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Abstract: Water security is the capability of a community to have adequate access to good quality and
a sufficient quantity of water as well as safeguard resources for the future generations. Understanding
the spatial and temporal variabilities of water security can play a pivotal role in sustainable
management of fresh water resources. In this study, a long-term water security analysis of the
Grand River watershed (GRW), Ontario, Canada, was carried out using the soil and water assessment
tool (SWAT). Analyses on blue and green water availability and water security were carried out by
dividing the GRW into eight drainage zones. As such, both anthropogenic as well as environmental
demand were considered. In particular, while calculating blue water scarcity, three different methods
were used in determining the environmental flow requirement, namely, the presumptive standards
method, the modified low stream-flow method, and the variable monthly flow method. Model results
showed that the SWAT model could simulate streamflow dynamics of the GRW with ‘good’ to ‘very
good’ accuracy with an average Nash–Sutcliffe Efficiency of 0.75, R2 value of 0.78, and percentage
of bias (PBIAS) of 8.23%. Sen’s slope calculated using data from over 60 years confirmed that the
blue water flow, green water flow, and storage had increasing trends. The presumptive standards
method and the modified low stream-flow method, respectively, were found to be the most and
least restrictive method in calculating environmental flow requirements. While both green (0.4–1.1)
and blue (0.25–2.0) water scarcity values showed marked temporal and spatial variabilities, blue
water scarcity was found to be the highest in urban areas on account of higher water usage and less
blue water availability. Similarly, green water scarcity was found to be highest in zones with higher
temperatures and intensive agricultural practices. We believe that knowledge of the green and blue
water security situation would be helpful in sustainable water resources management of the GRW
and help to identify hotspots that need immediate attention.

Keywords: water security; blue water; green water; Grand River watershed; soil and water
assessment tool (SWAT)

1. Introduction

Water security is the capability of a community to have adequate access to good quality and a
sufficient quantity of water as well as safeguard resources for the future generations [1]. The seemingly
implacable rise in water demand, limited water supply, demographic changes, high standards of
living, and uneven distribution of water resources are some of the factors that have led to a rise in
water security issues all around the world [2]. Many rivers around the world are running dry for
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considerable parts of the year before merging into the sea. Not only the surface water resources,
but also the ground water is being overly exploited with pumping rates faster than replenishment,
thus increasing threats to the availability of freshwater resources for irrigation, human consumption,
energy production, and environmental sustainability [3,4]. It has been reported that 1.8 billion people
are likely to be at high risk for water scarcity by 2025 [5,6]. Thus, a thorough understanding of the
spatial and temporal variabilities of water security is required to sustain the available fresh water
resources [7].

One method for dealing with water scarcity is classifying the freshwater resources into blue and
green water [4] for more specific and targeted managements of each. Blue water (BW) is generally
considered as the water flowing on the surface and through sub-surface courses, stored in rivers, lakes,
and deep aquifers, while green water (GW) is characterized as the water stored in unsaturated soil
layers and water moving to the atmosphere through transpiration and evaporation [8,9]. Green water
plays a critical role in agricultural crop production and accounts for nearly 80% of the total water
used for global crop production [10]. In tropical regions where rain-fed agriculture plays a major
role, primary water usage is that of green water. Knowing the quantity and specific consumption of
available blue and green water can help in sustainable management of these water resources.

Similarly, a water footprint defines the link between human water use and a growing
population [4]. BW footprint is the consumptive use of surface and ground-water resources for
producing goods and services, and GW footprint is the green water consumption (evapotranspiration)
that directly or indirectly (agriculture) benefits humans. The disparity between water use and water
availability can be characterized by various methods (i.e., shortage, stress, and scarcity), and one of the
globally used methods is to estimate water scarcity [4,8,9] as the ratio of water footprint to available
water. Assessment of water scarcity is one of the prerequisites for various research, and it justifies
the global analysis of food security, human and economic development, poverty, and environmental
health [2]. Thus, quantification of water scarcity can play a critical role in locating hotspot regions and
help in decision-making for planning and management purposes.

Various approaches have been developed to assess the variability of the blue and green water
resources and estimate water scarcity since the introduction of the concept. Schuol et al. [11]
and Faramarzi et al. [12] modelled blue-green water availability in Africa and Iran, respectively.
Zang et al. [13] assessed the impact of human activities on blue-green water flow in a river basin in
China. Veettil & Mishra [4] quantified blue and green water resources of a watershed using a water
footprint concept. Abbaspour et al. [14] assessed the impact of climate change on blue and green water
resources by using a Canadian Global Coupled Model (CGMC 3.1) in Iran. Also, various modelling
pathways have been used by researchers to assess water resources, ranging from global hydrological
models (GHMs), like WaterGap 3.0 [15], to catchment-scale hydrological models (CHMs), like the soil
and water assessment tool (SWAT) [16]. Faramarzi et al. [12] used SWAT to model blue and green water
availability in Iran. Liu et al. [10] used the GIS-based environmental policy integrated climate (GEPIC)
model to estimate global water consumption for crop areas. Other models such as CROPWAT [17] and
AquaCrop [18] have also been used to quantify water scarcity.

One of the critical issues in water and natural resource management is to satisfy human
needs without compromising environmental stability [19]. However, human activities such as
excessive withdrawal, overfishing, and water pollution have damaged the ecological balance and
impaired freshwater biodiversity [19,20]. Many studies have been conducted to assess global water
security [21–23], but most of them overlooked the water requirement for environmental sustainability,
also known as the environmental flow requirement (EFR), and only a limited number of studies have
included the environment flow component [24–26]. So, there is a need to deliver certain shares of
available freshwater for environmental sustainability and evaluate the same using suitable methods.

