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Abstract: The Grain to Green Project (GTGP), a large ecological restoration project aiming to control
soil erosion and improve the ecological environment, has been implemented since 1999 and has led
to great land use changes with decreased farmland and increased forest and grass, and significant
vegetation variations. Understanding vegetation variations for different land use types is important for
accessing the present vegetation development and providing scientific guidance for future ecological
restoration design and regional sustainable development. With two land use maps and MODIS LAI
data, trend analysis, fluctuation analysis, and R/S methods were applied to analyze the vegetation
dynamic changes and sustainability for converted land use types from cropland and unconverted
types over 2000–2015 in the upper and middle reaches of the Yellow River. The results obtained
were as follows: (1) Vegetation greening was remarkable in the entire study region (0.036 yr−1).
The increasing rate was higher in wetter conditions with AI < 3 (0.036–0.053 yr−1) than arid regions
with AI > 3 (0.012–0.024 yr−1). (2) Vegetation improved faster for converted forestland, shrubland,
and grassland than unconverted types under similar drying conditions. Converted shrubland
and grassland had a larger relative change than converted forestland. (3) Converted land use types
generally exhibited stronger fluctuation than unconverted types with small differences among types.
(4) Vegetation exhibited a sustainable increasing trend in the future, which accounted for more than
73.1% of the region, mainly distributed in the middle reach of the Yellow River. Vegetation restoration
exerted important influences on vegetation greening and the effect was stronger for converted types
than unconverted types.

Keywords: vegetation greenness; spatiotemporal dynamics; land use patterns; sustainable development;
upper and middle reaches of Yellow River

1. Introduction

Vegetation, one of the key components in terrestrial ecosystems and a critical factor in
the soil–vegetation–atmosphere system, has significant influences on regional water and energy
cycling [1]. Vegetation plays important roles in soil and water conservation, preventing desertification,
and maintaining ecosystem stability [2]. Revegetation is an important method for controlling soil
erosion and improving regional ecological environment [3]. The upper and middle reaches of the Yellow
River Basin, located in northwest China, are well known for their erodible deep loess, severe soil
and water loss, and fragile eco-environment [4]. During the past decades, under the pressure of
the rapid development of the economy and population, irrational human activities (e.g., deforestation
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and farmland expansion) have led to severe eco-environmental problems such as land degradation,
natural vegetation deterioration, and soil erosion, which have seriously constrained local sustainable
development [5]. To address such problems, the Chinese government have implemented a series
of ecological restoration projects since the 1980s including the Three–north Shelterbelt program,
the Grain to Green Project (GTGP), and the Natural Forest Conservation Program (NFCP) [6]. In this
context, the investigation of the regional spatiotemporal dynamics of vegetation has achieved wide
attention [7,8].

Remote sensing provides a rapid and effective way for long-term and large-scale vegetation
monitoring. Long time serial remote sensing images are used to reveal vegetation dynamics,
detect and forecast variation trends of vegetation [9,10]. In the upper and middle reaches of the Yellow
River, remote sensing data (e.g., MODIS NDVI/LAI, AVHRR NDVI, SPOT NDVI, etc.) have been widely
used by researchers to investigate the vegetation coverage changes and associated influencing factors
(e.g., metrological factors and ecological restoration programs) at multiple temporal (e.g., inter-annual
and seasonal scales) and spatial scales (e.g., regional and watershed scales) [11–15]. It has been reported
that vegetation activities have enhanced since the 1980s and experienced a stronger improvement,
especially after 1999 [7]. Human activities such as the implementation of GTGP is one of the main
driving forces of vegetation greening [16,17].

Large-scale ecological rehabilitation has improved the regional vegetation coverage to some extent.
In 2008, the tree plantation area in China was ~62 million hectares, ranking first and accounting for
~23% of the total planting area in the world [18]. The GTGP, one of the world’s largest vegetation
restoration programs, has been carried out by the Chinese government for approximately two
decades up to now. One of its main objects was to return slope cropland (≥25◦) by sowing grass
seeds and afforestation [19]. From 2002 to 2014, the area of afforestation on former cropland is
689.9× 104 hectares in China, Li et al. [20] indicated that after the implementation of GTGP, the land
use in the middle reaches of the Yellow River showed a one- way change from farmland to forest
and grass. Vegetation coverage increased from 31.6% in 1999 to 59.6% in 2013 in the Loess Plateau [21].
However, many studies have recently pointed out some contradicting evidence of the negative
effects of large-scale vegetation restoration. Up to 2005, the overall survival rate of newly planted
tress was only 24% [22]. Artificially planted trees could grow to only ~ 20% of their normal height
in some 30-year plantations (“small but old tree”) [23]. The Chinese government plans to extend
the effort of the GTGP by investing another US$9.5 billion in GTGP on the Loess Plateau by 2050 [24]
and returning ~2.83 million hectares of cropland to forest and grassland across China by 2020 [21].
Therefore, the assessment of the spatiotemporal dynamics of land use types converted from cropland
and with no conversion, is of great importance for the reasonable design of future vegetation restoration
programs. However, former studies have generally analyzed the variation differences among vegetation
types based on a vegetation map or single land use map [25,26] and studied one special vegetation
type based on land use maps in different periods [12]. There still needs to be a comprehensive analysis
of vegetation variation differences among various land use patterns (i.e., converted from cropland
and unconverted) based on multistage land use maps.

