change, and scale
of the job market data. To align their curricula (acquired skills) continuously to these requirements,

Sustainability 2019, 11, 2607; doi:10.3390/su11092607 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-7080-0327
http://www.mdpi.com/2071-1050/11/9/2607?type=check_update&version=1
http://dx.doi.org/10.3390/su11092607
http://www.mdpi.com/journal/sustainability

Sustainability 2019, 11, 2607 2 of 13

academics and curriculum developers require a continual assessment of the job market (required skills).
There are many types of research into how to analyze the job market using different methodologies,
starting by manual analysis through data mining techniques [10,11], and a few researchers have
attempted to compare job postings to curricula using manual analysis techniques [4]. In this article, we
present a framework referred to as Align My Curriculum (AMC) for use by academics and curriculum
developers to bridge the skills gap. To the best of our knowledge, this approach is unique, in the sense
that it automates the approach to analyze and compare required and acquired skills.

The remaining article is organized as follows. Section 2 describes related work in the computing
disciplines that have used techniques to analyze and examine skill requirements and job market
demands. Section 3 describes the architecture of the AMC framework. In Section 4 we describe the
experimental results of implementing the framework in the IT domain. Finally, we discuss our findings
and conclude this work in Section 5.

2. Related Work

Many studies have been conducted to assess computer-related skills and knowledge using
various frameworks and approaches. The study of computer-related requirements started in the 1960s
using traditional methods such as surveys, questionnaires, face-to-face meetings, and interviewing
experienced figures to define the computing skills required by the market [10,12–14]. In the mid-1990s,
researchers developed tools to assess and determine the skills need periodically and to update curricula
according to the demands. This process is known as bridging the skills gap [10,15–17]. Due to the
importance of analyzing job postings to determine the skills required in the market, to bridge the skills
gap, there is a considerable literature on the many techniques in somewhat similar methods. These
studies start by collecting job data from online sources [4,5,10,11,18–22], using web crawlers or manually
or from newspapers [13]. Then, most of these studies code (label) the jobs into categories, whether by
the deductive method [8,13,18], inductive method [4,10,11,19], or both [22]. Finally the analysis of the
datasets based on these categories uses manual content analysis [4,13,18] or computerized analysis,
such as data mining techniques (clustering, classification, LSA) [5,8,10,11,20] or other techniques [19,22].
Richard and Rachida’s (2016) [4] study is slightly different from the above studies, as it examined the
online computing job postings and, at the same time, compared them to the Model Curriculum by
manual content analysis [4]. As is apparent in the literature, that minimizing dissimilarity between
skills needs and graduates is a primary concern of all academics, educators, and many others.

Most previous studies have analyzed job postings to determine the skills using manual analysis
steps, in varying proportions. We consider this point to be a limitation and it was our motivation
to work on the development of a new approach and framework to improve the identification of the
required skills to help academics and curriculum developers to bridge the skills gap between the job
market and curricula. Our AMC framework starts by collecting, at the same time, job posting data and
curriculum data in the computing field. Then, it uses the Naïve Bayes algorithm to classify the datasets
on the basis of predefined classes derived from the literature using the deductive method. After that,
it uses cosine similarity techniques to measure the match between the job data and curriculum data.
Finally, it uses word cloud techniques to visualize each class of the two datasets. In the next section,
we describe the architecture and functions of our ACM framework.

3. Architecture of the Align My Curriculum (ACM) Framework

The ACM framework is designed to enable the classification, comparison and visualization of
online computing jobs and computing curricula. The framework consists of four modules using
computing techniques: A data collection and pre-processing module, a classification module, a data
comparison and similarity module, and a visualization module (as shown in Figure 1). The data
collection and pre-processing module obtains the datasets from two sources and puts them into a
format suitable for internal processing of the ACM framework.

Sustainability 2019, 11, 2607 3 of 13Sustainability 2019, 11, x FOR PEER REVIEW 3 of 13

Figure 1. Architecture of the Align My Curriculum (ACM) framework.

The classification of processed data takes place in classification module. This module defines
classes to label the data and uses the Naïve Bayes algorithm for classification of the data. The results
of this module are forwarded to the last two modules. The data comparison and similarity module is
for measuring the similarity between the classified datasets. The visualization module displays the
content of the classified datasets. Here, we further describe the technical details of each module in
the ACM framework.

3.1. Data Collection and Pre-Processing Module

This module is used to collect the data and pre-process it. The data used in this study refer to
two data sources: online job postings and curricula (as shown in Figure 1). First, the job postings are
extracted from popular job websites by making use of the freely available web-scraping service
provided by Gresper (www.grepsr.com). The computing curriculum datasets are from the courses
run by departments, and are downloaded directly from the curriculum repository and saved to two
separate documents. After collecting the two datasets from the two sources, they are pre-processed
by transforming the raw data, with noisy items, into clean data to be analyzed efficiently. The pre-
processing includes tasks such as sampling and feature extraction to determine if it is the necessary
to clean the data.

3.2. Classification Module

In this module, the job postings and the curricula are classified on the basis of a common factor
called a label, according to the included skills and knowledge. The classification employs the
technique of text mining using a supervised algorithm to predict the label as the output for data
instances based on their content [23]. Additionally, a common factor is needed for automated
comparison between jobs and curriculum. The classification algorithm helps to classify each job
posting and course to just one label. These labels are then used to compare job postings to the
curricula. Building a model for text classification needs us to label most records to create a labeled
dataset as a training dataset and to test (as a testing dataset) the model. Due to the main work
objective of computerizing the process of data analysis, the datasets are labeled by using the
keyword-search function in R Studio. Defined classes are needed to label the data.

Figure 1. Architecture of the Align My Curriculum (ACM) framework.

The classification of processed data takes place in classification module. This module defines
classes to label the data and uses the Naïve Bayes algorithm for classification of the data. The results of
this module are forwarded to the last two modules. The data comparison and similarity module is
for measuring the similarity between the classified datasets. The visualization module displays the
content of the classified datasets. Here, we further describe the technical details of each module in the
ACM framework.

