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Abstract: Diminishing water resources as a result of excessive use of water for irrigation and climate
change posture a severe global threat to food security. Herein, an experiment was conducted
to determine the selection criteria for drought-tolerant bread wheat genotypes at the seedling
stage using morphological and photosynthetic pigmentation-related traits. A panel of 105 wheat
landraces, historical Pakistani varieties, and advance breeding lines were evaluated under normal
and drought stress using factorial completely randomized design. The root length, fresh weight,
dry weight, cell membrane thermo-stability, and chlorophyll b were positively correlated among
themselves under both normal and stress conditions. Hence, selection of any one of these traits
enhances the performance of other traits. The shoot length was non-significant and negatively
associated with all other studied characters except relative water content. The results suggested that
selection for shoot length could not improve genetic gain for drought tolerance. Out of 10 principal
components (PCs), the first three PCs were showed significant genetic variation under both conditions.
The first three PCs showed 74.6% and 76% cumulative genetic variation under normal and drought
conditions, respectively. Based on PCA, 10 drought-tolerant and five drought-susceptible genotypes
were identified. Overall results suggested that selection for root length, fresh weight, dry weight,
cell membrane thermo-stability, and chlorophyll b at the seedling stage would improve genetic gain
for drought tolerance. The outperforming genotypes under drought stress conditions can be useful in
future wheat breeding programs, and early selection for the traits recommended in this study will be
effective for developing high-yielding and drought-tolerant wheat varieties.
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1. Introduction

Wheat demand is increasing with the continuous increase in human population and it is expected to
reach up to 40% in 2030. Hence, there is a dire need to increase wheat production to ensure sustainable
food security [1,2]. There are many constraints which are responsible for low yield including
poor-quality seed, non-recommended sowing methods, delayed sowing, poor soil management,
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unbalanced fertilizer application, improper weed eradication, diseases, shortage of water, and heat
and drought stress due to climatic changes [3,4]. Among cereal crops, wheat crop status is imperative
because of its nutritional value and high consumption. The rapid increase in population and better
lifestyle render new challenges for wheat scientists to breed wheat varieties with improved yield,
quality, and resistance against biotic and abiotic stresses [5].

Wheat production is compromised due to various constraints including drought. Drought is
predominantly caused by erratic changes in precipitation and low rainfall [6].Water shortage is reported
to cause 17% to 70% yield losses. Wheat yield reduced to 50% to 90% of its irrigated potential in
developing countries due to water deficit [7]. Wheat plant suffers a severe response to water deficit
stress at tillering, jointing, booting, anthesis, and filling stages. Tillering is a very important stage at
which the plant develops tillers, primodia of spike, spikelets, and florets in the wheat plant. Water
deficit stress at this stage can cause a 46% decrease in total wheat yield [8].

For creating drought-tolerant genotypes, it is essential to primarily understand the mechanism
and response of plants in water-deficient conditions. The factors like crop species, drought intensity,
duration of drought, and stages of plant growth make the mechanism of drought tolerance complex. [9].
Survival of the plant under drought stress conditions assumes many mechanisms simultaneously.
Three basic mechanisms involved in adaptation to drought stress are escape, avoidance or tolerance,
and resistance mechanisms [10,11]. In the escape mechanism, the plant completes its life cycle before the
presence of drought. In the tolerance mechanism, plants compete with water-deficient environments,
e.g., stomata closure and decreased transpiration rate. In the drought-resistance mechanism, the plant
continues normal growth stages during drought by increasing the amount of photosynthetic pigments
and sustaining root-to-shoot ratio for meritorious distribution of the total assimilates [12].

Vigorous seedling is a vital index in describing the yield of a plant in a short period of time [13].
A genotype with drought stress tolerance has more impermeable rooting abilities to boost the
preoccupation of soil moisture and to lessen the distinct effects of drought during development and
growth [14]. The root, the principal part of the wheat plant, is affected mainly by water shortage.
Maximum root length endorses the availability of moisture from the depth of the soil and promotes
the adaptation in water-deficient conditions. Root length at the seedling stages of the plant is a key
genetic trait for increasing yield under drought conditions [15]. According to the wheat scientists,
seedling growth is influenced under drought stress, but the influence changes from variety to variety.
The selection of wheat variety with the best performance under water stress environments could
increase the production of rainfed areas [10,11,13]. Various methods were designed for screening of
wheat genotypes at the seedling stage for drought tolerance. Bilal et al. [16] suggested root-to-shoot
ratio and relative water content as selection criteria in wheat for drought tolerance. Almeselmani [17]
concluded relative water content (RWC) as a good criterion for the selection of drought-tolerant wheat
varieties at the seedling stage. RWC in terms of its relationship with the volume of cell can correctly
show the balance between water absorbed by the plant and disbursed through transpiration [18].
Datta et al. [19] applied both normal and water-deficient conditions to wheat genotypes and observed
that genotypes performed better under environments which had optimum RWC and root and shoot
length, which were considered drought-tolerant genotypes. Selection of wheat varieties on the basis of
seedling traits is easy, cheap, and less laborious. Similarly, seedling attributes expose moderate-to-high
variability with an additive gene effect across environments [2,11].

Leaf chlorophyll content is an indicator of the photosynthetic capability of plant tissues.
The amount of chlorophyll pigments varies under drought environments. Carotenoid contents
play dynamic roles in plant resistance to drought stress [20]. Water-deficient environments inhibit
the production of chlorophyll a/b and reduce the amount of protein useful in binding, while also
declining the level of pigment protein useful in light harvesting, as well as other proteins associated
with photosystem II [21]. The effects of drought on chlorophyll and carotenoid contents were inspected
in several major field crops. Chlorophyll and carotenoid concentrations were identified as attributes



Sustainability 2019, 11, 2584 3 of 17

for the assessment of drought stress. Therefore, a reduction of these values can be considered as a
non-stomata limiting factor under drought stress conditions [22].