Canada is one of the most bestowed countries with respect to water availability, with around
7.6% of its total area comprised of water resources [27]. It ranks high in river flow as well, with
Canadian rivers discharging nearly 9% of the world’s water supply [28]. But this aggregated data
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is somewhat deceiving. Being a large landmass, Canada encounters huge spatial and temporal
variabilities in climatic conditions, distributions of water resources, and associated water availability,
which is considered to be the essence of water scarcity. In this study, we modelled the Grand River
watershed (GRW), which is one of the largest watersheds in southwestern Ontario, Canada. The GRW
encompasses an area of 6700 km2 and has a population of about 1 million, which is expected to increase
beyond 1.5 million by 2051 [29]. In the 1800s during European settlement, land use in some areas
was converted to agricultural and urban areas, which led to a 65% loss of wetlands and considerable
deforestation as well. Consequently, the river flow became uncontrollable and flashy, causing floods
during spring and severe droughts during summer [30]. Since then, many improvements have been
made after the formation of the Grand River Conservation Commission (GRCC) in 1932, but no
study has been done to analyze water resource variability and water scarcity in the river basin.
Furthermore, the GRW has some rapidly growing cities in Ontario, including Kitchener, Waterloo,
Cambridge, Guelph, and Brantford. An increase in population and industrialization coupled with
climate uncertainty have increased concerns about the ecological impacts and the ability of surface and
groundwater to sustain the increasing demand [31]. Therefore, it is important to know how freshwater
resources are distributed and used in the watershed to better understand its variability and assess the
impact of human activities on watershed hydrology.

Hence, the primary aim of this study is to quantify available water resources in the GRW to
estimate water security. This leads to several specific objectives: (a) to build, calibrate, validate,
and perform sensitivity as well as uncertainty analyses of a SWAT model of the GRW; (b) to assess
spatial and temporal variabilities of blue and green water resources of the GRW; and (c) to assess
the water security situation at different zones of the GRW using green and blue water footprints.
To our knowledge, this is the first study of this kind in which any basin in Canada, in general and
the GRW in particular, has been assessed for its fresh water resources, and a robust analysis of the
water security situation has been carried out. Furthermore, we evaluated three different methods
for calculating EFR and their sensitivities in quantifying blue water security for the first time. This
modelling approach can also be used in other cold climates and snow-dominated regions, which are
assumed to be water-abundant but are actually water-scarce. We believe that the availability of a
calibrated and validated SWAT model and the know-how of long-term trends of fresh water resources
and water security of the GRW will help water resource managers and planners to manage the GRW
in a more sustainable way.

2. Materials and Methods

2.1. Study Area

The Grand River watershed (GRW) is one of the largest watersheds in southwestern Ontario,
Canada (Figure 1). The Grand River starts from the headwaters in the Dundalk Highlands and drains
into Lake Erie from the outlet at Port Maitland. Along its 310 km-long route it picks up its major
tributaries: the Conestoga, the Nith, the Eramosa, and the Speed Rivers [32]. The major areas in the
GRW are comprised of agriculture (43%), followed by pastures and range-grasses (26.92%), forests
(12%), small fragments of urban areas (9.29%), and wetlands (1.8%) (Figure 2). The weather in the
GRW is moderate to cool-temperate (average annual precipitation ranging between 800–900 mm
and temperature between 8–10 ◦C [33]), and the watershed experiences four main seasons including
winter, which is cool and dry, and summer, which is hot and humid. If the winter is warm then the
watershed will experience moderate spring flow, and if it is cold, then the spring flow could be high
enough to cause floods in the downstream areas [34], as evidenced in Brantford in 2018. The Brantford
floods were the worst floods that the area had experienced in the last decade, which caused around
4900 residents to move from their homes to safer places [35].
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steady rainfall events in autumn, and snowfall in winters. The major areas of the watershed contain 

the Guelph soil type (14%), followed by Huron (13%), Brantford (12%), and Perth (8%). The elevation 

of the GRW ranges from 173 m near the outlet at Lake Erie and 535 m near the headwaters. The 

watershed is divided into eight zones (Figure 3) based on river drainage.  
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Figure 2. Land use and soil depth map of the Great River watershed (GRW).

The precipitation is fairly uniform with short but intense rainfall events in summer and spring,
steady rainfall events in autumn, and snowfall in winters. The major areas of the watershed contain the
Guelph soil type (14%), followed by Huron (13%), Brantford (12%), and Perth (8%). The elevation of
the GRW ranges from 173 m near the outlet at Lake Erie and 535 m near the headwaters. The watershed
is divided into eight zones (Figure 3) based on river drainage.
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2.2. The Soil and Water Assessment Tool (SWAT)

The soil and water assessment tool (SWAT) [16] is a physically based and semi-distributed
hydrological model that operates on a daily time-step. The model simulates various eco-hydrological
and anthropogenic processes using the water balance equation, and it considers processes such as
precipitation, infiltration, percolation, surface runoff, evapotranspiration, and lateral flow. The model
has been used widely for simulating snow, standing water, crop growth, and water quality and
quantity [36–38]. SWAT simulates the watershed in two phases, land phase and routing phase [39].
The land phase controls the discharge, nutrient, pesticide, and sediment loading from each sub-basin,
and the routing phase controls the movement of the water from sub-basins to the main outlet.
The watershed is divided into sub-basins, which are further divided into hydrological response
units (HRUs) based on similar land use, topography, and soil characteristics. It simulates all the
processes at the HRU level, adds them up to get the flow at the sub-basin level, and routes the flow
through reaches to the main watershed outlet [16]. Figure 4 shows a flow chart of the SWAT model in
assessing water security using blue and green water footprint concepts in the GRW, which is described
in detail in the following sections.
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security assessment.