3.1. Data Collection and Pre-Processing Module

This module is used to collect the data and pre-process it. The data used in this study refer to
two data sources: online job postings and curricula (as shown in Figure 1). First, the job postings
are extracted from popular job websites by making use of the freely available web-scraping service
provided by Gresper (www.grepsr.com). The computing curriculum datasets are from the courses
run by departments, and are downloaded directly from the curriculum repository and saved to two
separate documents. After collecting the two datasets from the two sources, they are pre-processed
by transforming the raw data, with noisy items, into clean data to be analyzed efficiently. The
pre-processing includes tasks such as sampling and feature extraction to determine if it is the necessary
to clean the data.

3.2. Classification Module

In this module, the job postings and the curricula are classified on the basis of a common factor
called a label, according to the included skills and knowledge. The classification employs the technique
of text mining using a supervised algorithm to predict the label as the output for data instances based
on their content [23]. Additionally, a common factor is needed for automated comparison between
jobs and curriculum. The classification algorithm helps to classify each job posting and course to just
one label. These labels are then used to compare job postings to the curricula. Building a model for
text classification needs us to label most records to create a labeled dataset as a training dataset and to
test (as a testing dataset) the model. Due to the main work objective of computerizing the process

www.grepsr.com

Sustainability 2019, 11, 2607 4 of 13

of data analysis, the datasets are labeled by using the keyword-search function in R Studio. Defined
classes are needed to label the data.

The challenge in this module involves the focus on the computing skills identified in the general
classes for computing skills. We state our basic hypothesis that all computing jobs require a mix
of technical skills, business skills, and problem-solving skills. In this work, we refer to all these as
computing skills. As the next step, the ACM framework uses this labeled dataset to train and test
the model so it can classify all the data on the basis of their content into a single pre-defined class, as
mentioned above. In this work, we have two classification problems. There are more than two classes
(a multi-class text classification problem), and we have to classify each record into just one to obtain
mutually exclusive classes (a classification problem). Accordingly, the Naïve Bayes algorithm was
chosen to meet these requirements due to its simplicity and efficiency [24–29]. The algorithm is trained
on the labeled data to determine the best class for each record by finding the maximum a posteriori
class [29]. After training, we have to evaluate whether the classifier has learned (classified) correctly or
not by using different metrics appropriate to the classification problems in this work. If we find that
the classifier performance is satisfactory, we can use it to classify the new data. In this module, the
Naïve Bayes classifier uses knowledge acquired from the building process as input in classifying the
new data [30,31]. The implementation of Naïve Bayes is adapted from the “quanteda” package in R.
The results of this module are discussed in Section 4.2.

3.3. Data Comparison and Similarity Module

In this module, two datasets are compared, and their similarity is identified. The process of data
comparison and similarity identification takes place on the basis of the label attributes identified by
the classification module. By comparing different sources of data, we can understand the interaction
between them and reduce the gap [32,33]. This module uses the output of the two above modules
(i.e., data collection and pre-processing module, and classification module) as inputs. After cleaning
and classifying the datasets, their similarity, or closeness, is measured. The algorithmic question is
whether the two documents are similar or not. The simplest way to determine similarity is to use
cosine similarity algorithms to measure the angle between two datasets according to their words. The
ACM framework measures the closeness between jobs and courses in the same class by using cosine
similarity. For example, security courses are compared with security jobs to find the similarity, and the
first step in this technique represents the documents as vectors, which involves converting the text
of the document to a list where the elements are floating numbers and lose the information on the
words’ order [34]. It can show how many times each word occurs in the datasets. To achieve efficient
results, the cosine similarity needs an additional pre-processing technique to be performed on the
datasets, such as converting the words to their root form (stemming function). This helps to establish
the term frequency (TF) and the weighting factor number of each word and to compare the occurrence
of the words in the two datasets. For example, if we have the word “manager”, “management”, and
“managers”, all of them have “manage” as their root. After that, we need to compute the cosine
similarity between the words [35].

The above steps are repeated for each pre-defined classes. In text similarity, the values of cosine
are always between zero and one, which means that the angle can never be greater than 90 degrees
(text vectors are usually positive). If the cosine value is near to one, the datasets have almost the same
words and direction, whereas if the cosine value is near to zero, the datasets do not have the same
words. The results of this module establish the similarity between curricula and job postings, and are
undertaken by automatic comparison (Section 4.3).

3.4. Visualization Module

One of the key contributions of the framework is to provide a method to visualize the major
content of curricula and job datasets to help academics and educators to understand the skills acquired
and required in each, respectively [11]. There is a plethora of text mining and visualization tools

Sustainability 2019, 11, 2607 5 of 13

to facilitate the innovative process of uncovering hidden information on curricula and jobs. In this
work, we use word clouds to visualize the content of the job posting and curriculum classes. This can
assist in the analysis of the text by identifying words that frequently appear in a set of documents [36].
Initial modules of the ACM framework are used to clean, pre-process and divide input datasets into
exclusive classes on the basis of their content. In this module, these classes are visualized to discover
more detailed information about the required skills from job postings, and acquired skills from the
curricula. To obtain an accurate word cloud, the ACM framework makes use of a tokenizing technique
whereby text is tokenized into a two-consecutive-word bigram to help to understand the text’s content.
By contrast, most word clouds involve the use of stemming, putting all forms of the words together to
increase the frequency of those words, however, this technique leads to misunderstanding the words’
meanings, especially with computing vocabulary [37]. After tokenizing, a numeric weight is assigned
to each word. Our framework makes use of the Term Frequency-Inverse Document Frequency weight
(TFIDF) for each word to find the most important words in the two datasets. The most important
bigrams for each class are displayed on the basis of their TFIDF scores by using the packages “word
cloud” and “RWeka”. Finally, the ACM framework draws each word accordingly, allocating the font
size and color on the basis of the magnitude of various constants.

4. Experiments and Discussion

In this section, we describe the experimental results of each module of the ACM framework, the
data used and analysis of resulting datasets.