In addition, the growth and development of dryland vegetation are closely associated with
regional hydrothermal conditions [27,28]. The annual precipitation in the upper and middle reaches of
the Yellow River changes from 800 mm in the southeast semi-humid region to lower than 200 mm in
the northwest arid region, resulting in a clear decreasing gradient of vegetation water availability [29].
The sensitivities of the ecosystem responding to human activities and climate changes are increasing
with increased dryness in different precipitation gradient zones [30]. Therefore, we regarded dryness
as an important factor in studying vegetation dynamics in this study.

The aims of this study were to (1) examine the vegetation dynamics of different land use patterns
under different hydrothermal conditions in the upper and middle reaches of the Yellow River Basin
over 2000–2015; and (2) to assess the sustainability of vegetation changing in the future. These results
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are expected to improve the understanding of present vegetation development and provide helpful
information for future ecological restoration design and regional sustainable development.

2. Materials and Methods

2.1. Study Area

The Yellow River, the second longest river in China, originates from the eastern Qinghai–Tibet
plateau, and flows through the northwestern Loess Plateau and Ordos Plateau before debouching in
Bohai [31]. The total area of the Yellow River basin is 79.5 × 104 km2, 91% of which (72.3× 104 km2)
are the upper and middle reaches (Figure 1). The region is dominated by a continental monsoon
climate with dry but cold winters and warm but humid summers [32]. The study region crosses
semi-humid, semi-arid, and arid areas from the southeast to northwest with aridity ranging from 1.1
to 15 [32]. The mean annual precipitation shows strong spatial difference with more than 800 mm in
the semi-humid region and less than 200 mm in the arid region. The mean annual temperature ranges
from 4.5 ◦C in the upper reaches to 13 ◦C in the lower reaches [33].
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Figure 1. The position of the upper and middle Yellow River Basin and the distribution of five
sub-regions classified by the aridity index (AI).

From southeast to northwest in the study region, vegetation changes from forest, forest-steppe to
typical steppe, and desert steppe. Grassland is widely distributed in the study region and accounts
for more than 40% of the total area. Cropland occupies nearly a quarter of the total are, which is
mainly distributed in the plain and hills and dominated by wheat and maize. Forests are mainly
distributed in alpine mountains and middle mountains. Natural forests are dominated by secondary
broad-leaved forests, coniferous and broad-leaved mixed forests, and temperate coniferous forests
with species such as Betala platyphylla, Populus davidiana, and Quercus mongolicus. The main species of
shrubland includes Hippophae rhamnoides, Ostryopsis davidiana, and Spiraea trilobata. During the GTGP,
newly planted vegetation includes artificial forest land (e.g., Robinia pseudoacacia, Pinus tabulaeformis,
and Platycladus orientalis), shrubland (e.g., Caragana korshinskii and sea buckthorn), and grassland
(e.g., Alfalfa).

Over the past decades, unreasonable expansion of cropland and the deterioration of natural
vegetation have worsened the local eco-environment [34]. A series of methods including the construction
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of terraces and silt-arrest dams, banning grazing, and afforestation have been put into force since
the 1980s. The GTGP was first practiced experimentally in Shannxi, Gansu, and Sichuan in 1999, and then
popularized countrywide since 2002 [35]. After an overall implementation period, the government
claimed a transition to a new period which aims at consolidating the formal achievements from 2007 [16].
In 2014, to further relieve the hazards of sandstorms, increase forest resources, and address global
change, the government planned to expand the GTGP program.

2.2. Data Resources and Processing

The MODIS Leaf Area Index (LAI) (MOD15A2H) data were derived from the MODIS products
website (https://lpdaac.usgs.gov/), providing information of vegetation changes from 2000 to 2015.
The spatial and temporal resolutions of data were 500 m and eight days. LAI data were incomplete before
February 2000 (six images). Taking the low vegetation cover and little inter-annual variations in winter
into consideration, the missing data were supplemented with images on the same days from 2001 [36].
MODIS LAI data were primarily re-projected and extracted using MRT (MODIS Reprojection Tool).
In the imaging process, noise signals are inevitable due to the influences of clouds and aerosols [37],
which may lead to the inaccurate reflection of the true LAI of terrestrial surfaces. Therefore, the harmonic
analysis of time series (HANTS) method was applied to reconstruct the data series. The HANTS
method considers only the most important frequency components and is beneficial for removing
outliers and obtaining a smooth time series [38]. An example of the reconstruction of a LAI series is
shown in Figure 2.
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Figure 2. Comparison between the original and reconstructed Leaf Area Index (LAI) time-series
during 2000–2015.

