

Supplementary Materials:

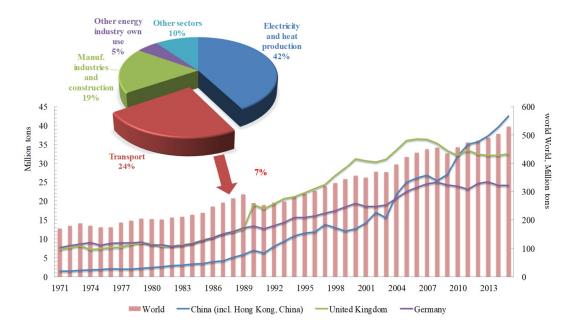


Figure S1. Carbon emissions of transportation and aviation industry [9].

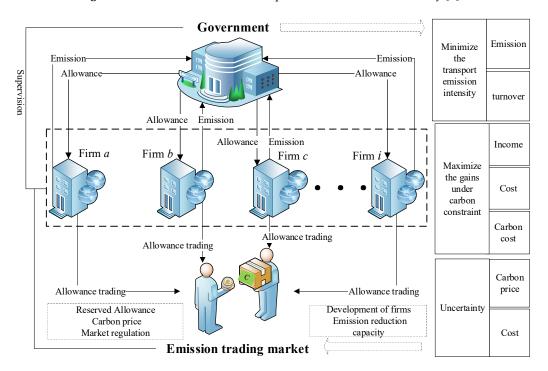
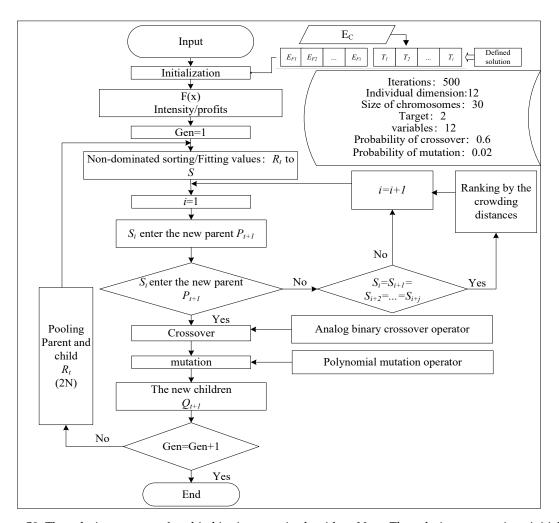
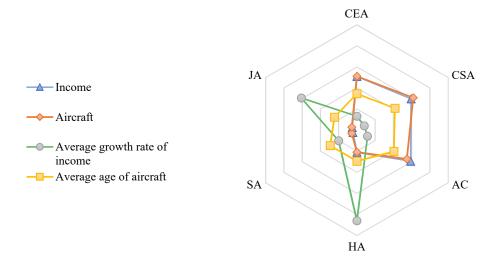




Figure S2. The conceptual model of MCAA in the aviation industry.

Figure S3. The solution process of multi-objective genetic algorithm. Note: The solution process is to initialize the group, calculate our target value, sort, and compare the crowded distances of the same level, and then select the non-inferior solution to enter the crossover, mutation, and iteration, and finally work out the optimal solutions.

Figure S4. Categories of 6 airlines.

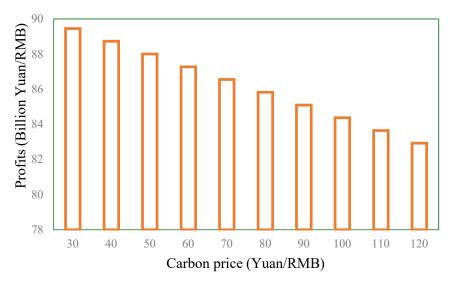


Figure S5. Relationship between the carbon price and firms' profits.

Table S1. Description of parameters and variables.

Function	Description
E_{i}	Actual emissions of firm <i>i</i>
T_{i}	Tons and kilometers of output
p_{i}	Price of per transportation of firm i
C_{i}	Cost of firm i
p_{c}	The carbon price, which is 30 RMB according to China's ETS
$E_{\!\scriptscriptstyle ti}$	Emissions trading volume
Parameters	Description
E_{i}	Actual emissions of firm i
\mathcal{P}_i	Price per instance of transportation of firm <i>i</i> ; equal to the average of their historical price
C_{i}	Cost of firm i
p_{c}	The carbon price, which is 30 RMB according to China's ETS
$E_{\it ti}$	Emissions trading volume
E_{C}	The total quotas
$Q_{\mathit{fuel}}^{\scriptscriptstyle{CO_2}}$	The quantity of fuel emitting CO ₂
$F_{\it fuel}^{\it co_2}$	Emission factor, which indicates the CO ₂ emissions of fuel's combustion
$E_i^{ m min}$	Minimum emissions of Firm <i>i</i> , which is 80% of the minimum actual emissions in the past three years
$E_{ti}^{}$	Amount of allowance that Firm <i>i</i> purchases
$E_{ti}^{\;-}$	Amount of allowance that Firm <i>i</i> sells
${d}_i^{\mathrm{min}}$	The minimum value in the total turnover of Firm i in the past three years
d_i^{max}	120% of the maximum value in the total turnover of Firm i in the past three years
Decision Variables	Description
T_{i}	Tons and kilometers of output
E_{Fi}	Free allowance volume of Firm i