2.3. Model Build-Up, Sensitivity Analysis, Calibration and Validation, and Uncertainty Analysis

A SWAT model requires various spatial, land, and crop management hydro-meteorological
datasets. Table 1 briefly summarizes the data used, their sources, and their spatial and temporal
resolutions.

Table 1. Input data used for the SWAT model of the GRW.

Data Source Resolution

Topography (Digital Elevation
Model—DEM)

Ontario Ministry of Natural Resources and
Forestry (OMAFRA) 30 × 30 m

Soil Soil Landscapes of Canada (SLC), version 3.2 1:1 million

Land use Agriculture and Agri-Food, Canada (AAFC) 30 × 30 m

Crop management Agriculture and Agri-Food, Canada 30 × 30 m

Tile drainage Ontario Ministry of Agriculture, Food and
Rural Affairs (OMAFRA) 30 × 30 m

Precipitation Natural Resources Canada (NRCAN, 2018) Daily (mm)

Maximum and Minimum Temperature Natural Resources Canada (NRCAN, 2018) Daily (◦C)

A digital elevation model (DEM) of 30 × 30 m spatial resolution obtained from the Ontario
Ministry of Natural Resources and Forestry [40] was used to discretize the watershed in smaller
sub-basins. Moreover, it was used to obtain a slope map, which was further divided into three
slope classes with breaks at 2% and 4%. A soil map of resolution 1:1 million was obtained from Soil
Landscapes of Canada (SLC), version 3.2. Similarly, a land-use map was prepared using crop data layers
(CDL) for the years 2014, 2015, and 2016, obtained from Agriculture and Agri-Food, Canada, using
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the procedure documented by Srinivasan et al. [41,42]. Furthermore, this spatial layer was merged
with a tile drainage layer obtained from the Ontario Ministry of Agriculture, Food and Rural Affairs
(OMAFRA) to derive a land use/land cover map of 30 m resolution. Thresholds of 5% each for land
use, soil, and slope were used to delineate HRUs, which resulted into a total of 2679 HRUs distributed
over 85 sub-basins. The characteristics (e.g., location, operation period, and physical and structural
characteristics) of four reservoirs, the Guelph dam, Luther dam, Conestoga dam, and Shand dam,
were implemented in the model as they would affect the streamflow dynamics of the GRW. We used
the simulated target release option to mimic operations such as storing spring floods and releasing
them in summer months. In addition, minimum monthly outflows were also allocated based on
streamflow data measured downstream from the reservoir so that the real-world reservoir operations
were reasonably represented. Long-term (1950–2015) weather data of resolution 10 × 10 km at daily
time intervals was obtained from Natural Resources Canada [33]. The Soil Conservation Services (SCS)
curve number method was used for runoff estimation, while the Hargreaves method [43] was used for
estimating evapotranspiration.

Agricultural crop growth is another essential factor that affects the hydrological cycle. Moreover,
the crop/land management operations involved, such as irrigation and fertilization, affect the
hydrology and water quality as well. Therefore, a three-year crop rotation of corn, soybean, and
winter-wheat, as typically used in Ontario, and their common management operations such as planting,
fertilizer application, and harvesting, etc., were taken from Liu et al. [36] and implemented in the
model. While a robust calibration of crop yield was not the focus of the study, we did tun crop
yield-related parameters to match the simulated crop yield with those obtained from OMAFRA for a
proper and accurate hydrological representation of the watershed.

Multi-site calibration and validation techniques, as recommended by Daggupati et al. [44], were
used considering monthly stream flows at six different flow-gauging stations (Figure 1). As such,
the total time period (1950–2015) was divided into a warm-up period (1950–1952), validation
periods (1970–1981 and 2008–2015), and a calibration (1982–2007) period. As streamflow data for
the period 1953–1969 were not available, calibration and validation were done in the period 1970–2015.
The purpose of choosing two validation periods was to include both dry as well as wet years, which
was validated using a standard normal variate (z-score) of annual precipitation. To facilitate multi-site
calibration and validation as well as sensitivity and uncertainty analysis, we used the SWAT-CUP [45]
and its sequential fitting program (SUFI-2) algorithm.

In order to evaluate the performance of the model, we followed the recommendations of
Moriasi et al. [46]. As such, a coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE),
and percentage of bias (PBIAS) were selected, and one of the four qualitative ratings (very good,
good, satisfactory, and unsatisfactory) was assigned based on the range of the value of the chosen
goodness-of-fit statistics. Two indices were used for uncertainty analysis: the p-factor, which is the
percentage of measured data bracketed by the 95% predictive uncertainty (PPU) band, and r-factor,
which is the measure of average width of the band [45]. The p-factor has an optimal value of 1, which
means 100% of the observed data is bracketed in the uncertainty band, while for the r-factor, the lower
the value the more certain the model results. Additionally, various time-series plots and scatter plots
were used for the analysis.

2.4. Spatial and Temporal Quantification of Blue Water and Green Water Resources

As already depicted, the GRW was divided into eight spatial zones based on river drainages to
the Grand River (Figure 3) and was used to quantify freshwater resources and water security analysis.
Blue water constituted the total water yield from the watershed and the deep aquifer recharge [8].
The total water yield was the amount of water leaving the HRU flowing into the main channel, and
groundwater storage was the water moving downwards from the sub-surface to a deep aquifer [8].
Both water yield and deep aquifer recharge can be found from SWAT HRU output tables. Green
water resources included green water flow (i.e., water flowing through evapotranspiration) and green
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water storage (i.e., water stored in the soil as soil moisture) [11]. Evapotranspiration and soil moisture
content can also be obtained from SWAT output tables at an HRU spatial scale. In addition to spatial
analysis, the freshwater resources (obtained from SWAT output files) were also analyzed for their
temporal variations using Sen’s slope method [47] and z-variate analyses for the period 1953–2015.
In the Sen’s slope method, the trend was deduced by calculating the median of all pairwise slopes of
alternate values in the dataset. Moreover, monthly and seasonal variations of blue and green water
resources were analyzed. Uncertainty in these freshwater resource components were represented with
a 95% PPU, as calculated using the SWAT-CUP.

