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Abstract: The necessity of freshwater for sustaining human life has prompted the development of
numerous estimation techniques and metrics for understanding where, when, and why water is
used. While estimates are valuable, techniques for estimating water use vary, and may be difficult to
replicate and/or unavailable on an annual basis or at the regional scale. To address these drawbacks,
this paper proposes a series of regional indices for the continental United States that could serve as
proxies for water use that are based on key variables associated with water use. Regional indices at
the county level are computed, compared against each other, and compared to water withdrawal
estimates from the United States Geological Survey (USGS). These comparisons highlight differences
amongst the derived indices and the water withdrawal estimates. They also demonstrate promise
for future development and implementation of related indices, given their similarities with water
withdrawal estimates. Using only a small set of variables, these indices achieve some degree of
similarity (~20%) to estimates of water withdrawals. The comparative data availability and ease of
estimating these indices, as well as the ability to decompose the additive indices into their constituent
use categories and constituent variables, renders them practically useful to water managers and other
decision makers for identification of locally specific drivers of water use and implementation of more
geographically-appropriate policies to manage scarce water resources.

Keywords: water use; water demand; multivariate analysis; water withdrawals; regional

1. Introduction

Water covers 70% of the earth, but less than 1% of this water is suitable for human consumption
and food production [1]. Recent studies estimate that 4 billion people suffer from severe water scarcity
at least one month per year and that half these people reside in China and India [2]. This scarcity is
exacerbated by the uneven distribution of water globally [3] and widespread pollution that negatively
affects human health [4]. Climate change, which has increased air temperature and modified regional
precipitation patterns [5], has changed the distribution of renewable water resources [6]. Population
growth has also altered the demand for renewable water resources [7]. Compounding this scarcity is
the urbanization and development of countries around the globe [8]. Water consumption is linked
with affluence [9] and studies highlight that per capita uses of water in developed countries are orders
of magnitude greater than water use in developing nations [10].
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The global scarcity of freshwater, combined with the aforementioned pressures, has attracted the
attention of water scientists and engineers around the world. Their research efforts are dedicated to
understanding and reducing demands on water supply/demand through technological innovation
while improving management of available resources [11]. A critical first step in reducing pressures
on water systems is identifying locations of higher water use and the drivers of this use. To this end,
researchers have created a variety of water scarcity and water stress metrics [12–15]. Several of these
indices involve global assessments using country-level data, which limits our ability to understand
important variations in use and water stress at a regional scale.

From a management perspective, more localized regional metrics are critical to achieving the
first step in sustainable water management, which is understanding “where, when, and how water
is used to satisfy our needs” ([11], p. 20). More recently, studies have begun to address the need for
assessment of regional water scarcity and development of stress indicators by analyzing water demand
at finer spatial scales [16,17]. This paper builds on these efforts by deriving four multivariate indices of
water use based on county-level data for the United States, which is one of the nations with the highest
level of water use globally [10]. Variables used to construct our multivariate indices are grouped into
three categories of use: agriculture, industry, and municipal. Once derived, the multivariate indices
are compared to one another and to county estimates of water withdrawals from the United States
Geological Survey (USGS). Here, it is important to note that these variables indicate the potential for
water use since the composite indices and their components are not estimates of actual use but are
instead based on variables from the literature that are acknowledged to be drivers of use.

While metrics for understanding water use are an ongoing area of research, the composite indices
developed in this article offer two key advantages over prior efforts. First, the indices use publicly
available data that are easy to collect. We illustrate techniques that can be used by others as better and
newer data become available. Second, the additive indices are decomposable into their constituent
components, which simplifies understanding of the individual factors driving water use at a localized
level. This facilitates a comprehensive appreciation of pressures on water resources, which can assist
with the formulation of better policies to reduce water use.

2. Indicators of Water Use

The United States used an estimated 1.343 trillion liters of water per day in 2010, according to the
USGS, yet this level of water use represents a 13% decrease from consumption patterns observed in
2005 [18]. Reasons for this declining trend can vary by location, however, because the local economy,
demographic shifts, conditions of the housing stock, and general growth patterns affect the level of
water use [19]. Water used for agricultural purposes (e.g., irrigation and livestock) decreased from 488
to 446 billion liters per day, representing an 8% decline between 2005 and 2010, while industrial uses of
water also declined by 8% (60.9 to 56 billion liters per day) during the same period [20]. Residential
water use also declined from 670 to 522 liters per household per day (22% decline) and from 261 to 219
liters per capita per day (16% decrease) between 1999 and 2016 [21]. Despite the overall decrease in
water use and consumption, it remains vitally important that we understand the composition of water
use across these activities since it is likely that this trend manifests differently across geographic space
with distinct regional variation.

The value of water and the need to understand pressures on water systems has prompted
considerable attention in the scientific community. Water use is a multifaceted issue that involves
population and demographic characteristics, natural features, and the climatic characteristics of
place [6]. Although the uses of water vary by country and regions within countries [18,20] human
uses may be categorized into three types: agricultural, industrial, and municipal [6,22]. To construct a
more nuanced, multivariate index that characterizes the diverse range of human pressures on water
resources, data were collected for each of these three domains of water use to coincide with our study
year of 2010. To these three domains, climatic variables were added to account for the relationship
between climatic conditions and water use [23,24]. Table 1 contains the suite of variables considered
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as potential index inputs with associated sources (see also Table S1 in Supplementary Material for
data dictionary). Several variables are standardized and placed in percentage terms to account for
variations in establishment presence and housing types across counties of varying sizes. It is important
to note that this is not an exhaustive list of all possible uses of water. Rather, this list is meant to
summarize major uses of water in each of the three activity areas (agriculture, industry, and municipal)
based on information derived from the literature.

Table 1. Data description and sources.