The experiment herein was directed for the screening of 105 miscellaneous wheat accessions
for drought tolerance on the basis of seedling attributes so as to define the correlation of studied
seedling indices and to determine suitable selection criteria under both normal and drought conditions.
This will provide the basis of drought tolerance for dry land farming in semiarid and rainfed regions.

2. Materials and Methods

The proposed experiment was performed to assess the effects of normal and drought stress on
root-related traits and photosynthetic pigmentation in bread wheat genotypes at the seedling stage.
The seeds of 105 spring wheat accessions were taken from the Department of Plant Breeding and
Genetics, University of Agriculture (PBG-UAF), Faisalabad, Pakistan. The name, pedigree (if available),
and origin of selected wheat genotypes are listed in Supplementary 1. The greenhouse experiments
at the seedling stage were conducted in the research station of PBG-UAF under normal and drought
conditions during 2017–2018.

Experimental wheat accessions were planted in15× 15 cm polyethylene bags filled with sand using
a completely randomized design (CRD) in a triplicate fashion under normal and drought conditions.
Two seeds were sown in each bag and, after germination, a thinning practice was performed to obtain
one seedling. For every replication, five bags were used for each variety. After the application of
watering upon sowing, one set of genotypes was regularly watered (100% of field capacity) while another
similar set of genotypes was kept in water-deficient stress (at 50% field capacity). The field capacity
(FC) of the soil used in the experiments was measured with a pressure chamber apparatus [23,24].
Data of the studied traits, namely shoot length, root length, root/shoot ratio, fresh seedling weight,
dry seedling weight, relative water contents [25], cell membrane thermo-stability [26], chlorophyll
a,b, and carotenoid, were recorded from three-week-old wheat seedlings from both environments.
The chlorophyll (Chl) a, b was measured using the following equations [27]:

Chl. a
(
mgg−1

)
= [12.7 (OD663) − 2.69 (OD645)] ×

V
1000

×W,

Chl. b
(
mgg−1

)
= [22.9 (OD645) − 4.68 (OD663)] ×

V
1000

×W,

where V is the volume of extract, W is the weight of fresh leaves, and OD is the optimal density.
The carotenoid content was calculated using the following equation [28]:

Carotenoids
(
mgg−1

)
= [(Acar/EM) × 100

]
,

where Acar = [(OD480) + 0.114(OD663)] − 0.638(OD645), and EM = 2500.
Recorded data were subjected to analysis of variances (ANOVA) [29] using the GenStat (v10)

software. The significance level α = 0.01 was used for highly significant effects and α =0.05 was
used for significant effects. The traits which were found significant were used for further exploration
through correlation and principal component analysis (PCA) to determine the linkage between traits
and genotypes under drought stress conditions. The software Minitab16 was used for correlation
and principal component analysis [30]. For correlation analysis significance levels, α = 0.01 was used
for highly significant effects and α =0.05 was used for significant effects. For PCA, the principal
components (PCs) with eigenvalue >1 were considered as significant PCs. Based on the results of
correlation and principal component analysis, the drought-tolerant genotypes and favorable seedling
traits were selected to determine the selection criteria for drought stress tolerance.



Sustainability 2019, 11, 2584 4 of 17

3. Results and Discussion

Highly significant differences were exhibited among accessions under normal and drought
conditions for all studied traits (Table 1), indicating the variation in germplasm. The mean variability of
10seedling traits revealed the accessions that presented a variation in performance as compared to the
examined genotypes for studied attributes under drought conditions; those with the best performance
were considered drought-tolerant (Table 2).

Table 1. Analysis of variance (ANOVA) mean squares of 105 genotypes at the seedling stage under
normal and drought conditions.

Genotype(G) Conditions(C) G×C Error Total

SoV/df 104 1 104 420 629
RL (cm) 61.15** 1749.07 ** 6.86 ** 3.13
SL (cm) 39.51 ** 3792.76 ** 8.55 ** 2.1

R/S 0.12351 ** 0.29618 ** 0.01561 ** 0.00841
FWT (g) 0.0185 ** 18.6482 ** 0.0010 * 0.0008
DWT (g) 0.01035 ** 2.07891 ** 0.00253 ** 0.00057

RWC 97.9 ** 14377.6 ** 1.9 ns 5.6
CMT 85.2 ** 17463.7 ** 0.4 ns 3.4

CTD (mg/g Fw) 0.00669 ** 0.77175** 0.00010 ns 0.00062
Chl.a(mg/g Fw) 0.02483 ** 0.01939 ** 0.00074 ns 0.00151
Chl.b(mg/g Fw) 0.00701 ** 0.76442 0.00007 ** 0.0005

** Highly significant (0.01); * significant (0.05); ns non-significant. RL=root length; SL = shoot length; R/S= root/shoot;
FWT = fresh weight; DWT = dry weight; RWC = relative water content; CMT = cell membrane thermo-stability;
CTD = carotenoid; Chl.a = chlorophyll a; Chl.b = chlorophyll b; mg/g Fw = milligram per gram of fresh weight.

Table 2. Mean summary statistics of 10 seedling traits of 105 spring wheat genotypes under normal
and drought conditions.