2.5. Quantification of Blue Water Scarcity

Blue water scarcity was computed as the ratio of consumptive use of blue water and the total
blue water available. The blue water use, as discussed earlier, was obtained from the report Water
Use Inventory Report for the Grand River Watershed [48]. Water use was divided into agricultural,
municipal, recreational, dewatering, industrial, and remediation purposes. The major water use sector
was municipal (60.83%), followed by water needed for dewatering (6.07%), agricultural (4.47%), and
agricultural livestock (4.41%). The blue water availability (Equation (1)) is the finite amount of water
which can be abstracted for human consumptive use without sacrificing environmental stability [4].
It can be computed as the stream flow minus the EFR [9], which is the amount of water required to
sustain the ecosystem. In the GRW, a significant amount of water demand is also met by groundwater
in addition to surface water [48], accordingly, ground water storage/deep aquifer recharge (DAR) was
also considered while calculating blue water availability.

BW(available)(x,t) = Q(x,t) − EFR(x,t) + DAR(x, t), (1)

where EFR(x,t) is the environment flow requirement for drainage area ‘x’ at time ‘t’, DAR(x,t) is the deep
aquifer recharge at the same drainage area ‘x’ and time ‘t’, and Q(x,t) is the corresponding stream flow
in m3/s.

2.5.1. Different Methods to Calculate the Environment Flow Requirement (EFR)

To assess the feasibility of an area to sustain and increase in agricultural production or any other
water-intensive job, we must acknowledge the fact that the environment also uses water, and that to
maintain an eco-hydrological balance, limits must be set to withdraw water in time and space [19].
In this study, three different hydrological-based methodologies were used to compute EFR, which will
be described in following sections.

Presumptive Standards Method

This approach was proposed by Richter et al. [49] and Hoekstra et al. [25], and it states that only
20% of the flow is available for use, and the remaining 80% is the EFR. However, it does not mean that
80% of the flow is unavailable for use. In reality, 100% of the flow is available for use, but no more
than 20% of the flow should be depleted by consumptive water use. It has been used in various water
security studies such as [2,4,8,9]. This method is a precautionary approach. It is generally used where
site-specific estimation of EFR cannot be made and detailed local studies cannot be completed in the
near-term [49].

EFR(x,t)= 0.8Qmean(x,t), (2)

where EFR(x,t) is the environment flow requirement for drainage area ‘x’ at time ‘t’, and Qmean(x,t) is
the long-term monthly mean stream flow in m3/s.

Modified Low Streamflow Method (Q7,10)

The Q7,10 is the average annual seven-day minimum flow that is expected to be exceeded in nine
out of ten years, or it is the 10th percentile of the distribution of seven-day monthly minimum flows [50].
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The original low streamflow method does not consider intra-annual variability. As such, for some
months the EFR could be so high that only a small amount of water was left for use, which in turn could
increase blue water scarcity. Therefore, the method was modified by estimating Q7,10 values at monthly
scales to consider intra-annual variability, and different EFR values were computed for different
months. The data set was adjusted close to normality by using the log-normal transformation [51].

Variable Monthly Flow (VMF) Method

The variable monthly flow (VMF) method is a parametric method of EFR estimation, and was
proposed by Pastor et al. [19]. This method considers the natural variability of the flow by considering
EFR at a seasonal level. It classifies the flow into three classes:

• Low flow (MMF ≤ 40% of the mean annual flow (MAF));
• Intermediate flow (40% of MAF < MMF < 80% of MAF);
• High flow (MMF > 80% MAF);

where, MMF stands for mean monthly flow for a particular month.
Different criteria are used for each class to estimate the EFR, as listed below:

• For low flow:
EFR = 0.6 MMF; (3)

• Intermediate flow:
EFR = 0.45 MMF; (4)

• High flow:
EFR = 0.3 MMF. (5)

Once the blue water scarcity was estimated for each EFR method, four qualitative ratings were
assigned the following [2]:

• Low blue water scarcity, with a scarcity value less than 1
• Moderate blue water scarcity, with a scarcity value between 1 and 1.5
• Significant blue water scarcity, with a scarcity value between 1.5 and 2
• Severe blue water scarcity, with a scarcity value more than 2

2.6. Freshwater Provision Indicator

The freshwater provision indicator (FWPIquantitative) is used to compare the effects of the three
EFR methods described above, and it was used in this study. This indicator was proposed by [52].
The FWPIquantitative describes the freshwater provision services based on the quantity of water provided.
Its value is based on the natural reasons, such as drought, that EFR levels might be violated, and
it measures the risk in terms of the frequency of average monthly flows that are less than the EFR.
A value equal to one denotes that EFR is met throughout the time period, and a value less than one
means EFR is not met.

FWPIquantitative =
Qmean(x,t)/EFR(x,t)

(Qmean(x,t)/EFR(x,t)) + (qnet/nt)
, (6)

where FWPIquantitative stands for the freshwater provision indicator for the zone ‘x’ and time ‘t’, qnet
stands for the number of months for which the FWPIquantitative values are less than EFR, and nt stands
for total number of months considered.