Variable Name Description Year and Source

Agricultural

Irrigated Land Irrigated agricultural land as a percent of total land area 2012 Census of Agriculture, USDA [25]

Corn Production Corn production in tons per square mile 2012 Census of Agriculture, USDA [25]

Cotton Production Cotton production in bales per square mile 2012 Census of Agriculture, USDA [25]

Soybean Production Soy production in bushels per square mile 2012 Census of Agriculture, USDA [25]

Winter Wheat Production Winter wheat production in bushels per square mile 2012 Census of Agriculture, USDA [25]

Industry

Agricultural Agricultural establishments as a percent of total
establishments 2010 County Business Patterns, US Census Bureau [26]

Mining Mining establishments as a percent of total establishments 2010 County Business Patterns, US Census Bureau [26]

Manufacturing Manufacturing establishments as a percent of total
establishments 2010 County Business Patterns, US Census Bureau [26]

Utilities and Energy Energy generating establishments as a percent of total
establishments 2010 County Business Patterns, US Census Bureau [26]

Residential

4 Bedrooms or More Percent of total housing units with 4 bedrooms or more 2008–2012 American Community Survey, IPUMS National
Historical Geographical Information Systems (NHGIS) [27]

Median Home Value Median house value (2012, USD$) 2008–2012 American Community Survey, IPUMS National
Historical Geographical Information Systems (NHGIS) [27]

Single Family Homes Percent of total housing units that is single-family residential 2008–2012 American Community Survey, IPUMS National
Historical Geographical Information Systems (NHGIS) [27]

Climate

Precipitation Average annual precipitation in mm PRISM [28]

Temperature Average annual temperature in degrees Celsius PRISM [28]

2.1. Agricultural Water Use

While uses of water vary within and across countries, global statistics of water use indicate that
agriculture accounts for 70% of water use on average [29]. Irrigation for crop growth is one of the
major users of water for agriculture [30] and accordingly, studies use the amount of irrigated land as
a proxy for agricultural water use [7]. Irrigation needs vary by the location and type of crop grown
and accordingly, crop coefficients that represent the “soil, climatic, environmental and management
factors” that impact crop water needs have been developed [31]. Thus, the crop profile of regions can
help understand varying water uses.

To capture agricultural activities in counties, data were collected from the 2012 Census of
Agriculture from the United States Department of Agriculture (USDA). Variables obtained from this
database included the amount of irrigated land area and the production of wheat, cotton, corn, and
soybeans; these crops are noted to be water intensive [30]. The Census of Agriculture is released every
5-years and, while there is a slight temporal mismatch between these data and the 2010 data collected
as indicators of industrial and residential water demand, these data are useful because they illustrate
where water-intensive crops are more likely to be grown.

2.2. Industrial Water Use

Industry is another activity that uses substantial amounts of water. Major industrial users of
water are power generation, mining, livestock and aquaculture, and manufacturing [18,32,33]. Older
manufacturing activities including those related to metals, chemicals, food, and petroleum [34] are
well-known users of water, as is mining for solid minerals [18,35]. Water is used in industry as a
solvent and in finished products; it is also used for washing and cooling [6].
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New economy manufacturing activities oriented towards computer technology also use a lot of
water. For example, manufacturing semiconductors, which requires the use of ultrapure water, can
consume millions of liters of water per day in one factory alone [36,37]. Manufacturers of everyday
household products such as jeans and cars also demand a large amount of water. For example, the
amount of water used to produce one car requires an automotive manufacturer to use ~148,000 liters
of water and to produce one pair of jeans, a textile manufacturer will use ~11,000 liters [38].

To proxy for industrial uses of water, information concerning the number of businesses by county
was obtained from the 2010 County Business Patterns of the U.S. Census Bureau for agriculture,
forestry, fishing, and hunting (NAICS 11), mining (NAICS 21), utilities (NAICS 22), and manufacturing
industries (NAICS 31–33). Establishments in these industries are grouped by the North American
Industrial Classification Industry (NAICS), which categorizes establishments by production process [39].
While there is overlap with the USDA data described in the previous section, business level data about
agriculture was collected to capture farming and related activities not otherwise captured in the USDA
data, including ranching, hatcheries, vegetable growing, and orchards [39]. The utilities sector includes
power generation activities for multiple types of power (electric, hydroelectric, fossil fuel, natural gas,
and nuclear) [39].

2.3. Residential Water Use

Population growth [7,40] and population density [41] are a popular means of characterizing
human demands on water systems. In global studies of water scarcity, rising population levels increase
competition for scarce water resources [42]. While this is certainly true in the developing world, in
the developed world, where water saving fixtures and appliances are available, as are the means for
water recycling and reuse, the link between people and water use is more complex. In this context, the
characteristics of people, particularly their incomes matters, as do the characteristics of housing [9].
Studies use housing density to analyze water use because lower household densities are associated
with more outdoor water use [43]. Higher housing densities present fewer opportunities for water use
in this context. Thus, in the developed world, the relationship between population density or housing
density and water use is complex.

From the large volume of research conducted on water use, we know that the three largest building
factors affecting residential water use are type and size of the dwelling as well as the age of construction.
There is widespread agreement that the size of single-family homes (square footage, number of rooms,
and number of bedrooms) predicts higher water use [44–47]. In particular, single-family homes use
the most water at the household level because they are correlated with larger lot size, more square
footage, and household size [48]. Zhou [49] and [44] found that the number of bathrooms in a house is
a contributor to water use.

Household income is the most studied sociodemographic variable related to residential water
consumption and the one for which there is the highest agreement in terms of linkages with water
use. As income increases in individual households, studies find total and per capita water use
increase [50–54]. This is because household income is positively correlated with many other factors that
are associated with higher water use, including single family residences (SFR) house size, lot size, and
water appliances, so that whatever wealthier households may gain in newer plumbing, water-saving
devices, or greater awareness of water conservation strategies, is more than offset by water-intensive
lifestyles [9]. When income measures are not available, studies have used property values [45,55],
education [56], occupation [44], and ethnicity [50] as proxies for affluence.

To account for the aforementioned factors that are associated with higher residential water use,
three variables are drawn from the 2008–2012 American Community Survey of the U.S. Census Bureau
compiled by the IPUMS National Historical Geographical Information System [27] where our study
year of 2010 is the midpoint: the percentage of single-family homes in a county, the percentage of
homes with four or more bedrooms, and median home value. The single-family home variable is
designed to capture the relationship between single-family homes and greater water use [48]. The
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bedroom variable is intended to capture the likelihood that a home will have more bathrooms in the
absence of data availability on bathrooms in households at the county level. Median home value is
used to capture the link between home value and water use [45,57].