4.1. Data Collection and Pre-Processing Module

As mentioned before, the collected datasets in this work are from two sources: curriculum websites
and job websites. Data about jobs is collected from well-known job portals and websites such as
bayt.com, naukrigulf.com, gulftalent.com and linkedin.com/jobs. These portals and websites group
jobs according to various parameters, such as geography, department and expertise. We extracted the
job postings related to information technology, information system, and computer science departments
in Saudi Arabia. In addition, we used keywords from computing fields such as information, network,
software, database, and computer. The data collection process extracted two months’ jobs data, from
April to June 2018. The results contain basic information on each, such as the job title, company,
location, description, and so on. We carefully examined the job postings, deleting duplicates and
irrelevant entries. In total, we had a sample of 2550 job postings. The collected dataset was loaded into
R and the attributes of interest were selected, in a process known as future extraction. This process
helps to improve the analysis results. There is no fixed template for job postings; every company uses
its template, as needed. This leads to many difficulties in processing such postings and in extracting
the right data entities [38]. Most formats are divided into several sections, such as the nature of the
environment and the business, the job benefits and offer such as salary information, and describing
the nature of the job, including the skills and knowledge required. This section of the post contains
the information of interest to this study, and it is always referred to as the job description or job
summary [13]. This study focuses on two types of information to analyze job postings: Job title and job
descriptions for each job posting, and eliminates all other attributes. As a next step, it saves to a new
file (i.e., job data) for further processing by using R functions. Each job posting represents one record
in a dataset with three attributes: ID, job title, and description.

By contrast, the curriculum datasets are downloaded directly from curriculum websites into R.
The collected curriculum data are structured, unlike the job data, and this facilitates the process of
selecting the attributes that include information valuable to this work. The two types of information to
analyze curricula are the course title and course description, and all other attributes were eliminated.
We had 118 records for computing curricula from the website of King Abdulaziz University for all
computing departments (as a case study). The datasets have three columns: ID, course title, and
course description. Then, this information is saved into a new file (i.e., curriculum data) for further

Sustainability 2019, 11, 2607 6 of 13

processing in R. The two datasets in a structured form were processed to improve the performance of
the classification model [39].

In this work, datasets are varied in structure, length, and type, and need extensive cleaning as the
functions and techniques change depending on the content of the two datasets. The preprocessing
techniques are used: tokenize the text into a single word, we changed capital letters to lower case
and removed all punctuation, stop words and common English words (e.g., the, a, an, or, etc.), words
that appear rarely “the frequency of words = 1”, words that appear too rarely or too frequently in the
document to contribute to identifying the class of the document, all whitespace through “if there is
more than one space between words” and numbers “any numbers within the text” [40]. Finally, in
this module, we arrive at two cleaned datasets to save for use in the next module (2550 job postings
and 118 computing curriculums). After processing, the two datasets were used in all modules in this
work. For some modules, we needed further cleaning techniques, in which case we used temporary
measures to achieve the task then returned the data to their original form.

4.2. Classification Module

This module has various outcomes, ranging from labeling the documents to predicting classes
for new data. Labeling is the first step in classifying the dataset after the pre-processing stage. This
work advocates auto-labeling the datasets to save time, rather than labeling each document manually.
The defined classes for labeling the datasets were obtained from the most comprehensive and latest
research conducted in most computing fields [4,11,41]. We chose to apply this function in the Job
title attribute [11]. Curriculum data are disregard in this step because we needed only a sample of all
datasets to train the model. For this purpose job postings were more appropriate, due to their varied
size and greater detail. Ultimately, it makes the model learn easily. The deductive method (previously
used categories in the literature) is used to identify the work classes and these are used to categorize the
datasets into independent groups. The aim is to classify every related skill into one group to determine
the skills of each class. The predefined classes in this work are: Development (keyword: develop,
programmer), Analysis (keyword: analyst), Testing (keyword: test, quality), Network Administrate
(keyword: network), Database Administrate (keyword: database), Security Administrate (keyword:
security), Management (keyword: manager), Support (keyword: support), and Design (keyword:
design). After creating the classes of skills, we retrieved the job postings for which the job title matched
the defined keywords in each class, In other words, the keywords were used to search on the title of all
job postings [11]. For example, we had two job postings with the job title ‘system analyst’ and ‘ASP
Dot Net Programmer’. The labeling of these two job titles is analysis and development, respectively,
because of the words analyst and programmer. The result added a new column for the class to assign
the labels for each record, and such data are called labeled data. Each record must have only one class
(label) to create an exclusive subgroup for discriminating between the skills of each group. To ensure
this, we merged all subgroups and removed duplicate records, which have multiple classes due to their
job titles matching several keywords. For example, ‘network analyst’ is duplicated in the ‘network’
class and the ‘analyst’ class. Also, we removed the fuzzy records where the job title did not match
any of our specific keywords. The fuzzy and duplicated job titles were saved to a separate file called
‘unlabeled dataset’. The result of this step was 1173 job postings, labeled into distinct classes, and 1386
job postings that were unlabeled. Figure 2 shows the distribution of the classes of labeled data. What
can be seen is the inequality of classes and the dominance of development and management jobs. At
this point, we had three datasets: labeled jobs, unlabeled jobs, and curriculum. The labeled dataset
was used to train and test the model, and after that, the model could predict the classes for all data
based on their content. The 1173 labeled jobs, divided into two subsets, were our training and testing
datasets. We trained the model using 80% of the labeled jobs and used the remaining 20% to test its
performance. We used the random sampling technique, which is useful to reproduce the starting point
of the sequence in random numbers to ensure that all the labels are present in the training and testing
datasets [42].

Sustainability 2019, 11, 2607 7 of 13
Sustainability 2019, 11, x FOR PEER REVIEW 7 of 13

Figure 2. Classes distributed in labeled dataset.

As seen in Figure 2, the labeled datasets are imbalanced, so we used the function of
createDataPartition() in R to create a balanced dataset by selecting random sampling from every class
to preserve similar proportions in the overall distribution of the dataset. This ensures that all classes
are divided equally, and the model can be trained for all types of class. We had 942 records in training
data and 231 records in testing data, and the distribution of classes showed the same proportions in
the two datasets, as in Figure 3. The classifier uses the main bodies of data, the job description
attribute, to classify the text, discarding the job title attribute [11]. The model computes the probability
of each class label based on the words in the description attribute, and picks the class with the greatest
probability [31].

Figure 3. Classes distributed in training and testing datasets.