2.7. Quantification of Green Water Scarcity

In this study, green water scarcity was used to evaluate green water security in the watershed.
Green water scarcity was calculated as the ratio of green water (GW) footprint (i.e., evapotranspiration)
to the amount of water available for use (i.e., soil water content) [9]. As already depicted, we chose the
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Hargreaves method [43] while running the SWAT for simulating evapotranspiration (ET), and SWAT
simulated the ET at HRU spatial scale. We used initial soil water content (SWin) as available green
water, which was obtained from SWAT HRU output files. Available green water is the amount of water
available to sustain plant growth and to fulfil the evapotranspiration need/consumptive need of the
plant system. It is calculated as total water present in the root zone minus water content at wilting
point [4,8], which is also the minimum water required for sustainable growth of the plant. Hence,
green water scarcity can be estimated with (Equation (7)):

GWscarcity=
GWfootprint (x,t)

GWavailable (x,t)
, (7)

where GWfootprint (x,t) is the amount of green water consumed or evapotranspirated in zone ‘x’ during
the time ‘t’, and GWavailable (x,t) is the initial soil water content present in zone ‘x’ for time ‘t’.

3. Results and Discussion

3.1. Performance Evaluation of SWAT Model Results

A total of 17 SWAT parameters (Table 2) were subjected to calibration based on the sensitivity
analysis performed using the SWAT-CUP global sensitivity analysis. While the calibration was carried
out using a wider range of parameter values, a final parameter range was presented (Table 2). We found
the SCS curve number for moisture condition II (CN2) to be the most sensitive parameter, followed by
the baseflow recession constant (ALPHA_BF). The ground water delay time (GW_DELAY) completed
the top three list. Two snow-related parameters, snowfall temperature (SFTMP) and snowmelt
temperature (SMTMP), were also in the top five list, which was indeed expected as the GRW is in a
cold climate region. The sensitiveness of the parameters was fairly comparable to that reported in
other studies conducted in similar regions [37,53,54].

Table 2. Sensitive parameters obtained from SWAT-CUP used for model development.

Sensitive Parameters Description Default Minimum Maximum

r_CN2.mgt SCS curve number for moisture condition II (-) HRU * −10% 15%

v_ALPHA_BF.gw Baseflow recession constant (-) 0.048 0.4 0.7

v_GW_DELAY.gw Groundwater delay time (days) 31 10 100

v_SFTMP.bsn Snowfall temperature (◦C) 1 −3 1

v_SMTMP.bsn Snowmelt base temperature (◦C) 0.5 0 5

v_ESCO.bsn Soil evaporation compensation factor (-) 0.95 0.9 1

v_EPCO.bsn Soil uptake compensation factor (-) 1 0.7 1

v_GWQMN.gw Threshold depth of water in shallow aquifer required for
return flow to occur (mm) 1000 500 1500

v_GW_REVAP.gw Groundwater revap. Coefficient (-) 0.02 0.1 0.2

v_REVAPMN.gw Threshold depth of water in shallow aquifer for revap to
deep aquifer to occur (mm) 750 650 850

r_SOL_K.sol Soil hydraulic conductivity (mm/h) soil type ** −10% 10%

r_SOL_AWC.sol Available water capacity of soil layer (mm/mm) soil type ** −10% 10%

v_CH_N2.rte Manning’s n value for the main channel (-) 0.14 0.03 0.2

v_CH_K2.rte Effective hydraulic conductivity in main channel alluvium
(mm/h) 0 10 100

v_ALPHA_BNK.rte Baseflow alpha factor for bank storage (days) 0 0.2 0.6

v_TIMP.bsn Snow pack temperature lag factor (-) 1 0.5 1

v_SMFMX.bsn Melt factor of snow on June 21 (mm H2O/◦C-day) 4.5 2 6

* depends on the HRU,hydrological response unit (HRU), ** depends on the soil type

r_: relative change with the value with respect to the original (default) value

v_: replaced by the given value
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Table 3 shows the goodness-of-fit statistical values for calibration and validation as well as
sensitivity analysis of streamflow results at six gauging stations. Figure 5 shows the graphical
comparison of observed and simulated stream flows with a 95% uncertainty band. Graphical plots
show that the model, in general, had represented observed trends, and most of the observations
fell within the 95% uncertainty band; the values of chosen goodness-of-fit statistics and both p- and
r-factors indeed reflected that. For all six stations, the uncertainty band encapsulated at least 81%
of observations (as the p-factor ranged between 0.81–0.93 in the calibration period). Moreover, the
r-factor, which indicated the thickness of the band, was also less than the generally accepted value of
1.5 [3] (0.81 to 1.24, case in calibration period). It should be noted that a higher p-factor could have
been obtained by increasing the r-factor, but a compromise had to be made to not introduce further
uncertainty in the model results [45]. The qualitative ratings, calculated based on the recommendation
of Moriasi et al. [46], indicated a range of accuracy (unsatisfactory to very good), varying as per the
goodness-of-fit statistics and gauging stations. In general, the model simulated streamflow dynamics
of downstream stations with better accuracy as compared to those at tributaries. A slightly lower
accuracy was observed for the validation period when compared to those in the calibration period,
which was indeed expected as the model tends to underperform in the validation period. The results
of the model were also found to be comparable with the result-statistics calculated in other cold regions
in Canada [37,38,53–56].

Table 3. Goodness-of-fit statistics obtained from calibration (1982–2007) and validation (1970–1981;
2007–2015) at six gauging stations.