2.4. Climatic Variables

Water demand for agriculture and urban/residential use is modulated by climate [6]. Aside from
the agricultural, industrial, and residential mix within individual counties, their climatic conditions are
also important to capture because studies have highlighted that seasonal climatic conditions account
for substantial variation in outdoor water use [50]. Many agricultural crops and plants in urban areas
(e.g., lawns) require access to sufficient soil moisture to survive and grow. Soil moisture depends
principally on the balance of water inputs (precipitation, irrigation) and outputs (evapotranspiration,
runoff and percolation) to the soil system [58]. In regions and seasons where precipitation exceeds
evapotranspiration, plants typically have access to sufficient water without the need for irrigation
(provided precipitation is not too heterogeneously distributed in time and runoff is not excessive).
However, in regions where precipitation cannot supply sufficient water, irrigation may be required,
and water demand is likely to be more fully coupled to thermal, moisture, and radiative climate.
In many regions of the contiguous U.S., summer months represent peak irrigation requirements due
to more heterogeneous precipitation, higher evapotranspiration (due to higher temperatures and
solar radiative forcing), and greater plant growth (whose underlying power source, photosynthesis,
consumes additional water).

Here, we focus on precipitation inputs and evapotranspiration outputs to the local water balance
for irrigated locations during summer. In addition to plant characteristics and relative amounts of
water in the soil and atmosphere, evapotranspiration is driven by solar radiation and is strongly
modulated by air temperature (which is positively correlated with solar radiation). Therefore, we
include air temperature as a proxy for evapotranspiration; a more direct approach based on the
Penman-Monteith equation could employ the “MODIS/Terra Net Evapotranspiration 8-day” [59] data
set available from the US Geological Survey. Alternatively, latent heat flux dynamically downscaled
by a regional climate model that was evaluated against a suite of multi-scale annual and seasonal
observational products across the contiguous US would provide a third option [60,61]. Broad regional
patterns of air temperature in the US have a latitudinal gradient; evapotranspiration, however, presents
a stronger east-west variation between the dry western and humid eastern summertime US climates.
However, in our view, there is no single data set that stands out from the others, and a number of
systematic errors may bias each modelled evapotranspiration product in unknown ways. Accounting
for the full range of potential differences and characterizing the source of these differences is a useful
endeavor but is beyond the scope of this particular paper. Nevertheless, one caveat of our approach
that uses air temperature as a surrogate for evapotranspiration is that it may overestimate variation
between northern and southern US counties and underestimate corresponding east-west variation.

We use the June–August-average air temperature and precipitation total from 2010 at 4 km
resolution from the observationally-based Parameter-elevation Relationships on Independent Slopes
Model (PRISM) data set [62], and subsequently spatially average all 4 km by 4 km precipitation and
temperature data grids located within each county. The PRISM data set is based on quality-controlled
data from more than 10,000 observation stations and uses spatial regression modeling that considers
location, elevation, coastal proximity, topographic facet orientation, vertical atmospheric layer,
topographic position, and orographic effectiveness of the terrain to assess gridded values. This product
represents a notable improvement over similar data sets, particularly in mountainous terrain [62].
Importantly, because PRISM is a spatially continuous dataset, it offers key advantages for the present
application that distinct meteorological stations do not provide.
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3. Index Construction Methodology

To provide a multivariate characterization of demand-based pressures on water systems, the
data discussed above were integrated into four indices (see Table S2 in Supplementary Materials
for county-level values of indices calculated in this study). These indices are compared to estimates
of water withdrawals in the year 2010 from the United States Geological Survey, a popular means
of characterizing water use [63–65]. Data on water withdrawals are presented according to the
broad categories of public supply, domestic, industrial, irrigation, livestock, aquaculture, mining, and
thermoelectric, but we consolidate these categories into groups that more closely match those provided
by the Food and Agriculture Organization (FAO) discussed later.

The methodology for constructing these indices and associated formulae are presented below.
These indices are computed for U.S. counties, which is a means of administratively dividing states
into smaller units. Aside from the availability of data at the county level, counties have important
administrative responsibilities in the United States, including education and law enforcement [66], and
thus represent units of analysis that have administrative power over people and resources. Counties
are also more geographically stable units for analysis than are other spatial subdivisions in the United
States that are based on population thresholds such as Census blocks or tracts, which change size and
shape as the population of places expands or contracts [67]. In this study, data were compiled for 3108
counties in the continental United States.

3.1. Unweighted Decile Index

The first index developed is an unweighted sum of deciles computed from the fourteen variables
that characterize agricultural, industrial and residential pressures on water resources. To accomplish
this, the variables summarized in Table 1 were placed into deciles (Di) and assigned a value of 0 through
9, where a 0 corresponds with counties that fall within the lowest 10% of all counties and a 9 indicates
counties that fall within the highest 10% of all counties. In this index low values identify places with
lower water use while high index values indicate higher water use. For example, placement of an
observation in the lowest 10% indicates it contains a very low value relative to other observations for
a given variable of interest. Alternatively, placement of an observation into the top decile indicates
that observation contains a very high value for a particular variable, relative to other observations in
the dataset.

In the case of average precipitation, however, this schema is reversed and counties with more
precipitation are placed into lower deciles. Unlike the other variables in Table 1, higher precipitation
typically reduces water use via the provision of soil moisture to agricultural and residential landscapes
that would otherwise need to be provided by irrigation. Once a decile value is computed for each of
the fourteen variables, the decile values are added and standardized (see Equation (1)) so the index
takes on values between 0 and 100.

Decile Index =
(

DecileSum−Minimum DecileSum
Maximum DecileSum−Minimum DecileSum

)
× 100 (1)

where:
DecileSum is the additive total of decile ranks across all variables in each county;
Minimum DecileSum is the lowest value of the total of decile ranks across all counties;
Maximum DecileSum is the highest value of the total of decile ranks across all counties
In this version of the index, no weights are applied. To address the issue of weighting, information

about the distribution of water use between sectors is incorporated into indices discussed later in this
paper (see Section 3.3).