Traits Conditions Minimum Maximum Mean SD

RL (cm) Normal 7.22 23.00 11.66 4.005
Drought 5.31 17.65 8.32 2.542

SL(cm) Normal 13.16 29.17 22.69 2.965
Drought 11.00 25.19 17.79 2.755

R/S Normal 0.27 0.94 0.51 0.170
Drought 0.29 0.92 0.47 0.132

FWT (g) Normal 0.75 1.11 0.94 0.048
Drought 0.48 0.91 0.59 0.065

DWT(g) Normal 0.18 0.49 0.26 0.059
Drought 0.10 0.27 0.15 0.028

RWC (%) Normal 61.00 82.33 71.22 4.099
Drought 51.45 72.78 61.67 4.099

CMT (%) Normal 55.00 74.00 64.13 3.789
Drought 44.47 63.47 53.60 3.789

CTD (mg/g Fw) Normal 0.32 0.49 0.40 0.034
Drought 0.24 0.41 0.33 0.034

Chl.a (mg/g Fw) Normal 1.36 1.65 1.48 0.066
Drought 1.34 1.61 1.47 0.065

Chl.b (mg/g Fw) Normal 0.46 0.64 0.54 0.034
Drought 0.39 0.57 0.47 0.034
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3.1. Mean Variability

Mean values of root length changed significantly, ranging from 7.22 to 23.00 cm under normal
water conditions, while, under drought stress, mean values ranged from 5.31 to 17.65 cm (Table 2). Root
length appeared an important trait for drought stress tolerance, as reported in previous studies [31].
The genotypes CHAKWAL-86, 10117, and DPW-621-50 showed maximum mean values of root length
as compared to other tested genotypes, and they were classified as drought-tolerant; on the other hand,
MOOMAL-2002 was classified as drought-susceptible due to its low performance, as mentioned in
Table 3. It was recommended that an improvement in wheat breeding for drought resistance can be
predicted from the selection for maximum root length [32]. The impact of root architecture and its
mechanism on yield and yield-related attributes, especially in drought conditions, was comprehensively
discussed in all major crops [33,34]. Stimulated root growth of wheat genotypes in water-deficient
conditions was also described by wheat scientists [2,35].

Table 3. Performance of bread genotypes under drought stress.

Traits Best-Performing Genotypes: Names and
Mean Values (Drought-Tolerant)

Worst-Performing Genotypes: Names and
Mean Values (Drought-Susceptible)

SL (cm) 9508 (25.19) followed by Sunstar (23.86) BARS-2009 (11) followed by MOOMAL-2002 (12)

RL (cm) CHAKWAL-86 (17.65) followed by 10117 (15.65)
and DPW-621-50 (14)

MOOMAL-2002 (4.98) followed by BARS-2009
(5.31) and MILLAT-2011(5.33)

R/S CHAKWAL-86 (0.92) followed by 10117 (0.90)
and BWL-812 (0.71)

9508(0.29) followed by UFAQ-2002(0.30) and G40
(0.31)

FWT (g) 9797 (0.91) followed by 9493(0.83) and 9930
(0.78)

MOOMAL-2002 (0.48) followed by
UFAQ-2002(0.48) and BARS-2009 (0.49)

DWT (g) 9493(0.27) followed by9797 (0.21) and
10115(0.20)

BARS-2009 (0.10) followed by UFAQ-2002(0.11)
and MILLAT-2011(0.11)

RWC (%) 9618 (72.78) followed by 10111 (70.45) and
10117 (69.78)

BARS-2009 (51.45) followed by UFAQ-2002(54.12)
and MOOMAL-2002 (54.43)

CMT (%) 9493(63.47) followed by G11 (62.47) and
CHAKWAL-86 (59.47)

9508(44.47) followed by MILLAT-2011(49.14) and
MILLAT-2011(49.14)

CTD
(mg/g Fw)

9618 (0.41) followed by BWL-812 (0.40) and
9930 (0.39)

MILLAT-2011(0.24) followed by MOOMAL-2002
(0.25) and UFAQ-2002(0.27)

Chl.a
(mg/g Fw)

CHAKWAL-86 (1.61) followed by 10115(1.60)
and 9493(1.59)

BARS-2009 (1.34) followed by MILLAT-2011(1.37)
and UFAQ-2002(1.38)

Chl.b
(mg/g Fw)

CHAKWAL-86 (0.57) followed by BWL-812
(0.55) and 9618 (0.54)

MOOMAL-2002 (0.39) followed by BARS-2009
(0.40) and 9508(0.42)

The shoot length of wheat plant is an imperative trait which is influenced by water shortage.
The phenotypic response of any trait is due to the interaction of genotype and environment. Mean
values for this trait ranged from 13.16 to 29.17 cm in non-stress conditions, while, in stress conditions,
they ranged from 11.00 to 25.19 cm (Table 2). For drought tolerance, minimum shoot length and
maximum root length is required. In this experiment, CHAKWAL-86 had the maximum root length and
was found to be drought-tolerant, while 9508 had the maximum shoot length and was considered as a
drought-susceptible genotype (Table 3). Screening based on seedling length, along with a widespread
root system, give rise to good adaptation in rainfed areas. Many researchers [36,37] also assessed the
decline in the growth, length, and weight of seedlings with the increase in drought conditions; their
findings were similar with the current experiment.

Root/shoot length ratio for tested genotypes varied significantly, ranging from 0.27 to 0.94 under
normal conditions, and from 0.29 to 0.92 under drought conditions, as presented in Table 2. A reducing
trend was observed with the increase in drought stress among all genotypes. In this experiment,
CHAKWAL-86 appeared to be drought-tolerant, while 9508 was found to be a drought-susceptible
genotype. Plant growth-related indices, such as root length and shoot length, and seedling fresh
weight, are characterized as major indices for choosing efficient wheat genotypes under drought
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conditions [38]. Similar results were stated by wheat scientists, where by a decrease in shoot length and
root length, and in seedling fresh and dry weight was observed in all genotypes under water-deficient
conditions [39].

Data recorded for fresh weight of wheat seedlings varied significantly, ranging from 0.75 to 1.11 g
under normal conditions and from 0.45 to 0.91 g under water stress conditions (Table 2). Wheat
scientists [36,40] described that genotypes with higher fresh weight of wheat seedlings under drought
environment were categorized as drought-tolerant. The genotypes 9797, 9493, and 9930exhibited the
best performance and were considered as-drought tolerant, while MOOMAL-2002 was found to be
drought-susceptible due to low performance (Table 3).