The model can make sense of training and testing data by transforming them into a word
frequencies format. First, it represents the datasets as a corpus then constructs a document term
frequency matrix (DFM) to represent the records as word counts; this is called a ‘bag-of-words’
approach. The model creates the frequency table for each word in the training data against each class
and determines the initial weight for every record [43]. The model calculates the probability of each
word in the class and the probability of the class. Next, the classifier learns what each class looks like,
and then classifies the new data into the predefined classes based on the content of the data. Here,
we use a Naïve Bayes classifier. After training, the model is tested by comparing the predictors’
classes for test data with the actual classes to evaluate whether the model learned correctly or not.

26%

9%

21%5%
8%

11%

6%
7%

7%

The Labeled Jobs
Development (303)

Analysis (103)

Management (249)

Security (67)

Support (97)

Testing (127)

Database Administration (67)

Network Administration (80)

Design (80)

26%

9%

21%
5%

8%

11%

6%
7%

7%

Testing Data
Development (60)

Analysis (29)

Management (49)

Security (13)

Support (19)

Testing (25)

Database
Administration (13)
Network
Administration (16)
Design (16)

26%

9%

21%5%
8%

11%

6%
7%

7%

Training Data
Development (243)

Analysis (83)

Management (200)

Security (54)

Support (78)

Testing (102)

Database Administration
(54)
Network Administration
(64)
Design (64)

Figure 2. Classes distributed in labeled dataset.

As seen in Figure 2, the labeled datasets are imbalanced, so we used the function of
createDataPartition() in R to create a balanced dataset by selecting random sampling from every
class to preserve similar proportions in the overall distribution of the dataset. This ensures that all
classes are divided equally, and the model can be trained for all types of class. We had 942 records
in training data and 231 records in testing data, and the distribution of classes showed the same
proportions in the two datasets, as in Figure 3. The classifier uses the main bodies of data, the job
description attribute, to classify the text, discarding the job title attribute [11]. The model computes the
probability of each class label based on the words in the description attribute, and picks the class with
the greatest probability [31].

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 13

Figure 2. Classes distributed in labeled dataset.

As seen in Figure 2, the labeled datasets are imbalanced, so we used the function of
createDataPartition() in R to create a balanced dataset by selecting random sampling from every class
to preserve similar proportions in the overall distribution of the dataset. This ensures that all classes
are divided equally, and the model can be trained for all types of class. We had 942 records in training
data and 231 records in testing data, and the distribution of classes showed the same proportions in
the two datasets, as in Figure 3. The classifier uses the main bodies of data, the job description
attribute, to classify the text, discarding the job title attribute [11]. The model computes the probability
of each class label based on the words in the description attribute, and picks the class with the greatest
probability [31].

Figure 3. Classes distributed in training and testing datasets.

The model can make sense of training and testing data by transforming them into a word
frequencies format. First, it represents the datasets as a corpus then constructs a document term
frequency matrix (DFM) to represent the records as word counts; this is called a ‘bag-of-words’
approach. The model creates the frequency table for each word in the training data against each class
and determines the initial weight for every record [43]. The model calculates the probability of each
word in the class and the probability of the class. Next, the classifier learns what each class looks like,
and then classifies the new data into the predefined classes based on the content of the data. Here,
we use a Naïve Bayes classifier. After training, the model is tested by comparing the predictors’
classes for test data with the actual classes to evaluate whether the model learned correctly or not.

26%

9%

21%5%
8%

11%

6%
7%

7%

The Labeled Jobs
Development (303)

Analysis (103)

Management (249)

Security (67)

Support (97)

Testing (127)

Database Administration (67)

Network Administration (80)

Design (80)

26%

9%

21%
5%

8%

11%

6%
7%

7%

Testing Data
Development (60)

Analysis (29)

Management (49)

Security (13)

Support (19)

Testing (25)

Database
Administration (13)
Network
Administration (16)
Design (16)

26%

9%

21%5%
8%

11%

6%
7%

7%

Training Data
Development (243)

Analysis (83)

Management (200)

Security (54)

Support (78)

Testing (102)

Database Administration
(54)
Network Administration
(64)
Design (64)

Figure 3. Classes distributed in training and testing datasets.

The model can make sense of training and testing data by transforming them into a word
frequencies format. First, it represents the datasets as a corpus then constructs a document term
frequency matrix (DFM) to represent the records as word counts; this is called a ‘bag-of-words’
approach. The model creates the frequency table for each word in the training data against each class
and determines the initial weight for every record [43]. The model calculates the probability of each
word in the class and the probability of the class. Next, the classifier learns what each class looks like,
and then classifies the new data into the predefined classes based on the content of the data. Here, we
use a Naïve Bayes classifier. After training, the model is tested by comparing the predictors’ classes for

Sustainability 2019, 11, 2607 8 of 13

test data with the actual classes to evaluate whether the model learned correctly or not. The model’s
performance has been computed using the average of precision, recall, and f1-score metrics [30,44,45]
for each class (as shown in Table 1). The formulas for these metrics shown in Equations (1) and (2).

all Precision =

∑k
i=1 TPi∑k

i=1(TPi + FPi)
, all Recall (sensitivity) =

∑k
i=1 TPi∑k

i=1(TPi + FNi)
(1)

F1score for the model = 2×
all Precision · all Recall

all Precision + all Recall
(2)

where TP “True Positive” is the number of correct classifications, FP “False Positive” is the number of
incorrect classification, and FN “False Negative” is the number that is not recognized as a class.

Table 1. Model Performance.

Class
Development Analysis Testing Network Database Security Management Support Design Average

Metrics

Precision 0.88 0.78 0.88 0.92 0.84 0.78 0.80 0.80 1 0.85
Recall 0.90 0.55 0.92 0.81 0.84 0.84 0.97 0.63 0.87 0.81

F1-score 0.89 0.64 0.90 0.86 0.84 0.81 0.88 0.71 0.90 0.83

We conclude that the identified algorithm has the best performance. It should be noted that
the results could vary according to the applied sampling and pre-processing techniques. In the end,
the classifier that has been built can predict the label for new data in the datasets of unlabeled jobs
and computing curricula. The result of this module is that all datasets be classified into one of the
predefined classes. Figure 4 shows the proportion of classes in curriculum and job posting records.
These two charts can yield valuable information when read by curriculum developer or academics.
As seen in Figure 4, more than 33% of courses are classified to be in the analysis class, whereas the
design and support classes comprise just 2% of all courses. Table 2 displays some example from the
two datasets after classification for additional verification of the classifier predicts.