3.2. Principal Components Analysis Index

Principal components analysis (PCA) provides a means of constructing a weighted index of
these same variables. PCA is a data reduction technique that produces linear combinations of the
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original variables, called components, which are uncorrelated combinations of variables that explain
the greatest amount of variation in the dataset. This method also determines the strength and direction
of the relationship between the variables and components, or component loadings, and uses these
loadings to calculate component scores, which indicate the value for each county on each component.
We employed several heuristics to determine an appropriate number of components to extract and
eventually rotate. First, we included a random variable in the analysis and if this variable exhibited a
moderate to high loading (±0.50 or greater), that particular component and any subsequent components
were considered noise in the dataset and were removed. Next, we visually inspected the output
and retained components with an eigenvalue greater than 1. Finally, we ran a parallel analysis of
1000 randomly generated datasets and identified components with an eigenvalue greater than mean
eigenvalues produced from the randomly generated datasets [68].

When these criteria are applied to our dataset summarized in Table 1, the PCA model identified
five components for extraction and rotation. These five components were rotated orthogonally using
the Varimax method which maximizes the sum of the variances of the squared loadings and, in effect,
produces either large loadings or loadings near zero with few intermediate values and simplifies
interpretation of the PCA results. The five components accounted for over 59% of the total variation in
the data.

Component 1 illustrates corn and soy production per square mile across U.S. counties and, to
a lesser extent, the impact of average annual precipitation. Each is positively correlated with the
component indicating that corn and soy production increases or decreases alongside average annual
precipitation. Average annual summer temperature (◦C) and median house value are captured by
component 2 and show an inverse relationship suggesting that as the annual average temperature
increases, the median home value decreases. Wheat production per square mile is highlighted in
component 3 and shows a positive relationship with the percentage of single-family housing units.
Cotton production per square mile is positively correlated with the percentage of irrigated agricultural
land in component 4 while agricultural establishments and energy-producing establishments as a
percentage of total establishments are captured in component 5.

To incorporate some type of weighting into a composite index of water demand, we followed
previous research [69,70] and used the results of the PCA analysis from Table 2 to create an
unstandardized index of demand (USID) for each county i with the following notation:

USIDi =
∑

P1 f1i + P2 f2i + P3 f3i . . .P j fi j (2)

where:
Pj is the amount of variance explained by component j divided by the cumulative variance

explained by the model; and,
fij is the component score on each component j for each county i.
This index was standardized per the notation below so that it can be compared to the unweighted

decile index described above. This standardized version of the PCA weighted index takes on values
between 0 and 100 where lower numbers correspond to counties that have fewer demands on water
resources and counties with high index values have higher demands on water resources.

PCA Index =

(
County USID−Minimum USID

Maximum USID−Minimum USID

)
× 100 (3)

where:
County USID is the non-standardized value of the PCA weighted index for each county;
Minimum USID is the lowest non-standardized value of the PCA weighted index across all counties;
Maximum USID is the highest non-standardized value of the PCA weighted index across

all counties.
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Table 2. Results of principal components analysis (PCA).

Variables Corn and Soy Production Temperature & Home Value Wheat and Single Families Cotton and Irrigation Establishment Type

Housing units with 4 bedrooms or more (%) 0.288 −0.463 0.416 −0.123 −0.279
Median house value −0.224 −0.640 −0.187 0.092 −0.203

Single-family housing units (%) 0.478 −0.118 0.519 −0.213 −0.005
Agricultural establishments (%) −0.049 −0.019 −0.161 0.167 0.749

Mining establishments (%) −0.273 0.361 0.450 −0.185 0.140
Manufacturing establishments (%) 0.387 −0.009 −0.372 −0.256 0.251

Energy establishments (%) −0.119 0.106 0.229 −0.017 0.631
Irrigated agricultural land (%) 0.155 −0.137 0.425 0.652 0.145
Tons of corn per square mile 0.890 −0.030 0.081 0.070 −0.093

Bales of cotton per square mile −0.016 0.175 −0.078 0.806 0.074
Bushels of soy per square mile 0.859 0.053 0.073 0.127 −0.098

Bushels of wheat per square mile 0.052 −0.017 0.644 0.170 0.041
Average summer temperature (◦C) −0.079 0.766 −0.109 0.240 −0.100
Average annual precipitation (mm) 0.500 0.448 −0.281 −0.144 −0.209

Variance explained (%) 17.3 11.6 11.4 10.0 9.0
Cumulative variance (%) 17.3 28.8 40.3 50.3 59.3
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3.3. Composite Principal Components Analysis Index

A drawback of the unweighted decile and PCA-derived indices described above is they do not
reflect the variation in water use across various sectors. While there is variation in this distribution of
uses across counties [22], an index that incorporates this allocation of use, is perhaps more insightful
than one based on use-blind weights, such as those derived from the PCA above. To harness the
analytical power of PCA and incorporate weights that reflect the distribution of water use across
agriculture, industry, and households, a variant on the PCA-based index is proposed. To construct this
index, three separate PCA models (Table 3) were run on the following groups of variables:

1. Agriculture: irrigated land as a percentage of total land area; tons of corn per square mile; bales
of cotton per square mile; bushels of soy per square mile; and, bushels of winter wheat per
square mile

2. Industrial: agricultural establishments as a percent of total establishments; mining establishments
as a percent of total establishments; manufacturing establishments as a percent of total
establishments; and, energy generating establishments as a percent of total establishments

3. Residential: percentage of housing units with four bedrooms or more; single-family housing
units as a percent of total housing units; and, median home value

Table 3. Communalities of PCA models.

Categories and Variables Component 1 Component 2 Communality

Agriculture
Irrigated agricultural land (%) 0.151 0.805 0.670
Tons of corn per square mile 0.957 0.037 0.917

Bales of cotton per square mile −0.103 0.689 0.485
Bushels of soy per square mile 0.946 0.080 0.902

Bushels of wheat per square mile 0.085 0.546 0.306
Variance explained (%) 37.0 28.6

Cumulative variance (%) 37.0 65.6

Industrial
Agricultural establishments (%) 0.844 0.131 0.730

Mining establishments (%) 0.190 -0.576 0.368
Manufacturing establishments (%) 0.108 0.817 0.680

Energy establishments (%) 0.643 -0.348 0.534
Variance explained (%) 29.3 28.5

Cumulative variance (%) 29.3 57.8

Residential
Housing units with 4 bedrooms or more (%) 0.822 0.264 0.745

Median house value 0.005 0.965 0.931
Single-family housing units (%) 0.834 −0.241 0.754