The dry weight of wheat seedlings is a significant index also influenced by drought. Dry weights
for all genotypes are recorded in Table 2, and they varied significantly, ranging from 0.18 to 0.49 g under
normal conditions and from 0.10 to 0.27 g under drought conditions. In this study, the genotypes 9493,
9797, and 10115 depicted a high percentage of RWC as compared to other tested genotypes and they
were considered as drought-tolerant, while BARS-2009 was found to be drought susceptible due to low
performance for this trait, as exhibited in Table 3. A superior root and shoot mass following drought
stress was proposed as a reliable drought selection criterion for different plant species, including
wheat [32,41]. Root morphology and biomass are very important traits while selecting drought-tolerant
genotypes. A reducing pattern in seedling dry weight was found by many scientists [36,42,43],
who observed that drought conditions had a noteworthy effect on plant dry mass.

Soil moisture deficit is a major adverse factor in arid and semi-arid zones, causing lower leaf
water potential, leading to reduced turgor and, ultimately, lower crop productivity [44]. Data collected
for relative water content for 105 genotypes varied significantly, ranging from 61.00% to 82.33%
under normal conditions and from 51.45% to 72.78%under drought stress conditions, as depicted in
Table 2. Drought-induced reduction in the relative water content was reported in many crops including
wheat [45]. In the current experiment, genotypes 9618, 10111, and 10117 depicted a high percentage of
RWC as compared to other tested genotypes and were considered as drought-tolerant, while BARS-2009
was deemed to be drought-susceptible due to low performance for this trait, as exhibited in Table 3.
The decline in relative water content under water-deficient stress in wheat seedlings was also observed
in the present study. Similarly, a higher reduction in relative water content in drought-susceptible
wheat genotypes as compared to drought-tolerant ones was also observed earlier [12,46–48]. This
physiological characteristic has great importance when screening wheat genotypes for drought tolerance.
Plant scientists showed that wheat cultivars having high RWC are more resistant to drought stress.
Generally, it seems that osmoregulation is one of the main mechanisms preserving turgor pressure in
most plant species, preventing water loss, causing the plant to continue water absorption and retain
metabolic activities [49,50]. The ability of some genotypes to maintain RWC amount for the maximum
duration may be the result of higher cell-wall strength or the ability to reduce mechanical damage to
the cells [51].

Data collected for cell membrane thermo-stability (CMT) for all genotypes varied significantly,
ranging from 55.00% to 74.00% under normal conditions and from 44.47% to 63.47% under drought
stress conditions (Table 2). In the current study for CMT, genotypes 9493, 9797, and CHAKWAL-86
showed the best performance and were classified as drought-tolerant, while 9508 was found to be
drought-susceptible due to low performance (Table 3). The positive association of electrolyte leakage
with drought was also found by others [52–55]. From these results, it was concluded that heat-tolerant
genotypes had greater cell membrane thermo-stability, which ultimately increased the survival potential
of genotypes following drought and heat-shock treatments. Thus, CMT assays could be used as a
selection criterion for drought and heat stress tolerance at the seedling stage, thus reducing the time
and cost needed for the field experiments. RWC and CMT are useful indices for the rapid evaluation
of drought response in wheat breeding. This is the only adaptive and positive response beneficial
to the plant under drought conditions. Osmoregulation enables the plant to maintain high turgor
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pressure, as well as survive under drought conditions. The relative water content and cell membrane
thermo-stability are also considered important selection criteria for wheat under drought stress [56,57].

All studied wheat varieties responded contrarily in terms of seedling photosynthetic traits under
water stress conditions. The mean data of chlorophyll a for examined genotypes ranged from 1.36
to 1.65 mg/g in non-stress environments and ranged from 1.34 to 1.61mg/gin drought conditions.
The data of mean values for chlorophyll bin studied germplasms (Table 2) ranged from 0.46 to
0.64 mg/g in non-stress conditions and from 0.39 to 0.57mg/g under stress environments. In plant
cells, photosynthesis is the main course in plant cells which regulates a low concentration of water
culture medium. If chlorophyll contents are higher, then photosynthesis mechanisms will be more
efficient. In the current study, the genotypes CHAKWAL-86, 10115, and 9493 had a high amount of
chlorophyll a and CHAKWAL-86, BWL-812, and 9618 showed better performance for chlorophyll b;
they were classified as drought-tolerant genotypes. BARS-2009 was categorized as drought-susceptible
due to its low performance for both traits, as exhibited in Table 3. Photosynthetic pigments are
reduced in wheat with the increase in water deficit due to thylakoid membranes splitting upon
dehydration of cells [54]. Some wheat breeders emphasized lessening chlorophyll contents in drought
environments [58], while drought-resistant varieties sustained a high quantity of these pigments in
water stress conditions [54,56,57]. Drought stress can abolish the chlorophyll content and inhibit its
synthesis [59]. Chlorophyll content decreased or destroyed by drought produces reactive oxygen
species (ROS) such as O2

− and H2O2, which can lead to lipid peroxidation [60]. Changing of leaf
color from green to yellow was observed due to decreasing chlorophyll contents under drought
conditions [61].

Carotenoids have a significant role in photosynthesis. The biosynthesis of carotenoids in plants
is controlled by its genetic constitutions, but environmental conditions also affect synthesis due to
interactions with genotype [22]. In this study, data collected (Table 2) for carotenoids under the
observed germplasm ranged from 0.32 to 0.49 mg/g in non-stress conditions and from 0.24 to 0.41 mg/g
under stress environments. Chlorophyll maintenance is essential for photosynthesis in water-deficient
environments. Carotenoids play a vital role in scavenging singlet oxygen; hence, their comparative
amount in a plant decides its relative tolerance. In the present experiment, the maximum amount of
carotenoid in genotypes 9618, BWL-812, and 9930resulted in them being considered as drought-tolerant
varieties (Table 3). The maximum amounts of chlorophyll and carotenoid in tolerant varieties were
also described in previous findings of wheat breeders [27,62,63]. These pigments were reduced upon
increasing the drought intensity, and the varieties which displayed maximum chlorophyll amounts in
water-deficient environments were considered drought-tolerant. Photosynthetic pigments of bread
wheat varieties were influenced by drought [58,64].