Flow
Station

Calibration Results Validation Results

p-Factor r-Factor Nash–Sutcliffe
Efficiency (NSE) R2 Percent Bias

(PBIAS) (%) p-Factor r-Factor NSE R2 PBIAS
(%)

Grand at
Marshville 0.83 0.81 0.82 (G) 0.83

(G) 8.60 (G) 0.71 0.67 0.83
(G)

0.86
(V)

19.8
(U)

Eramosa at
Guelph 0.85 1.33 0.66 (U) 0.68

(U) 0.40 (V) 0.77 1.2 0.69
(U)

0.79
(S)

9.30
(G)

Grand at
Brantford 0.81 0.99 0.83 (G) 0.85

(V) 11.4 (S) 0.91 1.14 0.8
(G)

0.86
(V)

18.8
(U)

McKenzie at
Caledonia 0.84 0.99 0.74 (S) 0.74

(S) 1.60 (V) 0.88 0.96 0.57
(U)

0.62
(U)

18.1
(U)

Fairchild at
Brantford 0.87 0.99 0.76 (S) 0.76

(S) −0.80 (V) 0.76 0.88 0.63
(U)

0.67
(U)

3.40
(G)

Nith at
Canning 0.93 1.24 0.87 (V) 0.87

(V) 5.90 (G) 0.83 0.98 0.81
(G)

0.82
(G)

2.30
(V)

V: very good; G: Good; S: satisfactory; U: unsatisfactory, as per recommendations of Moriasi et al. [46].
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Figure 5. Time series plot showing the observed and simulated monthly flow for six gauging stations:
(a) Grand River at Marshville (02GA014), (b) Eramosa and Speed River at Guelph (02GA029), (c) Nith
River at Canning (02GA010), (d) Fairchild Creek near Brantford (02GB007), (e) Grand River at Brantford
(02GB001), and (f) Mckenzie Creek near Caledonia (02GB010).

3.2. Spatiotemporal Variability of the Fresh Water Resources

The blue water yield showed marked spatial variability and, as expected, a high correlation
with variability of the annual average precipitation (Figure 6). Blue water varied from 222 mm in the
southeastern part of the watershed to 430 mm in the western part of the watershed. Sub-basins located
at the western parts of the basin (upstream parts of the Conestoga and Nith sub-watersheds) had
the highest blue water yields. Particularly, a sub-basin in the western part of the watershed showed
an extremely high value of blue water (430 mm) as compared to the watershed average of 301 mm,
which was mainly because of the presence of Brookston clay soil that has poor drainage properties.
This resulted in limited infiltration, and as such, a higher blue water flow. Amongst different zones,
the Fairchild Creek sub-watershed (Zone F) contributed the least, which can be directly related to the
lower amount of precipitation it received when compared to other parts of the watershed.
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Figure 6. Spatial distribution of average annual precipitation and blue water flow.

The inter-annual variability based on a long-term (63 years: 1953–2015) assessment of the blue
water showed an interesting trend (Figures 7 and 8). While blue water yield showed an increasing trend
using Sen’s slope analysis, a kind of cyclic pattern was evident, with increasing values in some years
(positive z-value; Figure 8 in years 1975–1980) and decreasing values in other years (negative z-values;
Figure 8 in years 1960–1965). Despite a higher rate of temperature increase, the blue water resources
increased steadily, which can be attributed mainly to an increase in precipitation. Hence, inter-annual
variability in precipitation, as expected, exerted higher control on the inter-annual variability of blue
water than that of temperature. As evident in the z-score plot, an increase or decrease in precipitation
had similar effects on different zones (A to H) of the watershed, as indicated by the same colored blue
water yield z-score values, highlighting consistent responses to precipitation fluctuations among the
considered eight zones of the GRW.

Figure 7 also shows the uncertainty band (95% PPU). It should be noted that a thicker band (with
band thickness varying from 200 mm to over 400 mm) was obtained for blue water resources when
compared to the same for green water resources, which implied higher variation in the blue water
resources and, hence, higher uncertainty. This higher uncertainty was evident from the fact that the
blue water was sensitive to more parameters as compared to other freshwater components [11] such as
green water flow, which is primarily dependent on diurnal temperature fluctuations. A small change
in precipitation can more quickly affect blue water flow than green water flow and storage. As for
the green water, it was evident that both green water flow and green water storage were associated
with temperature (Figure 9). The green water flow varied from 425 mm/year in upstream sub-basins,
where the temperature was low, to 575 mm/year in the downstream temperature where the mean
annual temperature was higher (more than 9 ◦C). The spatial analysis of the green water flow (Figure 9)
showed lesser variations as compared to the blue water flow. The reason for this is that soil had a
limited amount of water storage to compensate for green water flow needs of the vegetation [11].
It should be noted that in the northern parts of the watershed, there was a small sub-basin with
extremely high green water flow (Figure 9), although it was in a lower temperature region. The reason
for this was higher evaporation occurring from this sub-basin, as most of its area contained water and
wetlands. The Luther dam is situated in this small sub-basin, which caused a higher green water flow.
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Similarly, the green water storage or the available soil water also showed marked spatial variability.
It is indeed true that green water storage is dependent on various soil properties such as depth of the
soil layer, hydraulic conductivity, porosity, etc. In our study, the major influencing factor was the soil
depth (Figures 2 and 9). Furthermore, the spatial variability in green water storage is also related to
variability in precipitation. However, an opposite pattern was observed, especially for the western
parts of the GRW. In these areas, while precipitation was the highest, the green water storage was not.

Sustainability 2019, 11, x FOR PEER REVIEW 14 of 22 

The reason for this was higher evaporation occurring from this sub-basin, as most of its area 

contained water and wetlands. The Luther dam is situated in this small sub-basin, which caused a 

higher green water flow. Similarly, the green water storage or the available soil water also showed 

marked spatial variability. It is indeed true that green water storage is dependent on various soil 

properties such as depth of the soil layer, hydraulic conductivity, porosity, etc. In our study, the major 

influencing factor was the soil depth (Figures 2 and 9). Furthermore, the spatial variability in green 

water storage is also related to variability in precipitation. However, an opposite pattern was 

observed, especially for the western parts of the GRW. In these areas, while precipitation was the 

highest, the green water storage was not.  