Daily meteorological data of 130 stations within or near the study region during 1980–2015
were collected from the National Meteorological Information Center (http://data.cma.cn/). The data
included precipitation, maximum air temperature, minimum air temperature, mean temperature,
relative humidity, wind speed, and daylight hours. The daily potential evapotranspiration was
calculated according to the FAO Penman–Monteith equation [39]. The daily precipitation and potential
evapotranspiration were summed as annual value. Next, ANUSPLIN (version 4.3), a software
package for generating hydro-meteorological maps at varying spatial and temporal scales based
on the thin–plate smoothing spline method, was applied to interpolate the annual precipitation
and potential evapotranspiration to the study region with a spatial resolution of 500 m from 1980
to 2015 [40–42]. The multiyear mean aridity index (AI) was calculated by dividing the mean
annual potential evapotranspiration to the mean annual precipitation and used to reflect the regional
hydrothermal condition [43]. Based on the AI value, the entire study region was divided into five

https://lpdaac.usgs.gov/
http://data.cma.cn/
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sub-regions with increasing dryness, which were as follows: AI = 1–2, AI = 2–3, AI = 3–4, AI = 4–5
and AI > 5 (Figure 1). AI = 3 was the boundary of the semi-arid and arid region [44,45].

Land use data for the 2000s and 2010s from Zhiyun Ouyang [46] were used to identify the converted
types and unconverted types over 2000–2015 based on the periodicity of GTGP. There were eight
level I classes and 22 level II classes in the original data. Based on the level II classes, we first
reclassified the land use types into seven classes: forestland, shrubland, grassland, cropland, water
body, artificial land, and others (bare land and desert). Then, the two land use maps were overlaid in
ArcGIS to identify the land use types of interest and their spatial distribution (Figure 3). The interested
types consisted of four unconverted land uses (forestland (F), shrubland (S), grassland (G), and cropland
(C)) and three converted land uses (cropland→ forestland (C→ F), cropland→ shrubland (C→ S)
and cropland→ grassland (C→ G)). Finally, we calculated the percentage of the distribution area in
every sub-region and sorted them with ascending dryness for each land use type. The AI sub-regions
with an accumulated percentage of approximately 95% were chosen for each land use type to conduct
the analysis (Table 1).
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Table 1. Area proportions of land use types across different AI sub-regions.

Land use types AI=1–2 AI=2–3 AI=3–4 AI=4–5 AI > 5

Unconverted types

F 42% 48% 7% 2% * 1% *
S 34% 41% 15% 4% 6% *
G 21% 33% 20% 8% 18%
C 20% 49% 15% 5% 11%

Converted from cropland
C→ F 49% 45% 3% * 1% * 2% *
C→ S 29% 55% 12% 3% * 2% *
C→ G 9% 62% 22% 3% 3% *

* The corresponding land use type in the AI sub-region was not analyzed.

2.3. Methods

2.3.1. Maximum LAI Composite

To understand the variation features of vegetation growth, annual maximum leaf area index,
reflecting optimal growth status in a year, was extracted using the MVC (maximum value composite)
method [47]. The time series of the max leaf area index over 2000–2015 was constructed. The mean
values of LAI and vegetation variations for land use types under different AI sub-regions were obtained
by the zonal statistics method in ArcGIS [48].
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2.3.2. Trend Analysis

The linear regression of LAI and year was constructed for each pixel based on the least square
method to analyze the variation trend and magnitude of vegetation LAI over the study temporal
domain [5]. The slope of regression was calculated using the following equation:

β =
n
∑n

i = 1 tiyi −
∑n

i = 1 ti
∑n

i = 1 yi

n
∑n

i = 1(ti)
2
−

(∑n
i = 1 ti

)2 , (1)

where n is the length of the study period (n = 16 years in the study); ti is the year number; and yi is
the LAI value at ti. Positive and negative β represented an increasing and decreasing trend, respectively.
The significance of the trend was tested by the Student-t method. A P value lower than 0.5 indicated
a significant trend.

β calculated from Equation (1) is the absolute change rate (1/yr) of LAI and is directly influenced
by vegetation type and regional wetness. Therefore, the relative change rate (β_R, %/yr), defined as
the ratio of β to mean value of LAI series, was also calculated for comparisons among land use types
in different hydrothermal conditions.

2.3.3. Fluctuation Analysis

The variation coefficient (Cv), a normalized measure of dispersion of a time series which eliminates
the influence of unit and mean difference, is widely used to obtain fluctuation features. Low Cv

indicates that the LAI series is close to the mean, while high Cv indicates that the series disperse
at a large range [49]. The calculation is

Cv =

√
1

n−1
∑n

i = 1

(
Xi −X

)2

X
, (2)

where, i is the serial number; Xi is the LAI value at year i; and X is the mean value of the LAI series.
The higher the Cv, the stronger the fluctuation and weak stability.