3.2. Correlation Analysis

Correlation coefficients define the level of relationship between two variables or factors. It is
valuable in plant breeding since it can show a foretelling association that can be exploited in practice,
and it offers evidence about the relationship between several preferred traits. It offers a core concept
of the association among various yield-contributing traits, which is beneficial for plant breeders in
choosing varieties having desired attributes [65,66]. In this experiment, evidence of the correlation of
seedling traits in non-stress and stress conditions may help advance strategies for the assortment of
required varieties with preferred traits (Table 4).

In this study, simple correlation coefficients of root length exhibited a positive and strong
correlation with root/shoot ratio, fresh weight, dry weight, cell membrane thermo-stability, carotenoid,
and chlorophyll a, while a negative association was exhibited with shoot length and relative water
content, as also reported by wheat scientists [36]. The association of shoot length was negative
with other tested characters, except for RWC, which showed a significant and positive association,
and chlorophyll a, which showed a non-significant association. Some scientists showed contrasting
findings, whereby root length was positively correlated with shoot length, while root/shoot ratio
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was highly significantly associated with fresh weight, dry weight, cell membrane thermo-stability,
carotenoid, and chlorophyll a.

Table 4. Correlation matrix among wheat seedling traits under both environments.

Traits RL SL RS FWT DWT RWC CMT CTD Chl a

SL
N 0.04 ns

D −0.19 ns

RS
N −0.01 ns

−0.17 ns

D 0.93 ** −0.20 *

FWT
N 0.19 * −0.14 ns 0.15m ns

D 0.48 ** −0.18 ns 0.41 **

DWT
N 0.33 ** −0.16 ns 0.03 ns 0.88 **
D 0.62 ** −0.05 ns 0.53 ** 0.52 **

RWC
N 0.30 ** −0.19 ns

−0.01 ns 0.86 ** 0.92 **
D −0.33 ** 0.39 ** −0.30 * −0.70 ** −0.33 **

CMT
N 0.26 ** −0.17 ns

−0.02 ns 0.86 ** 0.87 ** 0.92 **
D 0.49 ** −0.18 ns 0.48 ** 0.47 ** 0.68 ** 0.50 **

CTD
N −0.48 ** 0.16 ns 0.32 ** 0.00 ns

−0.15 ns
−0.24 ns

−0.22 *
D 0.47 ** −0.04 ns 0.41 ** 0.34 ** 0.71 ** −0.18 ns 0.55 **

Chl.a
N 0.14 ns 0.02 ns

−0.07 ns 0.49 ** 0.65 ** 0.63 ** 0.68 ** −0.20 *
D 0.29 ** 0.007 ns 0.27 ** 0.28 ** 0.69 ** −0.14 ns 0.62 ** 0.58 **

Chl.b
N 0.07 ns 0.03 ns 0.002 ns 0.49 ** 0.63 ** 0.55 ** 0.58 ** −0.03 ns 0.82 **
D 0.08 ns

−0.24 * 0.135 ns 0.16 ns 0.43 ** −0.28 ** 0.38 ** 0.38 ** 0.48 *

** Highly significant (0.01); * significant (0.05); ns non-significant

In the current experiment, relative water content only showed a positive association with shoot
length, while it was negatively correlated with all other studied traits. Wheat breeders [67] conducted
an experiment and they observed a positive and highly significant correlation between fresh shoot
weight and dry shoot weight under normal and drought conditions. Higher chlorophyll and carotenoid
contents in tolerant genotypes were also reported earlier by wheat scientists [27,62]. In the current
experiment, a highly significant association was recorded between cell membrane thermo-stability and
carotenoid, chlorophyll a, and chlorophyll b. Some findings [32] related to the current study in terms
of shoot length showed that it was negatively correlated with root/shoot ratio and root length, while
relative water content was negatively correlated with root length under normal conditions. In this
experiment, a strong association existed between carotenoid and chlorophyll a and chlorophyll b.

RWC had a positive association with shoot length, but a negative association with the remaining
traits. Chlorophyll b had a negative association with shoot length and relative water content.
Chlorophyll a showed a negative association with RWC and had a non-significant positive correlation
with shoot length, while the remaining studied traits exhibited a significant positive correlation.
The present results are supported by the findings of Dhanda et al. [32].

Under drought conditions (Table 4), simple correlation showed that root length was positively
associated with fresh weight, dry weight, and relative water content. Cell membrane thermo-stability
showed a non-significant association with shoot length, chlorophyll a, and chlorophyll b, but a negative
association with carotenoid and root/shoot ratio. Under drought conditions, the correlation of root
length with root/shoot ratio was non-significant. Fresh weight and dry weight also showed a found
positive and significant relationship, whereas its relationship with root/shoot ratio was non-significant.
The results of Reference [68] support our findings, whereby their correlation coefficients depicted that
root length showed a highly positive and significant association with fresh weight and dry weight
under drought conditions.