Variance explained (%) 45.7 35.3
Cumulative variance (%) 45.7 81.0

These independent PCA models were also rotated orthogonally using the Varimax method to
produce uncorrelated components. Communalities describe the amount of variation in each variable
explained by the PCA models and these values serve as weights in our composite PCA index. Our
original variables were converted to z-scores to account for differences in measurement scale and we
applied the communality weights using the following set of equations:

Agriculture = (zirr× 0.670) + (zcorn× 0.917) + (zcotton× 0.485) + (zsoy× 0.902) + (zwheat× 0.306) (4)

Industrial = (zagest× 0.730) + (zminest× 0.368) + (zmanest× 0.680) + (zenest× 0.534) (5)

Residential = (z4bdrms× 0.745) + (zsingle× 0.754) + (zmhv× 0.931) (6)

Next, each group of variables was combined into a single, composite measure and additional
weights assigned based on information about water use across agricultural, industrial, and municipal
activities. Two sets of weights are used at this stage to reflect variations in use between the agricultural,
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industrial, and municipal sectors. These two sets of weights come from information about water use in
the United States from the Aquastat database of the Food and Agriculture Organization [29] and the
United States Geological Survey [18]. The FAO indicates uses of 36% agriculture, 51% industrial, 13%
municipal and the USGS indicates uses of 27% agriculture, 60% industrial, and 13% municipal. As such,
we used the weighted totals of the variable groups above and calculated two distinct composite PCA
indices as follows:

FAO Weighted PCA = (Agriculture× 0.36) + (Industrial× 0.51) + (Residential× 0.13) (7)

USGS Weighted PCA = (Agriculture ∗ 0.27) + (Industrial ∗ 0.60) + (Residential ∗ 0.13) (8)

Then, we standardized each of the composite PCA indices to a range of 0–100 as follows:

USGS or FAO Weighted Index =

(
County CompPCA−Minimum CompPCA

Maximum CompPCA−Minimum CompPCA

)
× 100 (9)

where:
County CompPCA is the non-standardized value of the USGS or FAO weighted index for

each county;
Minimum CompPCA is the lowest non-standardized value of the USGS or FAO weighted index

across all counties; and,
Maximum CompPCA is the highest non-standardized value of the USGS or FAO weighted index

across all counties.
It is worth noting that the information reported by these two sources is different. To align the

sectoral categories reported by the FAO with the use categories reported by the USGS, the USGS use
categories were mapped to the FAO categories in the following manner: municipal use contains the
domestic withdrawals component of public supply; agriculture contains withdrawals for irrigation,
livestock, and aquaculture; industrial withdrawals are classified as all other uses not classified as
municipal or agriculture. This latter category includes water withdrawn for use in mining and
thermoelectric power generation. It is important to note that, in our analysis, information about
domestic use is the only component of municipal use. Municipal use is defined by the FAO as “water
withdrawn for the direct use by the population” and can contain industrial and agricultural uses [22].
In the USGS database, public supply is the closest analog to municipal use and contains “water
delivered to users for domestic, commercial, and industrial purposes” [71]. Since it was not possible to
decompose public supply withdrawals into its constituent parts, only the domestic portion is classified
as “municipal” and the remainder allocated to industrial use. This is not considered a huge assumption
since “domestic deliveries represent the largest single component of public supply withdrawals” [71].

4. Results

Figure 1 presents the four strategies for characterizing potential water use. Figure 1a displays the
distribution of index values for the unweighted index. Figure 1b presents the distribution of index
values for the principal components derived index. Figure 1c,d present the index values for the USGS
and FAO weighted principal components indices respectively. Each of these figures displays the
index of interest in terms of quintiles with breaks set at the 20th, 40th, 60th, and 80th percentiles. We
present our results using quintiles for two reasons: quintiles contain approximately the same number
of counties in each of the five groups and they simplify visualization and interpretation by using a
standardized range of values for each version of the index. Lower quintiles represent lower water use
while higher quintiles indicate higher water use.
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4.1. Geographic Trends in Metrics

A visual comparison of the panels presented in Figure 1 highlights differences in potential water
use. The unweighted decile index (Figure 1a) indicates five regions with high water use. The first
region is in and adjacent to the San Joaquin River Valley in California. Counties of the Northern and
Central Plains states where soybeans and corn are grown extensively also are delineated as having
high water use. The industrial Rustbelt, consisting of counties located in Illinois, Indiana, Michigan
and Ohio, is a third region identified as having high water use. A fourth region with high water use,
the Mississippi River Valley, includes counties in the states of Mississippi, Louisiana and Arkansas
which are some of the more intensive cotton producing locations in the country [72]. The southeastern
seaboard is a fifth region with high water use and includes counties in Georgia, South Carolina, North
Carolina and Virginia, where the apparel and automobile industries are a strong presence [73] as well
as low-wage manufacturing and military defense industry [74]. On the other hand, counties along the
Northeastern seaboard and those located in Appalachia are classified as having lower water use. The
same is true for most counties in Florida as well as counties surrounding Seattle and Portland in the
Pacific Northwest.

The PCA-weighted version of the index presented in Figure 1b illustrates several similarities and
differences with the unweighted decile index. For example, this index also identifies higher water use
in the North and Central Plains states but with greater concentration and intensity. The Rustbelt region
and the Southeastern United States (with the exception of Appalachia) are also shown to be areas of
higher water use according to the PCA-weighted index but, again, with varying intensities. Unlike the
unweighted decile index, the West Coast states of Washington, Oregon, and California are shown to be
areas having lower water use. An exception to this pattern is the Central Valley of California (which
includes the San Joaquin River Valley). As well, the Northeast portion of the country, particularly
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New York, New Jersey and Pennsylvania, is shown to be an area with lower potential water use when
compared against the unweighted decile index.

This picture of water use is quite different from the picture presented by the unweighted
index. The reason for these differences is that the PCA index uses the proportion of cumulative
variance explained by the individual components as weights and these vary across geographic space.
For instance, our first component explains 17.3% of the cumulative variance and receives greater weight
when calculating the index while our fifth component receives less weight because it explains only 9%
of the cumulative variance. In other words, water-intensive crops such as corn and soy, which are the
highest loading variables on our first component, contribute more to this index than the agricultural
and energy generating establishments that define our fifth component.