2.3.4. R/S Method and Hurst Index

Rescaled range analysis (R/S) is an effective way to quantificationally predict the dynamics of
future trend. The Hurst index is widely applied to examine whether the long-term series variation is
continuous or random. The calculation of the Hurst index, according to Liu et al. [50] is as follows:

Given the LAI time series {LAI(t)}, t = 1, 2, . . . , n, the mean sequence of the series can be defined
as follows:

NDVI(τ) =
1
τ

n∑
τ = 1

NDVI(τ) τ = 1, 2, · · · , n, (3)

Then, the cumulated deviation can be computed as follows:

X(t,τ) =
t∑

t = 1

(
NDVI(t) −NDVI(τ)

)
1 ≤ t ≤ τ, (4)

The range sequence was set up as follows:

R(τ) = max
1≤t≤τ

X(t,τ) − min
1≤t≤τ

X(t,τ) τ = 1, 2, · · · , n , (5)
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The standard deviation sequence was calculated as follows:

S(τ) =

1
τ

τ∑
t = 1

(
NDVI(t) −NDVI(τ)

)2


1
2

τ = 1, 2, · · · , n, (6)

For the equation R(τ)/S(τ) , R/S, the existence of a relationship expressed as R/s ∝ τH indicates
that the analyzed time series has a Hurst phenomenon. Taking log on both sides of the relationship
formula as log(R/S)n = a +H× log(n), the Hurst Index (H) was then fitted by the least square method.

The future trends of the LAI series were examined according to the H value. There are three forms:
0 < H < 0.5 represents an opposite trend of future change while 0.5 < H < 1 suggests that future change
is consistent with the past trend. The closer the H is to 1, the stronger the consistent continuity [51].
H = 0.5 means a random time series.

3. Results

3.1. The Spatial Distribution of Mean Vegetation LAI

Figure 4 shows the spatial distribution of the mean LAI during the period 2000–2015. The annual
mean LAI in the upper and middle reaches of the Yellow River ranged from 0.1 to 7.1. Due to the climate
conditions, the vegetation LAI followed a decreasing trend from southeast to northwest in the study
region. High LAI values (LAI > 5.0) were mainly in mountain areas such as Ziwuling, Qinling,
Lvliangshan, and Liupanshan, where forestland and shrubland are widely distributed. In addition,
the LAI value was quite high (LAI > 3.0) in the southern area of the source region of the Yellow River
where meadows dominated. In the west and north region, the LAI was generally lower than 3.0,
which occupied more than 65% of the total area.
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Figure 4. The mean value of LAI during 2000–2015 in the upper and middle reaches. (a) Distributions
of mean LAI; (b) Mean LAI for unconverted land use types; (c) Mean LAI for converted land use types.

The mean LAI value for different land use patterns is shown in Figure 4b,c. Generally, the mean
LAI values ranked as forestland > shrubland > grassland for both unconverted types and converted
types. For a specific land use type, the mean LAI decreased with increasing local aridity except for
cropland in the AI > 5 sub-region. In comparison with cropland, LAI of C→G is lower under similar
hydrothermal conditions, converted to grass (C → G) resulted in lower LAI in all AI sub-regions
while converted to forestland and shrubland (C→ F and C→ S) resulted in higher LAI except for
C → S in sub-region with AI = 3–4 (Table 2). Compared with corresponding unconverted types
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in the same AI sub-regions, converted types generally had lower LAI values. Except for C → G
in regions with an AI = 4–5, the LAI of converted forestland, shrubland, and grassland could only
reach 56%–62%, 59%–67%, and 56%–85% of the unconverted forestland, shrubland, and grassland,
respectively (Table 3).

Table 2. The percentage of LAI in conversion types to cropland.

Conversion Types AI = 1–2 AI = 2–3 AI = 3–4 AI = 4–5 AI > 5

C→ F 134% 152% - - -
C→ S 117% 110% 90.9% - -
C→ G 90.7% 83.5% 79.1% 89.6% -

Table 3. The percentage of LAI of conversion types to unconverted types.

Conversion Types AI = 1–2 AI = 2–3 AI = 3–4 AI = 4–5 AI > 5

C→ F 61.7% 56.4% - - -
C→ S 66.8% 59.7% 62.1% - -
C→ G 56.6% 70.9% 85.2% 107% -

3.2. Vegetation Spatiotemporal Variations

The vegetation LAI exhibited an overall uptrend over 2000–2015 in the entire study region
(0.034 yr−1, P < 0.01). The increase occurred in all drying conditions but with different rates. Generally,
vegetation increased with higher speeds in wetter sub-regions (AI < 3, β = 0.036 − 0.053 yr−1)
than those under drier circumstances (AI > 3, β = 0.012− 0.024 yr−1) (Figure 5). In the sub-region
with AI = 2–3, vegetation changed at a largest rate (0.053 yr−1), which was approximately 4.5 times
that of the rate in the slowest changed sub-region (AI = 4–5).
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Figure 5. The trends in the LAI values over the entire study region and five sub-regions with a different
aridity index from 2000–2015.