Relative water content was positively associated with root length, fresh weight, dry weight,
cell membrane thermo-stability, chlorophyll a, and chlorophyll b, while a negative non-significant
relationship with shoot length, root/shoot ratio, and carotenoid was displayed (Table 4). Wheat
breeders [54] investigated six wheat genotypes for their capacity to stand in drought conditions.
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Results showed that Sardari had the highest relative water content (74.43%) and Ghods contained
44.26% relative water content. The results of a wheat experiment [68] similar with this experiment
showed that root/shoot ratio had a non-significant correlation with fresh weight, dry weight, root length,
and shoot length. Many scientists [69] observed that genotypes retained the maximum percentage of
relative water content and survived well in drought environments. The relative water content of a leaf
is an essential sign of water status in plants; it reveals the stability between water supply to the leaf
tissue and transpiration rate. The difference in the RWC of genotypes in water-deficient conditions
may explain the difference in the maximum uptake of water from soil or the ability of stomata to
reduce the loss of water [50].

Cell membrane thermo-stability was positively associated with root length, fresh weight, dry
weight, relative water content, chlorophyll a, and chlorophyll b, while a negative relationship with
shoot length, root/shoot ratio, and carotenoid was observed. The relationship between chlorophyll
a and chlorophyll b was positive and highly significant, while they were both negatively correlated
with carotenoids. Earlier findings [32] supported current results, indicating that the cell membrane
thermo-stability of wheat seedlings was the most important trait, followed by root length, fresh weight,
and dry weight, on the basis of their relationships with other traits. The results of a wheat experiment
under drought conditions [36] supported the present findings, whereby root/shoot ratio expressed a
negative correlation with shoot length under both conditions. This indicated that the underground part
of the plant plays an important role under drought stress conditions [32]. Plant scientists [65] evaluated
physiological traits as indicators of drought tolerance, and they concluded that those genotypes which
possessed a high percentage of RWC and CMT resist more against drought than those genotypes which
possess a low percentage of RWC and CMT in wheat. It was stated that maximum RWC is a resistance
mechanism against water-deficient stress; it is the result of high osmotic regulation or a low elasticity
of cell-wall tissue [18].

The different behavior of the indices in various conditions and their association may be due to
an altered behavior of varieties under different environments [32]. The traits that were negatively
correlated can affect he performance of other traits during the selection process. As root length,
fresh weight, dry weight, cell membrane thermo-stability, and chlorophyll b were positively correlated
with each other in both conditions, selection of any one trait would improve the performance of
studied attributes. Chlorophyll destruction was revealed to be accompanied by the injury of mesophyll
chloroplasts, which led to a lesser photosynthetic rate [70]. Furthermore, the reduction in chlorophyll
and carotenoid levels in crop plants under water-deficient environments was deliberated as a typical
symptom of oxidative stress and may be the result of pigment photo-oxidation and chlorophyll
degradation [71]. As shoot length was non-significant and negatively correlated with the examined
attributes, except for relative water content, selection for this trait seems to be a less promising criterion
for this germplasm for the studied attributes.

3.3. Principal Component Analysis (PCA)

Patterns of variation were studied in 105 wheat genotypes using principal component analysis
(PCA) based on the correlation matrix to evaluate the diversity of the germplasm and the association
of wheat seedling indices under normal and drought conditions. The significance of the eigenvalues,
established by Kaiser [72], was used to choose the statistically significant principal components (PCs).
Only the PCs that exhibited eigenvalues higher than one were measured as significant.

Principal component (PC) analysis is a multivariate statistical analysis for examining and
simplifying complex and large datasets. This analysis transforms the larger number of correlated
variables into smaller ones, as explained by El-Deeb and Mohamed [73]. Similarly, a biplot analysis
can be utilized to select variables that can be categorized into main groups and subgroups based
on homogeneity and dissimilarity. For parental selection in breeding programs, biplot analysis was
previously used for this purpose [74–76].
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Out of 10 principal components (Table 5), the first three PCs exhibited eigen values higher than
one (significant) under both conditions. The other seven PCs exhibited non-significant variation and
were not worthy of further interpretation (eigen values less than one). Under normal and stress
conditions, the first three PCs showed 74.6% and 76% total variation, respectively, in the studied
germplasm. The first PC accounted for 46.5% of the variance, the second accounted for 14.9%, and the
third accounted for 13.2% under normal conditions. In drought conditions, the first PC contributed
48.1% of the total variance, the second contributed 15.5%, and the third contributed 12.4%.

Table 5. Eigenvalues, variability, and cumulative of wheat seedling traits under both environments.

Environments PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Eigenvalue Normal 4.65 1.49 1.32 0.86 0.49 0.44 0.34 0.2 0.17 0.05
Drought 4.81 1.55 1.24 0.91 0.74 0.37 0.16 0.09 0.08 0.04

Variability (%) Normal 46.5 14.9 13.2 8.6 4.9 4.4 3.4 2 1.7 0.5
Drought 48.1 15.5 12.4 9.1 7.4 3.7 1.6 0.9 0.8 0.4

Cumulative (%) Normal 46.5 61.4 74.6 83.3 88.1 92.5 95.9 97.8 99.5 100
Drought 48.1 63.6 75.9 85.1 92.4 96.2 97.8 98.7 99.6 100

PC = principal components PC1 to PC10 of studied wheat seedling traits.

The first PC was highly related to dry weight (0.406) and cell membrane thermo-stability (0.381)
under normal conditions, while, under stress conditions, it was highly related to relative water content
and cell membrane thermo-stability (Table 6). PC2 was related to relative water content and chlorophyll
a, with a maximum negative value for fresh weight under normal conditions; in drought conditions,
it was positively related to carotenoid and root/shoot ratio, and displayed the highest negative value
for root length, while chlorophyll a had no relationship (Table 6). The third PC was highly related
to chlorophyll b and chlorophyll a, and negatively related to root length under normal conditions.
Under drought conditions, PC3 was positively related to root/shoot ratio and root length, while it was
negatively related to shoot length and chlorophyll b (Table 6). Water stress causes water loss from
plant tissues, which seriously impairs both membrane structure and function [32]. The membrane of
plant cells is one of the first targets of drought stress, and the ability of plants to maintain membrane
integrity under drought is what determines tolerance toward drought; this is used as a criterion for
discriminating among tolerant and susceptible varieties.