 

Figure 7. Trend analysis using Sen’s Slope method of average annual precipitation, temperature, blue 

water and green water flow, and green water storage. 

Figure 7. Trend analysis using Sen’s Slope method of average annual precipitation, temperature, blue
water and green water flow, and green water storage.



Sustainability 2019, 11, 1883 15 of 22

Sustainability 2019, 11, x FOR PEER REVIEW 15 of 22 

 

Figure 8. Z-variate analysis of average annual precipitation, temperature, blue water and green water 

flow, and green water storage at the zonal level. 

 

Figure 9. Spatial distribution of average annual temperature, green water flow, and green water 

storage. 

The inter-annual temporal and uncertainty analysis for a period of 63 years (1953–2015) showed 

an increasing trend of both green water flow and storage with a narrow uncertainty band (Figures 7 

and 8). As both precipitation and temperature trends showed increasing trends (Figure 7), and their 

effects on green water storage were compensating, it is evident that the green water storage trends 

have milder slopes than that of precipitation and temperature. In general, a higher precipitation 

would allow more infiltration and more green water storage. At the same time, a higher temperature 

would mean a higher rate of green water flow. Moreover, a consistent pattern was observed amongst 

the different zones of the GRW, as indicated by the same color pattern (vertical axis) in the z-score 

Figure 8. Z-variate analysis of average annual precipitation, temperature, blue water and green water
flow, and green water storage at the zonal level.

Sustainability 2019, 11, x FOR PEER REVIEW 15 of 22 

 

Figure 8. Z-variate analysis of average annual precipitation, temperature, blue water and green water 

flow, and green water storage at the zonal level. 

 

Figure 9. Spatial distribution of average annual temperature, green water flow, and green water 

storage. 

The inter-annual temporal and uncertainty analysis for a period of 63 years (1953–2015) showed 

an increasing trend of both green water flow and storage with a narrow uncertainty band (Figures 7 

and 8). As both precipitation and temperature trends showed increasing trends (Figure 7), and their 

effects on green water storage were compensating, it is evident that the green water storage trends 

have milder slopes than that of precipitation and temperature. In general, a higher precipitation 

would allow more infiltration and more green water storage. At the same time, a higher temperature 

would mean a higher rate of green water flow. Moreover, a consistent pattern was observed amongst 

the different zones of the GRW, as indicated by the same color pattern (vertical axis) in the z-score 

Figure 9. Spatial distribution of average annual temperature, green water flow, and green water storage.

The inter-annual temporal and uncertainty analysis for a period of 63 years (1953–2015) showed
an increasing trend of both green water flow and storage with a narrow uncertainty band (Figures 7
and 8). As both precipitation and temperature trends showed increasing trends (Figure 7), and their
effects on green water storage were compensating, it is evident that the green water storage trends
have milder slopes than that of precipitation and temperature. In general, a higher precipitation would
allow more infiltration and more green water storage. At the same time, a higher temperature would
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mean a higher rate of green water flow. Moreover, a consistent pattern was observed amongst the
different zones of the GRW, as indicated by the same color pattern (vertical axis) in the z-score plot for
a particular year. As we proceed on the horizontal axis in the z-score plot, temporal variations were
evident such as higher green water storage in the years 1980–1985 and lower green water storage in
the years 1960–1965. An interesting trend in the z-score plot of green water flow was observed in the
years 1960–1965. While green water flow showed a mixed pattern in that period, the pattern of green
water storage was more similar to that of precipitation, despite an opposite temperature pattern. This
indicates that variability in precipitation can explain variability in green water storage.

The intra-annual variability of the freshwater components was also analyzed using monthly
average plots at the zonal level (Supplementary Figure S1a,b). Precipitation was found to be more or
less uniform throughout the year, but blue water was the highest in March and April. The peaks were
the result of the snowmelt contribution to the total yield in the GRW. Moreover, there was a little rise in
blue water in November and December, which might be because of slightly more precipitation in those
months. Green water flow was found to be highest from May to July, because of higher temperature
and more evapotranspiration in these months. Green water storage also decreased during summer
months from May to July, owing to more evapotranspiration in those months.

3.3. Blue Water Security Status Using Different EFR Methods

Results showed that each of the EFR methods attributed different amounts of blue water
for human consumptive use. The modified Q7,10 method attributed 13% ± 5% to the EFR
requirement while the VMF method raised the contribution to 35% ± 2% (Supplementary Table S1).
The presumptive standards method, on the other hand, was the most restrictive and conservative,
which attributed 80% of the discharge to the EFR. As such, it was evident that the modified Q7,10
method was the least restrictive and conservative, while the opposite was true for the presumptive
standards method. The difference in the EFRs was more prominent in the beginning of summer (June),
as compared to the end of summer (August) and beginning of fall (September), because variation in
the streamflow was the least during the latter months.

The FWPI (quantitative) was also calculated to compare the EFR methods amongst themselves. As
already stated, the FWPI estimates the frequency of streamflow that is less than the EFR. It was found
that the average annual FWPI for the period of 63 years and for the whole watershed was 0.26 ± 0.04
using the modified Q7,10 method, 0.59 ± 0.14 using the VMF method, and 0.93 ± 0.03 when using the
presumptive standards method for EFR calculation. The FWPI values helped to build a restrictiveness
scale, with the presumptive standards method being the most restrictive and the modified Q7,10
method being the least. It also can help to estimate the natural reasons, like droughts, for violation of
the EFR [8]. This analysis can help to select any EFR method based on conservation requirements.