In the study region, the vegetation greening (p < 0.05) area accounted for 78.9% of the total,
and was mainly distributed throughout Toudaoguai to Longmen, which are located in the middle
part. Meanwhile, the browning trend (mostly insignificant with p > 0.05) was distributed sporadically
in the source region of the Yellow River, Huangshui Basin in the western part and downstream
of the Weihe and Luohe Basins in the southeastern part (Figure 6). The absolute changing rate of
the LAI decreased from southeast to northwest (Figure 6a). In the Fenhe, Yanhe, Beiluohe, and Weihe



Sustainability 2019, 11, 2176 9 of 18

watersheds with an annual precipitation larger than 450 mm, the vegetation increased at rates ranging
from 0.05 yr−1 to 0.15 yr−1 due to the good growth conditions and cluster of forest and shrub. While in
the northwestern part such as the Wudinghe, Kuyehe, Huangfuchuan watersheds, vegetation improved
at much lower rates, lower than 0.05 yr−1. Compared to the absolute change rate, relative change
over 2000–2015, which eliminated the effect of mean growth status, showed a relatively different spatial
pattern (Figure 6b). Over 2000–2015, the vegetation generally increased more than 50% in the middle
reaches of the Yellow River. Vegetation LAI in several regions even doubled, mainly distributed in
Huangfuchuan, Kuyehe, Wudinghe, Yanhe, the middle and down reaches of Fenhe, and the upper
reach of the Weihe and Jinghe watersheds. Meanwhile in mountain regions such as Ziwuling,
Liupanshan, and Qinling, the relative change was lower than 25%. The relative decrease of LAI was
between 0–50% in the upper reach of the Yellow River and 0–25% in the Luohe Basin and lower reach
of the Weihe watershed.
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The LAI change rates for different land use types are displayed in Table 4. The absolute change rate
for both the converted types and unconverted types showed a trend as forestland > shrubland > grassland.
However, in terms of the relative change rate, cropland improved the most, followed by shrubland,
and forestland and grassland increased the slightest among the unconverted types. For the converted
types, the LAI changed the greatest for C→ S, followed by C→ G and C→ F. Generally, C→ F, C→ S,
and C→ G had larger changing rates (both β and β_R) than C, S, and G, respectively.

Table 4. LAI variations of different land use types during 2000–2015.

Land use types β (1/yr) R (%/yr)

Unconverted types

Forestland 0.075 2.1
Shrubland 0.053 2.3
Grassland 0.027 2.1
Cropland 0.042 2.9

Converted from Cropland
Forestland 0.079 3.5
Shrubland 0.069 3.9
Grassland 0.046 3.8

For a specific land use type, the β and β_R generally increased first, and then declined with
decreasing dryness, and reached its summit in the AI = 2–3 sub-region, except for cropland, which had
a great increase in AI > 5 sub-region. The absolute LAI change rate in arid sub-regions (AI > 3) was
significantly lower than that in the semi-arid and semi-humid region (AI < 3). The relative change rate
was larger in the arid sub-region than that in wetter sub-region with AI = 1–2 for unconverted types,
indicating a larger growth potential. An opposite feature was found for converted types in terms of
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the relative changing rate, which was larger in the AI = 1–2 sub-region than in the sub-regions with
AI > 3 (Figure 7).
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Figure 7. LAI change rates for unconverted types and converted types in AI sub-regions: (a1) and (b1)
are absolute change rate (1/yr) for the unconverted and converted types, respectively; (a2) and (b2) are
relative change rate (%/yr) for the unconverted and converted types, respectively.

3.3. The Fluctuation of Vegetation LAI

The Cv value ranged from 0 to 0.75 in the study region, of which more than 60% clustered
between 0.2–0.4, indicating a moderate fluctuation (Figure 8a). A slight fluctuation with a Cv lower
than 0.2 was distributed in Ziwuling, Huanglongshan, Lvliangshan, and Qinling in the southeastern
region, the Hetao Plain in the northern region, and the Yellow River source in the western region.
While in the Wudinghe, Kuyehe, and Yanhe watersheds, the down reach of the Fenhe watershed,
and the arid region in the northwest part of the upper and middle reaches of the Yellow River,
the fluctuation was quite strong with a Cv larger than 0.4.
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The fluctuation of vegetation LAI is closely associated with land use types. The variation extent
for unconverted types ranked as: F (0.19) < S (0.24) < G (0.29) < C (0.30). The Cv of converted types
(0.27–0.31) were generally larger than the corresponding unconverted types with small differences
among C → F, C→ S, and C→ G. In sub-regions with a different aridity index, the Cv of the LAI
series for unconverted types increased with drier conditions, and the magnitude of increase showed
a trend of F > S > G, while the of converted types was similar under different hydrothermal conditions
(Figure 8b,c).