Figure 1c,d present the geography of water use, as indicated by the USGS and FAO-Weighted
indices respectively. Visually, these indices are quite similar to one another and they also share several
similarities with the decile index. Like the decile index, the Central Valley farming region of California
is highlighted as having high water use. The agriculturally intensive Plains states are also highlighted as
having higher use for water. Pockets of higher use for water are noticeable in industry-intensive states
including Illinois, Indiana, Michigan and Ohio. The Mississippi River Valley and the Southeastern
seaboard are also pockets of higher water use. These results reflect a more nuanced weighting schema
that accounts for distinct regional variation in agricultural, industrial, and residential characteristics
across US counties. For this reason, it is not surprising that farming intensive regions (e.g., Central
Valley of California or the Great Plains) show high potential water use considering that agricultural
activities constitute a large share of overall water use. Likewise, industrial activity that remains in the
traditional manufacturing belt continues to indicate potentially high use of water.

4.2. Metric Comparison

Given the similarities and differences highlighted, a series of contingency tables were tabulated
(Tables 4 and A1, Tables A2–A4 to quantify the degree to which results vary across the different indices
of potential water use. The rows and columns of the tables may be interpreted as the number of counties
that were classified in a particular quintile for one index but changed quintile values in another index
version. The diagonals represent counties that were classified in the same quintile for both indices.
Table 4 compares the quintile assignments of the unweighted decile and PCA indices. This table shows
some agreement in the lower decile. The unweighted decile index classifies 9% of observations in the
first quintile, as does the PCA index. There is also some agreement in the assignment of counties to the
fifth quintile; both indices classify 10% of their observations in this quintile. In quintiles 2–4 there is
somewhat less agreement between the indices, as indicated by the off-diagonal values. To summarize
similarities in quintile classification, the values along the diagonal are summed and added to 36%.
This number means that 36% of all counties were assigned to the same quintiles by each index.

Table 4. Quintile classification comparison of the decile and PCA indices.

Group PCA (1) PCA (2) PCA (3) PCA (4) PCA (5)

Decile (1) 9% 6% 4% 1% 0%

Decile (2) 6% 6% 4% 3% 1%

Decile (3) 3% 5% 5% 5% 4%

Decile (4) 1% 3% 5% 6% 5%

Decile (5) 1% 1% 2% 5% 10%

Table 5 summarizes the similarities and differences between the four indices computed in this
study. The numbers in this table were computed by summing the diagonal elements of Tables 4 and A1,
Tables A2–A4. This table also presents the similarities and differences with total withdrawals data
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from the USGS 2010 estimates [18]. To compute this comparison, water withdrawals were assigned to
quintiles (Table A4) and compared with the quintiles for the indices derived in this study.

Table 5. Quintile classification summary.

Group Decile PCA USGS PCA FAO PCA

Decile

PCA 36%

USGS PCA 39% 41%

FAO PCA 41% 45% 83%

USGS Withdrawal 23% 18% 20% 20%

Based on the information in this table, there are some similarities between the derived indices
and the quintiles derived from USGS water withdrawal data. Of these indices, the weighted PCAs
are most similar to one another; they classified 83% of all counties in the same quintile. Of these two
indices, the FAO-weighted PCA has the most similarities with the other indices. It is 41% similar to the
unweighted decile index and 45% similar to the unweighted PCA index. A comparison of the USGS
water withdrawal data and the four indices indicates that they are dissimilar from one another; the
indices classify counties into similar quintiles about 20% of the time. The unweighted decile index is
the most similar of the derived indices to the USGS data with about 23% of counties classified similarly.

To expand on the analysis in Table 5, Figures 2–4 depict the geographic similarities and differences
between the four indices developed in this paper via difference maps. To construct these maps, the
quintile of one index is subtracted from the quintile of the comparison index. For example, Figure 2a
compares the decile index to the principal components derived index. If the results of this difference
are positive, the decile index has higher values than does the PCA index. These locations appear in
green on the map. If the results of this difference are negative, meaning that the decile index produces
lower index values than the PCA index, counties are displayed in brown. Gray counties in this figure
are counties that were classified in the same quintile by each index.

Figure 2 summarizes the similarities and differences between the decile index and the other three
indices. A comparison with the PCA index (Figure 2a) reveals that the decile index presents a picture of
higher potential use in the West and along the East coast. Alternatively, the PCA index indicates higher
use in the Plains states of Iowa and Nebraska, as well as portions of Southeast states including Texas,
Florida, Louisiana and Arkansas. These differences are derived from how the indices are constructed.
The PCA index emphasizes agricultural and industrial variables while the decile-based index affords
equal consideration to all variables including residential variables. As described in the contingency
tables, there is some agreement between the two indices; counties in gray are evident in the Plains
states, as well as counties in several states including Illinois, Indiana, and New York.

A comparison of the decile and USGS-weighted PCA index (Figure 2b) conveys a somewhat
different picture. The USGS weighted index categorizes the Western states as having higher potential
use than does the decile index. This is particularly evident in Oregon, Washington, Montana, and
Wyoming. The USGS weighted index also ascribes higher potential use to Plains states such as
Nebraska and Iowa than does the decile index. The decile index, which ascribes equal weighting to all
variables, indicates more potential for water use along the East Coast and in states such as Nebraska,
Oklahoma, and Texas. A comparison of the FAO weighted index (Figure 2c), which ascribes slightly
more weight to industry than does the USGS weighting scheme, presents a similar picture of differences
in potential use between the two indices. The decile index ascribes higher potential use in the Plains
states and the Southeastern region of the country. These differences are largely attributable to several
agricultural variables in the decile index that are capturing these regions even though their mix of
crops is different.
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Unlike the decile index, which produced somewhat mixed patterns of similarities and differences,
a comparison of the PCA index and the other three indices in Figure 3 produces more geographically
pronounced trends. Figure 3a contains a difference map of the PCA and decile indices for comparative
purposes only since this difference map for the two indices was discussed above. In terms of how the
PCA index compares to the USGS (Figure 3b) and FAO weighted (Figure 3c) indices, the similarities
and differences are quite similar. Both the USGS and FAO indices, which are weighted more towards
industry, present the West and Northeast as having higher potential water uses than the PCA index.
Alternatively, the PCA index classifies counties in the Plains states, the Midwest, and portions of the
Southeast as having higher potential water use.