Sustainability 2019, 11, x FOR PEER REVIEW 8 of 13

The model’s performance has been computed using the average of precision, recall, and f1-score
metrics [30,44,45] for each class (as shown in Table 1). The formulas for these metrics shown in
Equations (1) and (2). all Precision = ∑ TPi∑ TPi + FPi , all Recall sensitivity = ∑ TPi∑ TPi + FNi (1)

F1score for the model = 2 × all Precision ∙ all Recallall Precision + all Recall (2)

where TP “True Positive” is the number of correct classifications, FP “False Positive” is the number
of incorrect classification, and FN “False Negative” is the number that is not recognized as a class.

Table 1. Model Performance.

Class
Development Analysis Testing Network Database Security Management Support Design Average

Metrics
Precision 0.88 0.78 0.88 0.92 0.84 0.78 0.80 0.80 1 0.85

Recall 0.90 0.55 0.92 0.81 0.84 0.84 0.97 0.63 0.87 0.81
F1-score 0.89 0.64 0.90 0.86 0.84 0.81 0.88 0.71 0.90 0.83

We conclude that the identified algorithm has the best performance. It should be noted that the
results could vary according to the applied sampling and pre-processing techniques. In the end, the
classifier that has been built can predict the label for new data in the datasets of unlabeled jobs and
computing curricula. The result of this module is that all datasets be classified into one of the
predefined classes. Figure 4 shows the proportion of classes in curriculum and job posting records.
These two charts can yield valuable information when read by curriculum developer or academics.
As seen in Figure 4, more than 33% of courses are classified to be in the analysis class, whereas the
design and support classes comprise just 2% of all courses. Table 2 displays some example from the
two datasets after classification for additional verification of the classifier predicts.

Figure 4. Classes distributed in the datasets.

Table 2. Sample of records after classification by AMC model.

ID Course Title Label
3 Principles of Operating Systems Support

16 IS Applications Design and Development Developer
30 IS Strategies and Policies Manager
34 Distributed Systems Network Administrator

28%

33%
5%

7%

6%

4%

13%

2% 2%

Computing Curriclums
Development (33)

Analysis (39)

Testing (6)

Network(9)

Database(7)

Security(5)

Management(15)

Support (2)

Design (2)

22%

8%

7%
7%

6%5%

28%

10%
7%

Job Postings
Development (574)

Analysis (216)

Testing (168)

Network(178)

Database(156)

Security(129)

Management(721)

Support (252)

Design (165)

Figure 4. Classes distributed in the datasets.

Sustainability 2019, 11, 2607 9 of 13

Table 2. Sample of records after classification by AMC model.

ID Course Title Label

3 Principles of Operating Systems Support

16 IS Applications Design and
Development Developer

30 IS Strategies and Policies Manager
34 Distributed Systems Network Administrator
44 Computer Architecture Support
56 Database Administration Database Administrator

ID Job Title Label

54 Agile Scrum Master Banking Manager
136 Big Data Consultant Analyst
211 Call Center Agent Support
225 Chief of Cyber Defense Security
460 Erp Oracle Sr Consultant Ksa Developer
487 Fiber Optic Technician Designer

4.3. Data Comparison and Similarity Module

The results of this module help us to understand the relationship between the data on curricula
and jobs. This relationship is investigated by employing the cosine similarity algorithm, combined with
the term frequency (TF) using the lsa package. To simplify the calculation of TF, words are stemmed
in a temporary cleaning step. Calculating the cosine similarity helps to find similar pairs of the class
or sets of similar classes. The results of the cosine similarity between the two datasets are presented
in Figure 5. The classes of job postings are assigned to the x axis, and the classes of courses to the y
axis, thus the blue gradient indicates the value of cosine similarity. The figure clearly shows which
documents are more similar than others, and the two datasets are related but not close to each other.
Dark blue means near to 0, which signifies that the data are dissimilar, whereas light blue means there
is closeness. For example, the content (the description of skills) in the analyst class is similar to courses
in the analyst class, and the color of the intersection cell shows this in light blue. The analyst jobs are
somewhat similar to developer courses, and while design jobs are different from the skills in design
courses, according to the color of the intersection cell (dark blue). In the end, as we see from the cosine
results, there is always a gap between courses and jobs datasets.

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 13

44 Computer Architecture Support
56 Database Administration Database Administrator
ID Job Title Label
54 Agile Scrum Master Banking Manager
136 Big Data Consultant Analyst
211 Call Center Agent Support
225 Chief of Cyber Defense Security
460 Erp Oracle Sr Consultant Ksa Developer
487 Fiber Optic Technician Designer

4.3. Data Comparison and Similarity Module

The results of this module help us to understand the relationship between the data on curricula
and jobs. This relationship is investigated by employing the cosine similarity algorithm, combined
with the term frequency (TF) using the lsa package. To simplify the calculation of TF, words are
stemmed in a temporary cleaning step. Calculating the cosine similarity helps to find similar pairs of
the class or sets of similar classes. The results of the cosine similarity between the two datasets are
presented in Figure 5. The classes of job postings are assigned to the x axis, and the classes of courses
to the y axis, thus the blue gradient indicates the value of cosine similarity. The figure clearly shows
which documents are more similar than others, and the two datasets are related but not close to each
other. Dark blue means near to 0, which signifies that the data are dissimilar, whereas light blue
means there is closeness. For example, the content (the description of skills) in the analyst class is
similar to courses in the analyst class, and the color of the intersection cell shows this in light blue.
The analyst jobs are somewhat similar to developer courses, and while design jobs are different from
the skills in design courses, according to the color of the intersection cell (dark blue). In the end, as
we see from the cosine results, there is always a gap between courses and jobs datasets.

Figure 5. Heatmap of Cosine Similarity.

4.4. Visualization Module

The visualization module takes the result of the first two modules as input and processes it, for
better visualization. The word cloud technique is applied to visualize the content of each class in the
two data sources (e.g., the content of design courses and design jobs) to extract further valuable
information. To generate an efficient word cloud, the text is tokenized into bigrams and to count the
TFIDF. The words in a larger size have a higher TFIDF value in the text. The results of this module
are word clouds for each class in job postings and each class in computing curricula. For example,
the word clouds for development jobs and development courses show the content of jobs and courses
in the development class (as shown in Figure 6). The development jobs (A) need excellent knowledge
on the development of software, mobile and web services, and applications with an emphasis on
problem-solving. The development jobs want the following programming languages: SQL, Java,

Figure 5. Heatmap of Cosine Similarity.