3.4. Future Vegetation Sustainability Prediction

The future variation trend of the vegetation LAI maintaining consistent with that of the past
(H > 0.5) occupied nearly 73.1% of the entire study area, mainly between Toudaoguai and Longmen
in the middle region. The anti-continuity areas (H < 0.5) were in the source region of the Yellow
River, Gansu, and Ningxia Provinces in the northwestern arid part, Yinshan in the northern part,
and the Ziwuling and Liupanshan forests (Figure 9a).

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 18 

region, the Hetao Plain in the northern region, and the Yellow River source in the western region. 
While in the Wudinghe, Kuyehe, and Yanhe watersheds, the down reach of the Fenhe watershed, 
and the arid region in the northwest part of the upper and middle reaches of the Yellow River, the 
fluctuation was quite strong with a C  larger than 0.4. 

 
Figure 8. The stabilities of the LAI changed in the upper and middle reaches during 2000–2015. (a) 
Distributions of coefficient of variation (C ); (b) C  for unconverted land use types; (c) C  for 
converted land use types. 

The fluctuation of vegetation LAI is closely associated with land use types. The variation extent 
for unconverted types ranked as: F (0.19) < S (0.24) < G (0.29) < C (0.30). The C  of converted types 
(0.27–0.31) were generally larger than the corresponding unconverted types with small differences 
among C  F, C  S, and C  G. In sub-regions with a different aridity index, the C  of the LAI 
series for unconverted types increased with drier conditions, and the magnitude of increase showed 
a trend of F > S > G, while the C  of converted types was similar under different hydrothermal 
conditions (Figures 8b, c). 

3.4. Future Vegetation Sustainability Prediction 

The future variation trend of the vegetation LAI maintaining consistent with that of the past (H 
> 0.5) occupied nearly 73.1% of the entire study area, mainly between Toudaoguai and Longmen in 
the middle region. The anti-continuity areas (H < 0.5) were in the source region of the Yellow River, 
Gansu, and Ningxia Provinces in the northwestern arid part, Yinshan in the northern part, and the 
Ziwuling and Liupanshan forests (Figure 9a). 

 
Figure 9. The sustainability of LAI changed in the upper and middle reaches during 2000–2015.
(a) Distributions of Hurst Index; (b) Hurst Index for unconverted land use types; (c) Hurst Index for
converted land use types.



Sustainability 2019, 11, 2176 12 of 18

The Hurst Index was universally larger than 0.5 for all land use types except for grassland in
the AI = 1–2 sub-region. This exception may be attributed to the effect of alpine grassland in the source
of the Yellow River Basin. As vegetation LAI increased over 2000–2015, they are expected to improve
in the future and a larger H value indicated stronger growth. The H values of the converted types
were slightly higher than the unconverted types. Similar to the changing rate, the H value for each
land use type increased first and then decreased as the AI increased, and reached its highest value
mainly in the AI = 2–3 sub-region. In particular, the H value was quite high for cropland in the driest
sub-region with AI > 5 (Figure 9b,c).

4. Discussion

4.1. Differences of Vegetation Dynamics Features among Land Use Patterns

The overall implementation of vegetation construction and recovery has been recognized
as the most important factor for the fast and overall greening trend in the study region since 1999 [16,34].
During the restoration programs, many methods were conducted comprehensively. First, cropland,
which is critical for the eco-environment or that suffered from severe soil and water loss, was returned
and re-vegetated with forest and grass according to the scientific design. The GTGP, experimentally
practiced since 1999 and overall carried out since 2002, is one of the largest vegetation recovery projects
in the world. Returning farmland on steep slopes (≥ 25◦) to grassland, shrubland and forestland is
a key objective. During 2000–2015, the area of farmland was reduced by 5558 km2 while the area of
forestland and shrubland increased by 2593 km2 in the Loess Plateau [52]. From the seventh (2004-2008)
to eighth (2009-2013) Forest Inventory, the area of newly planted forest increased by 53.7 × 104,
27.74 × 104, and 22.2 × 104 hectares in Shannxi, Neimenggu, and Gansu provinces, respectively.
The afforestation area of Fenhe, Weihe, Beiluohe, Jinghe, Huangfuchuan, Yanhe, and Wudinghe has
been increased by 128%, 113%, 93%, 82%, 76%, 66%, 55%, and 49%, respectively, during 1998–2006 [7].
Alternations in land use have strongly affected regional vegetation coverage variations [16,53].
After afforestation, methods such as closing hill were adopted to protect the newly planted trees.
Studies have revealed that cropland experienced the strongest change since 1999 and its conversion to
other vegetation types was the most significant reason [25]. In addition, vegetation improved most
remarkably on slopes between 15◦ to 35◦ [25], which is consistent with the key managed zones of
the GTGP. Forestland, shrubland, and grassland converted from cropland generally had a higher
increasing rate than cropland as well as corresponding unconverted types over 2000 to 2015 (Figure 7),
which demonstrated a faster growth for converted vegetation.