Table 6. Principal component analysis (loading factor) of seedling traits under normal and
drought conditions.

Variables Environments PC1 PC2 PC3

Root length Normal 0.349 −0.188 −0.480
Drought 0.155 −0.486 0.247

Shoot length Normal −0.118 0.432 −0.410
Drought −0.066 −0.055 −0.668

Root/shoot Normal 0.334 −0.211 −0.440
Drought 0.002 0.491 0.434

Fresh weight Normal 0.316 −0.329 0.060
Drought 0.397 0.200 0.138

Dry weight Normal 0.406 0.212 −0.062
Drought 0.435 0.050 0.071

Relative water content
Normal −0.272 0.463 −0.323
Drought 0.432 −0.006 0.101

Cell membrane thermo-stability Normal 0.381 0.067 0.102
Drought 0.430 0.011 0.020
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Table 6. Cont.

Variables Environments PC1 PC2 PC3

Carotenoid
Normal 0.339 0.318 −0.050
Drought −0.115 0.678 −0.164

Chlorophyll a Normal 0.317 0.450 0.138
Drought 0.359 0.000 −0.333

Chlorophyll b Normal 0.231 0.240 0.514
Drought 0.334 0.135 −0.363

The projection of traits on PC1 and PC2 under normal conditions revealed that root length and
root/shoot ratio were highly and positively related to seedling fresh weight. Relative water content
and shoot length were associated with each other and had a negative relationship with all other
studied traits (Figure 1a). This deviation in RWC may be attributed to differences in the ability of
the varieties to absorb more water from the soil and/or the ability to control water loss through the
stomata. It may also be due to differences in the ability of the examined genotypes to accumulate water
and adjust osmotically. Chlorophyll a, b, carotenoid, and cell membrane thermo-stability showed a
positive association with seedling dry weight, but a negative association with all other remaining traits
under normal conditions (Figure 1a). The major role of carotenoid through the direct quenching of
triplet chlorophyll prevents the generation of singlet oxygen and protects the plant from oxidative
damage. Chlorophyll and carotenoid absorb radiant energy, which is used for photosynthesis [60,77].
The projection of traits on PC1 and PC2 under drought conditions revealed that root length, shoot
length, and carotenoid were negatively associated with each other, and had no relationship with other
studied traits. Chlorophyll a,b, relative water content, cell membrane thermo-stability, and fresh weight
were highly and positively related to dry weight (Figure 1b).
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Figure 1. (a) Principal component (PC) loading plot (projection of variables on the factor plan 1 × 2) of
seedling traits under normal conditions. (b) Principal component loading plot (projection of variables
on the factor plan 1 × 2) of seedling traits under drought conditions.

Principal component analysis is also helpful in selecting diverse parents for hybridization and
other plant breeding techniques [78]. The projection of genotypes on PC1 and PC2 was useful in the
selection of the diverse groups of parents. The projected pattern of genotypes on the two PCs showed
the population structure under normal and drought conditions. The genotypes appearing in the same
square box in Figure 2a,b, had the same performance, while those appearing in different squared boxes
had differing performance.

Under normal conditions, G21 (BWL-812), G61 (CHAKWAL-86), G16 (9930), and G11 (9797) were
opposite to G105 (BARS-2009) and G98 (MOOMAL-2002). Genotypes G1 (9493) and G4 (9515) were
opposite to genotype G102 (Nowshera-96), while G104 (Parwaz-94) and G3 (9508) were opposite to each
other and showed clear diversity among all genotypes (Figure 2a). There was a clear difference between
drought-tolerant and drought-susceptible genotypes. Under drought conditions, the genotypes G1
(9493) and G6 (9618) were opposite to G105 (BARS-2009), G98 (MOOMAL-2002), and G3 (9508), while
G96 (FSD-83) was opposite to G11 (9930) and G14 (9877). Genotype G11 (9797) and genotype G1
(9493) showed clear diversity from G3 (9508) and G105 (BARS-2009) (Figure 2b). Principal component
analysis was also used by plant scientists [79] in wheat seedling traits to determine diversity and
grouping [75]. Numerous plant breeders [79–81] used principal component analysis in spring wheat
genotypes to obtain genetic diversity. Therefore, there is a dire need to investigate genetic diversity
in the currently used germplasm in order to maintain a desirable level of genetic variation for future
wheat breeding. The different behavior of wheat genotypes under drought stress conditions detected
in this experiment may reflect the effect of genetic factors and the influence of environments [49–51].
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4. Conclusions

In total, 105 wheat genotypes were screened against drought stress under factorial CRD using
root length, shoot length, root/shoot ratio, seedling fresh weight, seedling dry weight, relative water
content, cell membrane thermo-stability, chlorophyll a, b, and carotenoid as drought indices in wheat.
The projection of traits on PC1 and PC2 under drought conditions revealed that root length, shoot length,
and carotenoid were negatively associated with each other, and no relationship was found with other
studied traits. Thus, selection for shoot length is not a promising criterion for this germplasm.
The genotypes which performed better among the 105 spring wheat genotypes were considered as
drought-tolerant, and those having the lowest performance under both conditions were considered as
drought-susceptible. Therefore, using these criteria, 10 genotypes were selected as drought-tolerant
(9493, 9618, 9797, 9930, BWL-812, DPW-621-50, C-128196, 10115, 10117 and CHAKWAL-86) and five
genotypes were selected as drought-susceptible (9508, MILLAT-2011, UFAQ-2002, MOOMAL-2002 and
BARS-2009). The present investigations also showed a clear-cut identity of genotypes and selection



Sustainability 2019, 11, 2584 14 of 17

criteria for preferred traits, which would be of great utility in wheat breeding programs for developing
drought-tolerant wheat genotypes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/9/2584/s1.