Sustainability 2019, 11, 2607 10 of 13

4.4. Visualization Module

The visualization module takes the result of the first two modules as input and processes it, for
better visualization. The word cloud technique is applied to visualize the content of each class in
the two data sources (e.g., the content of design courses and design jobs) to extract further valuable
information. To generate an efficient word cloud, the text is tokenized into bigrams and to count the
TFIDF. The words in a larger size have a higher TFIDF value in the text. The results of this module are
word clouds for each class in job postings and each class in computing curricula. For example, the
word clouds for development jobs and development courses show the content of jobs and courses in
the development class (as shown in Figure 6). The development jobs (A) need excellent knowledge
on the development of software, mobile and web services, and applications with an emphasis on
problem-solving. The development jobs want the following programming languages: SQL, Java, oracle,
html, VISUAL studio and asp.net. Also, the required skills are business intelligence and working as a
team, while the development courses (B) provide students with the skills in systems, and in mobile
and web development. In the labs of these courses, PHP and HTML programming languages are
taught, as appearing in the word clouds. From this, we conclude that the word clouds are a useful way
to extract information from the texts.

Sustainability 2019, 11, x FOR PEER REVIEW 10 of 13

oracle, html, VISUAL studio and asp.net. Also, the required skills are business intelligence and
working as a team, while the development courses (B) provide students with the skills in systems,
and in mobile and web development. In the labs of these courses, PHP and HTML programming
languages are taught, as appearing in the word clouds. From this, we conclude that the word clouds
are a useful way to extract information from the texts.

Figure 6. Word Cloud of Development jobs and courses. (A) The development jobs. (B) The
development courses.

5. Conclusions

One of the most pressing topics these days in both academia and industry is training staff
according to the needs of the industry (job market). To do so, educational institutions are
continuously under pressure to find and bridge the gap between their curricula and the job market.
A framework referred to as the Align My Curriculum (ACM) framework has been presented to help
curriculum developers to identify the skills gap and make suggestions to fill this gap between
curricula and the skilled staff required in the industry/market. The ACM framework can be used to
analyze, in an automated fashion, the required skills in the market and the acquired skills of the
curriculum. The objectives were to use various computer-related techniques to analyze and compare
job postings and curricula to help academics and curriculum developers to bridge the skills gap and
design more effective courses. To the best of our knowledge, no existing research has provided an
automated framework to analyze and compare job postings with curricula at the same time. Use of
Naïve Bayes model in the AMC framework resulted in precision of 85%, recall of 81%, and an F1-
score of 83%. Additionally, improved results of cosine similarity (i.e., results of the cosine similarity
are near to zero) increased the accuracy of the framework. Finally, the use of word cloud with TFIDF
and bigram techniques in the AMC framework improved the visualization of each class in the two
data sources. This technique gave us a valuable summary of the content of each class.

We applied our ACM framework to the Saudi job market and the curricula of the Faculty of
Computing and Information Technology (FCIT). The framework performed the entire process of
determining the required skills in the market, comparing it with the skills acquired from the curricula
to identify the gaps between them, suggesting possible points to bridge the gap. The framework has
several strengths. First, the use of online data facilitates analysis over time. Second, it can be used for
other purposes besides curricula and job posting comparisons. There are also some limitations to this
work: We excluded postings written in Arabic, because of our focus on the English language, and the
data in this work are multidimensional. Despite this limitation, the presented framework is an
efficient tool not only for curriculum developers or academics but also for analysts, students, job
applicants, and many others. Additionally, it provides insights into the predominant jobs and skills
in computing fields.

A B

Figure 6. Word Cloud of Development jobs and courses. (A) The development jobs. (B) The
development courses.

5. Conclusions

One of the most pressing topics these days in both academia and industry is training staff according
to the needs of the industry (job market). To do so, educational institutions are continuously under
pressure to find and bridge the gap between their curricula and the job market. A framework referred
to as the Align My Curriculum (ACM) framework has been presented to help curriculum developers
to identify the skills gap and make suggestions to fill this gap between curricula and the skilled staff

required in the industry/market. The ACM framework can be used to analyze, in an automated
fashion, the required skills in the market and the acquired skills of the curriculum. The objectives
were to use various computer-related techniques to analyze and compare job postings and curricula to
help academics and curriculum developers to bridge the skills gap and design more effective courses.
To the best of our knowledge, no existing research has provided an automated framework to analyze
and compare job postings with curricula at the same time. Use of Naïve Bayes model in the AMC
framework resulted in precision of 85%, recall of 81%, and an F1-score of 83%. Additionally, improved
results of cosine similarity (i.e., results of the cosine similarity are near to zero) increased the accuracy
of the framework. Finally, the use of word cloud with TFIDF and bigram techniques in the AMC

Sustainability 2019, 11, 2607 11 of 13

framework improved the visualization of each class in the two data sources. This technique gave us a
valuable summary of the content of each class.

We applied our ACM framework to the Saudi job market and the curricula of the Faculty of
Computing and Information Technology (FCIT). The framework performed the entire process of
determining the required skills in the market, comparing it with the skills acquired from the curricula
to identify the gaps between them, suggesting possible points to bridge the gap. The framework has
several strengths. First, the use of online data facilitates analysis over time. Second, it can be used
for other purposes besides curricula and job posting comparisons. There are also some limitations
to this work: We excluded postings written in Arabic, because of our focus on the English language,
and the data in this work are multidimensional. Despite this limitation, the presented framework is
an efficient tool not only for curriculum developers or academics but also for analysts, students, job
applicants, and many others. Additionally, it provides insights into the predominant jobs and skills in
computing fields.