Second, construction of the basic farmland and farmland infrastructure was enhanced to ensure
grain production after large-scale cropland conversion [54]. Therefore, the changing rates of cropland
are quite high in all sub-regions (Figure 7). In arid regions with an AI > 5 located in the northwest,
cropland, distributed mostly in the Ningxia Plain and Hetao Plain, mainly depends on irrigation
(Figure 3a). Human activities such as farmland water conservancy establishments are of great benefit for
cropland, resulting in good growth status and significant improvements during 2000–2015. In addition,
the higher fluctuation of cropland LAI than other unconverted types also reflects the importance of
effective farmland construction and management (Figure 8b).

Third, for previous forestland and grassland, vegetation constructions along with banning grazing
and felling forest forbiddance were conducted to protect the natural succession and achieve natural
recovery under non-disturbed conditions [55]. During 2002–2014, the area of mountain closure for each
year increased from 53057 hectares to 2100449 hectares in China. The uptrend of LAI for unconverted
forestland, shrubland, and grassland over 2000–2015, although to different extents (Figure 7), may be
attributed to these protection and construction methods. Zhang et al. [56] revealed that vegetation
construction contributed more than 70% for vegetation growth on Shanxi Plateau. As indicated by
fluctuation features (Figure 8b), forest was the most stable, followed by shrub and grass over 2000–2015,
indicating that the influence of vegetation construction was more notable for grass.
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Different fluctuation characteristics reflect different degrees of the influence of external factors
on the LAI series [16]. Stronger fluctuation for converted types than the corresponding unconverted
forestland, shrubland, and grassland (Figure 8b,c) indicated that a more significant result of vegetation
restoration had been achieved. Jia et al. [57] estimated the soil water storage in a 5 m soil layer
of 716.4 mm on average before afforestation at 169 points on the Loess Plateau, which was 139% of
the observed soil water storage. Relatively high initial soil water storage is beneficial for the vegetation
growth of newly planted vegetation in the early stage [58]. Due to the single species and relatively
simple stand structure, the plantation has weak stability and poor ability for confronting climate
change [59]. While for vegetation with a longer growth and succession period, the relationship between
plant structure and function and the surrounding environment (e.g., root uptake and soil water
availability) reached a dynamic equilibrium. Under this circumstance, the resistance of vegetation to
climate change is enhanced, leading to more stable growth and lower fluctuations. This may be another
reason for the larger fluctuation in converted land use types than in unconverted types over 2000–2015.

4.2. Impact of Local Wetting Condition

The upper and middle reaches of the Yellow River crosses semi-humid, semi-arid, and arid climatic
zones and the latter two occupy approximately 81.5% of the entire study region. Vegetation growth
and development in dryland is sensitive to changes of external environment [60,61]. Vegetation is
closely related to the spatial distribution patterns and variations of precipitation and temperature [62].
Previous studies have found that vegetation coverage change is correlated with precipitation
and temperature since the 1980s in the study region [7] and a positive precipitation–vegetation
relationship is mostly distributed [62]. The change of vegetation LAI responds sensitively to variations
in precipitation with limited time lags at the month scale [63]. This clearly states that water availability
directly influences vegetation LAI in water-controlled ecosystems [64]. This is primarily confirmed by
the results, which show that LAI changing rates generally increase with decreasing AI for converted
types and unconverted types (Figure 7). In addition, the absolute changing rate of vegetation LAI in
sub-regions with AI < 3 was higher than that in arid sub-regions with AI > 3 (Figure 7a).

In the upper and middle reaches of the Yellow River, converted forestland, shrubland, and grassland
from cropland mostly occurred in regions with AI = 1–3, AI = 1–5, and AI = 1–5, respectively (Table 1)
during 2000–2015. Newly planted artificial vegetation growth is limited by regional hydrothermal
conditions [65,66]. Generally, the LAI of newly planted forestland, shrubland, and cropland increased
slower in arid regions than in semi-arid regions (Figure 6). In terms of different vegetation types,
planted shrubland and grassland grew faster than forestland (Figure 7b), indicating that the balance
between regional water availability and water demand by vegetation may influence the results
of vegetation restoration. This suggests that the application of vegetation types with less water
consumption may be more benefit for the local eco-environment. In addition, the ratio of LAI for
converted types to corresponding unconverted types in similar hydrothermal conditions suggests
the development of newly planted vegetation (Table 3). In drier conditions with an AI larger than two,
the conversion of former cropland to grass and shrub developed better than forestland, which may
suggest that planting grass or shrubs would be more favorable in most of the study region in future
ecological restoration actions. Afforestation may only be recommended in wetter conditions with
an AI = 1–2.