The annual average blue water scarcity (Figure 10) clearly demonstrates the marked variability
across different zones. Furthermore, use of different methods while calculating the EFR resulted in
different blue water scarcity values. Since modified Q7,10 and VMF methods showed lower restrictions
in terms of the EFR, it was observed that blue water scarcity values were less than 0.6 (low blue water
scarcity) for all the zones. Alternatively, the presumptive standards method showed decreased blue
water availability and gave higher values for blue water scarcity, some as high as 1.75 (significant blue
water scarcity). Precisely, the Eramosa and Speed river sub-watershed (Zone D) was found to have the
most blue water scarcity using all the EFR methods, and it had low green water availability as well
(refer next section), further highlighting the effect of urban development in this zone. Water use or
the blue water footprint was very high for the Central Grand sub-watershed (Zone G) and Nith River
sub-watershed (Zone E) because of the presence of urban centers (Kitchener and Waterloo, Paris and
New Hamburg, respectively) in these zones. However, The higher blue water availability under all
EFR scenarios compensated for the higher water use and, hence, resulted in lower blue water scarcity.
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Figure 10. Spatial distribution of blue water scarcity (using all three methods for environmental flow
requirement (EFR) calculations) for the year 2008.

In the monthly temporal scale, even more significant variability in blue water scarcity existed,
depending on the method used for the calculation of the EFR, different zones, and months (Figure 11).
For instance, the blue water scarcity was highest in the summer months (May to August), and was
consistent in all zones. This was due to higher water use in these months. Furthermore, another peak
in blue water scarcity was observed in the month of October for all the zones when using all the EFR
methods, on account of lower blue water availability. The blue water scarcity varied between 0.004
(low) and 0.973 (low) for the modified Q7,10 method, between 0.005 (low) and 1.31 (moderate) for the
VMF method, and 0.017 (low) and 3.27 (severe) blue water scarcity for the presumptive standards.
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3.4. Green Water Security Status

As observed for the blue water scarcity, the green water scarcity plots (Figure 12 for annual,
Figure 13 for monthly time scales) also showed marked spatial and temporal variabilities. The average
annual green water scarcity for the whole watershed was found to be 58.82%. Higher values of green
water scarcity were seen in the southern Grand and Mckenzie Creek sub-watershed (Zone H) on
account of its higher temperature (Figure 9), more agricultural areas, and more pastures resulting in a
higher green water flow. Lower green water scarcity was observed in the Eramosa and Speed river
sub-watershed (Zone-D) because of its relatively low temperature and higher elevation; hence, there
was less green water flow and more green water storage (Figure 9). Even in zones with higher green
water flow and lower green water storage, the green water scarcity at an annual level remained less
than 1.1 (110%), indicating that green water shortage was not a serious problem in the GRW.
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On the other hand, the intra-annual variability in the green water scarcity showed further
variability (Figure 13). Almost all the zones became an environmental hotspot during summer and
beginning of fall (from June to August). This might be attributed to more crop growth and, hence,
higher evapotranspiration in these months. In the worst case, the green water scarcity approached
a value of 3 (300%). Such monthly and seasonal analyses of green water scarcity can be helpful for
planning agriculture and for using available water in a more sustainable manner.

4. Conclusions

In this study, a hydrological modelling framework, using the soil and water assessment tool
(SWAT), was applied to evaluate the spatial and temporal variability of blue and green water resources
and water security in the Grand River watershed (GRW), Canada. The SWAT model of the GRW
incorporated both natural and human factors influencing the hydrology of the watershed. Model
calibration, validation, and uncertainty analyses showed ‘good’ to ‘very good’ quality of streamflow
results. With the calibrated and validated model, we made further analyses on blue and green water
resources and security. Overall, we arrived at the following conclusions:

• Spatial and temporal variability in the blue water resources can be explained by variability in
climate factors (i.e., precipitation). Long-term analyses showed that the western sub-basins of the
GRW had the highest blue water resources.

• The green water flow, on the other hand, was found to be associated with temperature,
precipitation, and land use/land cover. The higher the temperature and more intense the
agriculture was, the higher the green water flow was, as was observed for southern sub-basins of
the GRW. Green water storage was found to be associated with various soil properties and was
seen to be influenced by elevation or depth of soil. Thereby, a higher green water storage in the
northern part of the watershed was observed.

• Blue water security analysis showed contrasting results for different EFR methods used.
The presumptive method was found to be the most restrictive and conservative when compared
to others. The blue water was scarce in some regions of the GRW and was found to be severe in
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specific periods, especially for the Eramosa and Speed river sub-watershed and in summer months,
on account of the higher percentage of urban area, more water use, and less blue water availability.

• Green water security analysis showed that the basin had no severe green water scarcity, and that
it was adequate enough for practicing rain-fed agriculture in spring and fall seasons. It was found
to be the highest in the southern Grand River sub-watershed because of the higher temperature,
larger green water footprint, and lower green water availability.

We believe that such a modelling approach can be used in other Canadian watersheds as well;
however, because of the various uncertainties and empirical relations involved, there is some room
for improvement, such as: (a) groundwater needs to be accounted for more effectively in blue water
security estimation studies; and (b) water use data needs to more refined and is needed over longer
time-spans in order to do inter-annual analyses of blue water and green water security. Available
soil moisture data with good resolutions can also be used for calibrating green water resources.
In shaping future work, these limitations will be effectively acknowledged, and similar analysis would
be extended to future time periods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/7/1883/s1,
Supplementary Figure S1: (a) Monthly variability in different water resources components in Zone A–D of the
GRW (Blue water scarcity calculated using Presumptive Standards method), (b) Monthly variability in different
water resources components in Zone E–H of the GRW (Blue water scarcity calculated using Presumptive Standards
method), Supplementary Figure S2: Flow duration curves showing the observed and simulated monthly flows
for six gauging stations, Supplementary Table S1: Attribution of blue water for environmental flow requirement
using different methods.
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