Author Contributions: A.A., M.A.A. and K.S. worked on the theoretical concepts, methodology, implementation
and experiments. A.A., M.A.A. and N.R.A. prepared the setup for experiments and analyzed the data. A.A., K.S.
and N.R.A. did the comprehensive literature review.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jin, X.; Wah, B.W.; Cheng, X.; Wang, Y. Significance and Challenges of Big Data Research. Big Data Res. 2015,
2, 59–64. [CrossRef]

2. Askitas, N.; Zimmermann, K.F. The internet as a data source for advancement in social sciences. Int. J.
Manpow. 2015, 36, 2–12. [CrossRef]

3. Kureková, L.M.; Beblavý, M.; Thum-thysen, A. Using online vacancies and web surveys to analyse the labour
market: A methodological inquiry. Iza J. Labor Econ. 2015, 4, 2. [CrossRef]

4. Woolridge, R.W. What’s In and What’s Out: Defining an Industry-Aligned IS Curriculum Using Job
Advertisements Rachida Parks University of Arkansas at Little Rock. J. High. Educ. Theory Pract. 2016, 16,
105–120.

5. Smith, D.; Ali, A. Analyzing Computer Programming Job Trend Using Web Data Mining Literature
Review—Web Data Mining. Issues Inf. Sci. Inf. Technol. 2014, 11, 203–214.

6. Carnevale, A.P.; Jayasundera, T.; Repnikov, D. Understanding Online Job ADS Data, Technical Report. 2014.
Available online: https://cew.georgetown.edu/wp-content/uploads/2014/11/OCLM.Tech_.Web_.pdf (accessed
on 7 May 2019).

7. Kureková, L.M.; Kureková, L.M.; Anna-Elisabeth, T. Using Internet Data to Analyse the Labour Market:
A Methodological; Institute for the Study of Labor (IZA): Bonn, Germany, 2014.

8. Müller, O.; Schmiedel, T.; Gorbacheva, E.; Brocke, J.; Müller, O.; Schmiedel, T.; Gorbacheva, E.; Brocke, J.
Towards a typology of business process management professionals: identifying patterns of competences
through latent semantic analysis. Enterp. Inf. Syst. 2016, 10, 50–80. [CrossRef]

9. Kim, J.; Angnakoon, P. Research using job advertisements: A methodological assessment. Libr. Inf. Sci. Res.
2016, 38, 327–335. [CrossRef]

10. Litecky, C.; Aken, A.; Ahmad, A.; Nelson, H.J. Mining for Computing Jobs. IEEE Softw. 2010, 27, 78–85.
[CrossRef]

11. Wowczko, I. Skills and Vacancy Analysis with Data Mining Techniques. Informatics 2015, 2, 31–49. [CrossRef]
12. Watson, H.J.; Young, D.; Miranda, S.; Robichaux, B.; Seerley, R. Requisite Skills for New MIS Hires. Sigmis

Database 1990, 21, 20–29. [CrossRef]
13. Todd, P.A.; McKeen, J.D.; Gallupe, R.B. The Evolution of IS Job Skills: A Content Analysis of IS Job

Advertisements from 1970 to 1990. Mis Q. 1995, 19, 1–27. [CrossRef]
14. Albin, M.; Otto, R.W. The CIS Curriculum: What Employers Want from Cis and General Business Majors.

J. Comput. Inf. Syst. 1987, 27, 15–19.

http://dx.doi.org/10.1016/j.bdr.2015.01.006
http://dx.doi.org/10.1108/IJM-02-2015-0029
http://dx.doi.org/10.1186/s40172-015-0034-4
https://cew.georgetown.edu/wp-content/uploads/2014/11/OCLM.Tech_.Web_.pdf
http://dx.doi.org/10.1080/17517575.2014.923514
http://dx.doi.org/10.1016/j.lisr.2016.11.006
http://dx.doi.org/10.1109/MS.2009.150
http://dx.doi.org/10.3390/informatics2040031
http://dx.doi.org/10.1145/95367.95374
http://dx.doi.org/10.2307/249709

Sustainability 2019, 11, 2607 12 of 13

15. Eom, M.; Cheehwan, L. Critial skills to be comptetent and relevant IT personnel: Do today’s IT personnel
possess requisite skills? J. Inf. Technol. Manag. 2012, 23, 33–49.

16. Gorgone, J.T.; Davis, G.B.; Valacich, J.S.; Topi, H.; Feinstein, D.L.; Longenecker, H.E., Jr. IS 2002 Model
curriculum and guidelines for undergraduate degree programs in information systems. Commun. Ais 2003,
11, 63. [CrossRef]

17. Gorgone, J.T.; Gray, P.; Stohr, E.A.; Valacich, J.S.; Wigand, R.T. Msis2006 Curriculum Preview. Commun. Assoc.
Inf. Syst. 2005, 15, 544–554.

18. Lee, C.K. Analysis of Skill Requirements for Systems Analysts in Fortune 500 Organizations. J. Comput. Inf.
Syst. 2005, 45, 84–92.

19. Sodhi, M.S.; Son, B.-G. Content analysis of OR job advertisements to infer required skills. J. Oper. Res. Soc.
2010, 61, 1315–1327. [CrossRef]

20. Zhang, S.; Li, H.; Zhang, S. Job opportunity finding by text classification. Procedia Eng. 2012, 29, 1528–1532.
[CrossRef]

21. Debortoli, S.; Müller, O.; Vom Brocke, J. Comparing business intelligence and big data skills: A text mining
study using job advertisements. Bus. Inf. Syst. Eng. 2014, 6, 289–300. [CrossRef]

22. Kim, J.Y.; Lee, C.K. An Empirical Analysis of Requirements for Data Scientists Using Online Job Postings.
Int. J. Softw. Eng. Its Appl. 2016, 10, 161–172. [CrossRef]

23. Westergaard, D.; Stærfeldt, H.-H.; Tønsberg, C.; Jensen, L.J.; Brunak, S. A comprehensive and quantitative
comparison of text-mining in 15 million full-text articles versus their corresponding abstracts. Plos Comput.
Biol. 2018, 14, e1005962. [CrossRef] [PubMed]

24. Subramanian, S. Document Classification Using Multinomial Naive Bayes Classifier. Int. J. Eng. Technol.
2014, 3, 1557–1563.

25. Rajeswari, R.P.; Juliet, K. Text Classification for Student Data Set using Naive Bayes Classifier and KNN
Classifier. Int. J. Comput. Trends Technol. 2017, 43, 8–12.

26. Manning, C.D.; Raghavan, P.; Schütze, H. Text classification and Naive Bayes. In An Introduction to Information
Retrieval; Cambridge University Press: Cambridge, UK, 2008; pp. 260–264.