4.3. Implications of Vegetation Change Sustainability in Ecological Restoration

Vegetation would continue the greening trend over 2000–2015 in most regions (>70%) in the future,
especially in sub-region with AI = 2–3, a key region for vegetation restoration (Figures 7 and 9).
The sustainability of converted types was slightly higher than that of the unconverted types (Figure 8b,c).
Vegetation greening would increase evapotranspiration and soil water consumption by canopy
interception, root uptake, and transpiration, directly affecting regional water and energy balance
on one hand [13,67,68]. On the other hand, vegetation would alter the physical characteristics
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of the soil and increase surface roughness, indirectly changing regional water cycling [69–71].
Recently, many studies have pointed that conversions of land use types and vegetation recovery led to
the decline of local soil water storage. Particularly in regions with a remarkable vegetation increase or
large area of artificially planted exotic species, overconsumption of soil water resulted in a widespread
dry soil layer [57,72]. Observations showed that the soil water contents under Robinia pseudoacacia,
one of the main afforestation species in the Loess Plateau, decreased rapidly [73] and the drying layer
extended from shallow layers (0–100 cm) to deeper layers (100–500 cm) with increasing forest age [74].

Soil desiccation may hamper vegetation growth [75,76]. In the Loess Plateau, especially in
the northwestern region, many exotic trees such as Robinia pseudoacacia are “small but old trees” due to
the lack of soil water [22]. More serious drought would even cause large scale vegetation death [77].
During the GTGP, fast-growing trees and grass with strong drought resistance have been widely planted.
These adapted well to the local drying conditions and grew fast in the early period, which resulted in
the fast improvement of vegetation LAI [58]. However, as the number of restoration years increases,
soil drying resulting from the over-consumption of soil water would limit vegetation development [58].
Whether the fast increasing trend of vegetation LAI can be sustained needs continuous monitoring
and focus in the future.

With the help of vegetation protection methods, unconverted vegetation LAI increased over
2000–2015. Although the increasing rate was lower than that of converted vegetation, unconverted
forestland, shrubland, and grassland universally had larger LAI (Figure 4). This suggests that recovery
of natural vegetation, such as secondary forest and existing grassland, would benefit the local ecological
environment in the restoration process. Furthermore, local vegetation types are reported to consume
less soil water and uptake water from shallower soil layers (e.g., 0–100 cm) than exotic species [73].
Therefore, they may maintain an increasing trend for a longer time in the future. In the study area,
vegetation regeneration and restoration are long-term processes aiming to establish a stable and sustainable
ecological environment [7]. Therefore, the recovery of natural vegetation is more highly recommended
than artificially planting new forest and grass in future vegetation restoration to ensure the sustainable
development of the eco-environment. If afforestation is needed, local species may be more favorable
than exotic species.

In this study, vegetation variations were detected for the converted and unconverted vegetation
types identified by two land use maps for the 2000s and 2010s. Land use change with different
degrees may occur each year in reality. Compared with using continuous land use maps for each year,
which may introduce some fragmentary changes, using two maps to identify land use change patterns
can obtain clearer results. However, this, to some extent, may also bring about some uncertainties.
When calculating the characteristics of variation and fluctuation by the zonal statistic method in
ArcGIS, the influences of restoration year were averaged and some differences may have been hidden
to some extent. Although this influence may be limited to the overall features and trends, it needs
more detailed consideration in future studies.

5. Conclusions

In this study, the vegetation dynamic characteristics were analyzed for unconverted forestland,
shrubland, grassland, cropland, and converted forestland, shrubland, and grassland from cropland
over 2000–2015 in the upper and middle reaches of the Yellow River. Then, the sustainability of
the vegetation changing trend was predicted and its potential implications were discussed.

The main conclusions are as follows: (1) Vegetation exhibited an overall increasing trend in the study
region, with a higher greening rate in sub-regions with AI < 3 than that in northwestern arid regions
(AI > 3). Vegetation improved most in sub-region with AI = 2–3, which is one of the key areas in vegetation
restoration. (2) The vegetation increasing rate was higher for converted land use types than that of
unconverted types under similar drying conditions. For converted land use types, C→ G and C→
S improved more than C→ F. (3) Vegetation fluctuation was slightly larger for converted types than
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unconverted types. The differences among types were small for converted types and large for unconverted
types. The ranking for the unconverted type was forestland < shrubland < grassland < cropland.

Overall greening trend in the upper and middle reaches of the Yellow River indicated great
achievements have been obtained since the implementation of the GTGP. Vegetation restoration
exerted stronger influences on converted types from cropland than unconverted types. In the future,
approximately 73.1% of the study region is expected to continue increasing. However, its sustainability
and increasing rate in the future needs long-term monitoring.
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