A geographic comparison of the quintile classifications highlights that those based on the USGS
withdrawal data present counties in the West as having higher potential water use than do the indices
derived in this paper (Figure 4). The same is true for counties in the Northeast and in Florida. These
differences in classification are most stark in the comparison of the decile (Figure 4a) and PCA-derived
(Figure 4b) indices to the quintiles based on withdrawal data. The differences between quintile
classifications fade a bit once FAO and USGS weighting schemes are incorporated (Figure 4c,d).
More gray counties, indicating classification similarities between two indices, appear in the West
and Northeast. All four indices characterize the agriculturally intensive Plains states as having
higher potential use than do the withdrawal data. However, these findings are made cautiously since
publications by the USGS indicate the types of data used in their analysis, but the precise weighting
schemes are not presented [18,75].
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4.3. Index Decomposition

One of the means of understanding variations in classification results between indices—drivers
of index values and how these map to quintile classifications—is the decomposition of each index
into individual components. This moves beyond industry decomposition into municipal, industrial,
and agricultural uses, which is possible via information from Aquastat [29], or, the decomposition
of withdrawal data into different types of uses (i.e. irrigation, thermoelectric power, public supply).
We use the unweighted decile index to demonstrate the value of this approach. Figure 5a–d presents
a decomposition analysis of the unweighted decile index and three of its constituent variables in
decile form.
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The unweighted decile index takes into account each of the 14 indicators of potential water use
and inherently captures geographic variability in agricultural, industrial and municipal pressures.
These patterns are shown in Figure 5a where counties in the North and Central Plains, the Mississippi
River Valley, the San Joaquin River Valley in California, the Rustbelt, and the Southeast are identified
as areas with high potential water use. On the other hand, counties in Appalachia and the Northeast
are depicted as regions with low water use.

Three variables are identified from the unweighted decile index for further examination and are
used to help explain the distribution of index values in Figure 5a. These variables are selected because
they show the highest component loadings in our independent PCA models presented in Section 3.3
and are displayed in Figure 5b–d. For instance, corn production (Figure 5b) is highly concentrated in
counties located in the North and Central Plains states as well as Illinois, Indiana, Ohio, Michigan,
Minnesota, and Wisconsin. The number of agricultural establishments portrayed in Figure 5c shows
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counties with high potential water use located in the Southeast region as well as the Pacific Northwest.
Single-family homes, depicted in Figure 5d, represent heightened potential water use and counties
positioned in higher deciles are located in/ around the North and Central Plains, the upper Midwest
and Rustbelt, and several counties in the Rocky Mountain region. The contribution of various factors
to potential water use across the United States is complicated, as demonstrated by the series of indices
derived in this paper, but through a decomposition analysis, it is possible to begin to understand how,
why, and where potential water use varies geographically.

5. Conclusions

Given the scarcity of freshwater resources across the globe, the goal of this paper was to derive and
evaluate the classification performance of indices that could serve as proxies for water use. Classification
similarities between the indices were compared against one another and against water withdrawal
data from the USGS, which is a frequently used proxy for water use [63–65]. This comparison revealed
varying degrees of similarity between the four indices in terms of the classification of counties into
quintiles. County classifications from the PCA derived indices were more similar to one another but
dissimilar from those based on the water withdrawal data. The unweighted decile-based index was
most similar to the water withdrawal data. From a geographic perspective, there were also significant
differences in the geography of potential water use depicted by each index. These differences reflect
the variations in weighting schemes from one index to another. The differences in index values
between the indices presented in this study and the USGS data are likely due to differences in the
composition of the indices. While the indices constructed in the study use similar data sources as the
USGS water withdrawal estimates, the composition of the indices and these data are quite different
from one another.

Water withdrawals include consumptive uses of water, conveyance losses (i.e., water lost in
transit), as well as water returned to surface and groundwater sources [76]. Ideally, a breakout of
withdrawals into each of these components would be important for understanding consumptive uses,
which are not returned to water sources, and leakages from water systems. The latter is particularly
important to analyze given the volume of water lost from leaks annually [77,78]. That said, this level
of granularity in data at the regional level is difficult to find. In the absence of this information, related
efforts to derive information about water use is an ongoing challenge that attempts to strike a balance
between coverage and precision [76]. Numerous means of estimating water use are available to the
scientific community ranging from input-output based techniques to multivariate regression [76]. Given
this diversity of approaches, estimates of water use are better referred to as representing “potential
use” instead of actual use. Thus, the indices offered in this paper represent a simpler approach to
representing potential water use at the regional level and offer four advantages over prior measures of
use. First, the indices make use of publicly available data that are easy to collect and integrate. Second,
the additive indices are decomposable into their constituent components, which makes it easier to
pinpoint the individual drivers of potential use. Third, the indices integrate a targeted yet reasonably
comprehensive list of variables across agricultural, industrial and residential sectors and include data
about climatic conditions. Fourth, the localized resolution is likely to be more informative within the
policy realm than are aggregate measures of use.

These indices are a first step in the direction of computing robust indices of water use at the
regional level. The results of this analysis suggest four areas for additional research. The first line of
research is with respect to a need for work comparing existing measures of water use to one another
as well as across time. A variety of strategies are used to estimate water use because of the “legal,
financial, and political constraints” associated with collecting precise information [76]. Comparisons
of these measures in terms of their component variables and weighting schemes (as was done in this
study) are critical to understanding differences in water use presented by various metrics; this includes
where measures agree or disagree and how measures change over time.
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The present study examined various sectoral weighting schemes based on national averages
and did not pursue regionalized weighting schemes. However, a second extension to this study is
the exploration of regionalized weighting schemes that reflect regional variations in water use [20].
This type of analysis would require a detailed examination of water withdrawal estimates to design
potential weighting schemes. Third, the present study examined proxies for water use, which is one
element of water stress. Given the time and effort dedicated to the development of water stress indices,
similar comparative studies of water stress metrics could be undertaken to understand differences and
the sources of variation in these metrics.

It is also important to note that this study developed indices for water use in the United States,
which is one of the larger users of water globally. As discussed previously, uses of water but also the
technologies and financial ability of households to purchase and adopt these technologies to mitigate
water use is perhaps greater in the developed world than the developing world. This suggests that
some of the drivers of water use in the developing world may differ from those discussed in the
present study. Thus, an evaluation of the utility of these indices in the developing world, and necessary
modifications to these indices is a fourth recommended area for future research.