27. Manning, C.D.; Ragahvan, P.; Schutze, H. An Introduction to Information Retrieval. Inf. Retr. Boston. 2010,
16, 100–103.

28. Roy, S.S.; Kaul, D.; Roy, R.; Barna, C.; Mehta, S.; Misra, A. Prediction of Customer Satisfaction Using Naive
Bayes, MultiClass Classifier, K-Star and IBK. In Soft Computing Applications; Balas, V.E., Jain, L.C., Balas, M.M.,
Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 153–161.

29. Wang, S.; Jiang, L.; Li, C. Adapting naive Bayes tree for text classification. Knowl. Inf. Syst. 2015, 44, 77–89.
[CrossRef]

30. Ashari, A.; Paryudi, I.; Tjoa, A. Performance Comparison between Naïve Bayes, Decision Tree and k-Nearest
Neighbor in Searching Alternative Design in an Energy Simulation Tool. Int. J. Adv. Comput. Sci. Appl. 2013,
4, 33–39. [CrossRef]

31. Zhang, H.; Li, D. Naive Bayes text classifier. In Proceedings of the IEEE International Conference on Granular
Computing, GrC, San Jose, CA, USA, 2–4 November 2007; pp. 708–711.

32. Shen, Y.; Lin, G.T.R.; Lin, J.; Wang, C. A Cross-Database Comparison to Discover Potential Product
Opportunities Using Text Mining and Cosine Similarity. J. Sci. Ind. Res. 2017, 76, 11–16.

33. Allahyari, M.; Trippe, E.D.; Gutierrez, J.B. A Brief Survey of Text Mining: Classification, Clustering and
Extraction Techniques. arXiv 2017, arXiv:1707.02919.

34. Gomaa, W.H.; Fahmy, A.A. A Survey of Text Similarity Approaches. Int. J. Comput. Appl. 2013, 68, 13–18.
35. Al-Anzi, F.S.; AbuZeina, D. Toward an enhanced Arabic text classification using cosine similarity and Latent

Semantic Indexing. J. King Saud Univ. Comput. Inf. Sci. 2017, 29, 189–195. [CrossRef]
36. Cherapanukorn, V.; Charoenkwan, P. Word Cloud of Online Hotel Reviews in Myanmar for Customer

Satisfaction Analysis. In Proceedings of the 2017 6th IIAI International Congress on Advanced Applied
Informatics (IIAI-AAI), Hamamatsu, Japan, 9–13 July 2017; pp. 447–452.

37. Jayashankar, S.; Sridaran, R. Superlative model using word cloud for short answers evaluation in eLearning.
Educ. Inf. Technol. 2017, 22, 2383–2402. [CrossRef]

38. Hirudayaraj, M.; Baker, R. HRD competencies: Analysis of employer expectations from online job postings.
Eur. J. Train. Dev. 2018, 42, 577–596. [CrossRef]

http://dx.doi.org/10.17705/1CAIS.01101
http://dx.doi.org/10.1057/jors.2009.80
http://dx.doi.org/10.1016/j.proeng.2012.01.167
http://dx.doi.org/10.1007/s12599-014-0344-2
http://dx.doi.org/10.14257/ijseia.2016.10.4.15
http://dx.doi.org/10.1371/journal.pcbi.1005962
http://www.ncbi.nlm.nih.gov/pubmed/29447159
http://dx.doi.org/10.1007/s10115-014-0746-y
http://dx.doi.org/10.14569/IJACSA.2013.041105
http://dx.doi.org/10.1016/j.jksuci.2016.04.001
http://dx.doi.org/10.1007/s10639-016-9547-0
http://dx.doi.org/10.1108/EJTD-04-2018-0036

Sustainability 2019, 11, 2607 13 of 13

39. Gaigole, P.C.; Patil, L.H.; Chaudhari, P.M. Preprocessing Techniques in Text Categorization. Proceedings
published by International Journal of Computer Applications. 2013. Available online: https://pdfs.
semanticscholar.org/ff34/7657082e70347a916548a9fe567ab791162a.pdf (accessed on 7 May 2019).

40. Gon, C.A. The impact of Pre-Processing on the Classification of MEDLINE Documents. 2015. Available
online: https://www.scitepress.org/papers/2010/30287/30287.pdf (accessed on 7 May 2018).

41. ISCO—International Standard Classification of Occupations. Available online: http://www.ilo.org/public/

english/bureau/stat/isco/isco08/index.htm (accessed on 23 January 2018).
42. Jockers, M.L. Text Analysis with R for Students of Literature; Springer: Berlin/Heidelberg, Germany, 2014; ISBN

978-3-319-03163-7.
43. Jabbar Alkubaisi, G.A.; Kamaruddin, S.S.; Husni, H. Stock Market Classification Model Using Sentiment

Analysis on Twitter Based on Hybrid Naive Bayes Classifiers. Comput. Inf. Sci. 2018, 11, 52. [CrossRef]
44. Patil, T.R. Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification. Int.

J. Comput. Sci. Appl. 2013, 6, 256–261.
45. Jurafsky, D.; Martin, J. Naive Bayes and Sentiment Classification. In Speech and Language Processing. 2017.

Available online: https://web.stanford.edu/~{}jurafsky/slp3/4.pdf (accessed on 7 May 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://pdfs.semanticscholar.org/ff34/7657082e70347a916548a9fe567ab791162a.pdf
https://pdfs.semanticscholar.org/ff34/7657082e70347a916548a9fe567ab791162a.pdf
https://www.scitepress.org/papers/2010/30287/30287.pdf
http://www.ilo.org/public/english/bureau/stat/isco/isco08/index.htm
http://www.ilo.org/public/english/bureau/stat/isco/isco08/index.htm
http://dx.doi.org/10.5539/cis.v11n1p52
https://web.stanford.edu/~{}jurafsky/slp3/4.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Architecture of the Align My Curriculum (ACM) Framework
	Data Collection and Pre-Processing Module
	Classification Module
	Data Comparison and Similarity Module
	Visualization Module

	Experiments and Discussion
	Data Collection and Pre-Processing Module
	Classification Module
	Data Comparison and Similarity Module
	Visualization Module

	Conclusions
	References