Author Contributions: H.G.M.-D.A. methodology and writing original draft preparation also collected
experimental data. M.S. Investigations and improving the first draft. S.H.K. Supervision. M.A.A. reviewed the
manuscript. M.R. and R.H.M. data analysis. M.L. reviewing and editing the manuscript.

Funding: The authors gratefully acknowledge the National Key R&D Program of China (2018YFD0200500) for
the financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dixon, J.; Braun, H.-J.; Kosina, P.; Crouch, J.H. Wheat Facts and Futures 2009; Cimmyt: Mexico City,
Mexico, 2009.

2. Ahmed, H.G.M.-D.; Khan, A.S.; Kashif, M.; Khan, S. Genetic analysis of yield and physical traits of spring
wheat grain. J. Natl. Sci. Found. Sri Lanka 2018, 46, 23–30. [CrossRef]

3. Abbas, M.; Sheikh, A.; Sabir, H.M.; Nighat, S. Factors responsible for low wheat productivity in Central
Punjab. Pak. J. Agric. Sci. 2005, 42, 3–4.

4. Bashir, A.; Mahmood, M.A.; Sheikh, A.; Kashif, M. Causes of wheat yield decline in the irrigated Punjab.
J. Agric. Res. 2006, 44, 71–83.

5. Yagdi, E.A.C.K. Study of genetic diversity in wheat (Triticum aestivum) varities using Random Amplified
Polymorphic DNA (RAPD) analysis. Turk. J. Field Crops 2012, 17, 91–95.

6. Toker, C.; Canci, H.; Yildirim, T. Evaluation of perennial wild Cicer species for drought resistance. Genet. Resour.
Crop Evol. 2007, 54, 1781–1786. [CrossRef]

7. Ali, A.; Ali, N.; Ullah, N.; Ullah, F.; Adnan, M.; Ahmed, Z. Effect of drought stress on the physiology and
yield of the Pakistani wheat germplasms. Int. J. Adv. Res. Technol. 2013, 2, 419–430.

8. Batool, A.; Noorka, I.R.; Afzal, M.; Syed, A.H. Estimation of heterosis, heterobeltiosis and potence ratio over
environments among pre and post Green Revolution Spring wheat in Pakistan. J. Basic Appl. Sci. 2013, 9,
36–43.

9. Mir, R.R.; Zaman-Allah, M.; Sreenivasulu, N.; Trethowan, R.; Varshney, R.K. Integrated genomics, physiology
and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 2012, 125, 625–645.
[CrossRef] [PubMed]

10. Ahmad, I.; Khaliq, I.; Khan, A.S.; Farooq, M. Screening of spring wheat (Triticum aestivum L.) genotypes for
drought tolerance on the basis of seedling traits. Pak. J. Agric. Sci. 2014, 51, 367–372.

11. Ahmed, H.; Khan, A.S.; Khan, S.H.; Kashif, M. Genome wide allelic pattern and genetic diversity of spring
wheat genotypes through SSR markers. Int. J. Agric. Biol. 2017, 19, 1559–1565.

12. Ashfaq, W.; Ul-Allah, S.; Kashif, M.; Sattar, A.; Nabi, H.G. Genetic variability study among wheat genotypes
under normal and drought conditions. J. Glob. Innov. Agric. Soc. Sci. 2016, 4, 111–116. [CrossRef]

13. Noorka, I.R.; Batool, A.; Rauf, S.; Teixeira da Silva, J.; Ashraf, E. Estimation of heterosis in wheat
(Triticum aestivum L.) under contrasting water regimes. Int. J. Plant Breed. 2013, 7, 55–60.

14. Zhang, H.; Wang, H. Evaluation of drought tolerance from a wheat recombination inbred line population at
the early seedling growth stage. Afr. J. Agric. Res. 2012, 7, 6167–6172.

15. Shahbazi, H.; Bihamta, M.R.; Taeb, M.; Darvish, F. Germination characters of wheat under osmotic stress:
Heritability and relation with drought tolerance. Int. J. Agric. Res. Rev. 2012, 2, 689–698.

16. Bilal, M.; Rashid, R.; Rehman, S.; Iqbal, F.; Ahmed, J.; Abid, M.; Ahmed, Z.; Hayat, A. Evaluation of wheat
genotypes for drought tolerance. J. Green Physiol. Genet. Genom. 2015, 1, 11–21.

17. Almeselmani, M.; Abdullah, F.; Hareri, F.; Naaesan, M.; Ammar, M.A.; ZuherKanbar, O.; Saud, A.A. Effect of
drought on different physiological characters and yield component in different varieties of Syrian durum
wheat. J. Agric. Sci. 2011, 3, 127. [CrossRef]

18. Arjenaki, F.G.; Jabbari, R.; Morshedi, A. Evaluation of drought stress on relative water content, chlorophyll
content and mineral elements of wheat (Triticum aestivum L.) varieties. Int. J. Agric. Crop Sci. 2012, 4, 726–729.

http://www.mdpi.com/2071-1050/11/9/2584/s1
http://dx.doi.org/10.4038/jnsfsr.v46i1.8262
http://dx.doi.org/10.1007/s10722-006-9197-y
http://dx.doi.org/10.1007/s00122-012-1904-9
http://www.ncbi.nlm.nih.gov/pubmed/22696006
http://dx.doi.org/10.22194/JGIASS/4.3.758
http://dx.doi.org/10.5539/jas.v3n3p127


Sustainability 2019, 11, 2584 15 of 17

19. Datta, J.; Mondal, T.; Banerjee, A.; Mondal, N. Assessment of drought tolerance of selected wheat cultivars
under laboratory condition. J. Agric. Technol. 2011, 7, 383–393.

20. Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R.
Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric.
Biol. 2009, 11, 100–105.

21. Anjum, S.A.; Xie, X.-Y.; Wang, L.-C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and
biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032.
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