Good proxies for water use at the regional level on an annual basis are needed to help in the
management of scarce freshwater resources. To date, estimates of water use are varied and often
difficult to replicate. Thus, regional metrics that are possible to replicate and estimate on an annual
basis are needed to track water use at finer temporal and geographic scales. This study represented one
step in this direction, but it is hoped that more will follow to enhance our knowledge and management
of this vital natural resource.
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Appendix A

Table A1. Quintiles of PCA index compared to quintiles of other indices.

Group PCA (1) PCA (2) PCA (3) PCA (4) PCA (5)

Decile (1) 9% 6% 4% 1% 0%
Decile (2) 6% 6% 4% 3% 1%
Decile (3) 3% 5% 5% 5% 4%
Decile (4) 1% 3% 5% 6% 5%
Decile (5) 1% 1% 2% 5% 10%

USGS PCA (1) 9% 7% 3% 1% 0%
USGS PCA (2) 6% 6% 5% 2% 0%
USGS PCA (3) 3% 4% 5% 6% 1%
USGS PCA (4) 1% 2% 5% 7% 5%
USGS PCA (5) 1% 1% 2% 4% 13%

http://www.mdpi.com/2071-1050/11/8/2292/s1
http://www.mdpi.com/2071-1050/11/8/2292/s2
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Table A1. Cont.

Group PCA (1) PCA (2) PCA (3) PCA (4) PCA (5)

FAO PCA (1) 9% 7% 3% 1% 0%
FAO PCA (2) 6% 7% 6% 2% 0%
FAO PCA (3) 3% 4% 6% 6% 1%
FAO PCA (4) 1% 2% 4% 8% 4%
FAO PCA (5) 1% 0% 1% 4% 14%

Withdrawal (1) 3% 4% 5% 5% 3%
Withdrawal (2) 2% 4% 4% 5% 5%
Withdrawal (3) 4% 4% 4% 4% 4%
Withdrawal (4) 5% 4% 3% 4% 4%
Withdrawal (5) 6% 4% 4% 3% 4%

Table A2. Quintiles of USGS PCA index compared to quintiles of other indices.

Group USGS PCA (1) USGS PCA (2) USGS PCA (3) USGS PCA (4) USGS PCA (5)

Decile (1) 12% 4% 2% 1% 1%
Decile (2) 5% 6% 4% 3% 2%
Decile (3) 2% 5% 6% 5% 3%
Decile (4) 1% 3% 5% 6% 5%
Decile (5) 0% 1% 3% 5% 9%

PCA (1) 9% 6% 3% 1% 1%
PCA (2) 7% 6% 4% 2% 1%
PCA (3) 3% 5% 5% 5% 2%
PCA (4) 1% 2% 6% 7% 4%
PCA (5) 0% 0% 1% 5% 13%

FAO PCA (1) 19% 1% 0% 0% 0%
FAO PCA (2) 1% 17% 2% 0% 0%
FAO PCA (3) 0% 2% 15% 3% 0%
FAO PCA (4) 0% 0% 3% 15% 3%
FAO PCA (5) 0% 0% 0% 3% 17%

Withdrawal (1) 4% 4% 4% 4% 5%
Withdrawal (2) 3% 4% 4% 4% 5%
Withdrawal (3) 4% 4% 5% 4% 3%
Withdrawal (4) 5% 4% 4% 4% 4%
Withdrawal (5) 4% 4% 3% 4% 4%

Table A3. Quintiles of FAO PCA index compared to quintiles of other indices.

Group FAO PCA (1) FAO PCA (2) FAO PCA (3) FAO PCA (4) FAO PCA (5)

Decile (1) 13% 5% 2% 1% 1%
Decile (2) 5% 7% 5% 3% 2%
Decile (3) 2% 5% 6% 5% 3%
Decile (4) 1% 3% 5% 6% 5%
Decile (5) 0% 1% 3% 5% 10%

PCA (1) 9% 6% 3% 1% 1%
PCA (2) 7% 7% 4% 2% 0%
PCA (3) 3% 6% 6% 4% 1%
PCA (4) 1% 2% 6% 8% 4%
PCA (5) 0% 0% 1% 4% 14%
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Table A3. Cont.

Group FAO PCA (1) FAO PCA (2) FAO PCA (3) FAO PCA (4) FAO PCA (5)

USGS PCA (1) 19% 1% 0% 0% 0%
USGS PCA (2) 1% 17% 2% 0% 0%
USGS PCA (3) 0% 2% 15% 3% 0%
USGS PCA (4) 0% 0% 3% 15% 3%
USGS PCA (5) 0% 0% 0% 3% 17%

Withdrawal (1) 4% 4% 4% 5% 4%
Withdrawal (2) 3% 4% 4% 4% 5%
Withdrawal (3) 4% 4% 4% 4% 4%
Withdrawal (4) 5% 4% 4% 4% 4%
Withdrawal (5) 4% 4% 3% 4% 4%

Table A4. Quintiles of USGS water withdrawals compared to quintiles of other indices.

Group Withdrawal (1) Withdrawal (2) Withdrawal (3) Withdrawal (4) Withdrawal (5)

Decile (1) 6% 3% 3% 4% 3%
Decile (2) 5% 4% 4% 4% 4%
Decile (3) 4% 4% 4% 3% 4%
Decile (4) 3% 5% 4% 4% 4%
Decile (5) 2% 4% 4% 5% 4%

PCA (1) 3% 2% 4% 5% 6%
PCA (2) 4% 4% 4% 4% 4%
PCA (3) 5% 4% 4% 3% 4%
PCA (4) 5% 5% 4% 4% 3%
PCA (5) 3% 5% 4% 4% 4%

USGS PCA (1) 4% 3% 4% 5% 4%
USGS PCA (2) 4% 4% 4% 4% 4%
USGS PCA (3) 4% 4% 5% 4% 3%
USGS PCA (4) 4% 4% 4% 4% 4%
USGS PCA (5) 5% 5% 3% 4% 4%

FAO PCA (1) 4% 3% 4% 5% 4%
FAO PCA (2) 4% 4% 4% 4% 4%
FAO PCA (3) 4% 4% 4% 4% 3%
FAO PCA (4) 5% 4% 4% 4% 4%
FAO PCA (5) 4% 5% 4% 4% 4%
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