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Abstract: In this study, we proposed climate use efficiency (CUE), a new index in monitoring
grassland ecosystem function, to mitigate the disturbance of climate fluctuation. A comprehensive
evaluation index (EI), combining with actual vegetation net primary productivity (NPP), CUE,
vegetation coverage, and surface bareness, was constructed for the dynamic remote sensing
monitoring of grassland degradation/restoration on a regional scale. By using this index, the
grassland degradation/restoration in the Three-River Source Region (TRSR) was quantitatively
evaluated during 2001–2016, which has been an important ecological barrier area in China. Results
showed the following: During the study period, the grassland of Yellow River source (SRYe) had
high vegetation coverage, NPP, CUE, and low bareness, whereas Yangtze River source (SRYa) had
low vegetation coverage, NPP, CUE, and high bareness. The vegetation coverage and CUE of the
grassland showed upward trends, with annual change rates of 0.75% and 0.45% year −1. The surface
bareness and NPP showed downward trends, with annual change rates of −0.37% year−1 and
−0.24 g C m−2 yr−2, respectively. Assessment of EI revealed that 67.18% of the grassland of TRSR
showed a recovery trend during the study period. The overall restoration of the SRYe was the best,
followed by SRYa. However, the status of Lancang River source (SRLa) was poor.

Keywords: grassland degradation; comprehensive remote sensing monitoring index; climate use
efficiency (CUE); surface bareness; Three-River Source Region

1. Introduction

The area of grassland degradation reached 14 × 106 km2 in 2010, accounting for nearly 49.3%
of the world’s grassland area [1]. Grassland degradation is an urgent ecological and economic
problem worldwide, particularly in China [2]. Natural grassland occupies 41% of the total land
area of China, which is 1.95 times higher than woodland and 2.62 times higher than cultivated land.
Natural grassland is an important material base of animal husbandry and also a main ecological
barrier in northern China [3]. To date, 90% of the natural grassland in China has a different degree of
degeneration, increasing at a speed of 6700 km2 annually [4]. Improved methods for monitoring land
degradation across spatial and temporal scales will be crucial for understanding and addressing the
risk of grassland degradation.

In the past decades, the technologies of remote sensing have evolved dramatically to include a
suite of sensors at a wide range of image scale. So far, remote sensing has played an unprecedented
role in land degeneration mapping, assessment, and monitoring at multiple spatial and temporal
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scales [5], offering broadly automated and repeatable methods for indicators of vegetation condition [6].
Grassland vegetation index, such as net primary productivity (NPP), vegetation coverage, or biomass
is the direct manifestation of grassland degeneration [7]. Many previous studies have calculated
vegetation related index and analyzed spatial-temporal dynamics successfully over the given
observation period [5,8]. Some studies have attempted to monitor grassland degradation through NPP,
normalized index (NDVI), enhanced vegetation index (EVI), vegetation coverage, surface temperature,
land-cover dynamic, and other indicators [6,9–13].

However, there are difficulties in remote sensing evaluation and monitoring of grassland
degradation. Some researchers are limited by large-scale monitoring and time-consuming manual
interpretation of satellite image based on field survey. The flaws of vegetation indexes for monitoring
could lead to some inaccurate assessments such as singular classification index, inconsistency of
diagnostic criteria, and misuse of remote sensing data [14,15]. In particular, inter-annual grass growth
fluctuates with climatic condition when monitoring temporal dynamic change; therefore, it is hard
to distinguish grassland degradation from the influence of climate. It leads to overestimating of the
severity of degradation in a poor harvest year and underestimating in bumper harvest year. In view
of this problem, some studies have attempted to diagnose degradation by using rain-use efficiency
(RUE) [16–18]. However, these indexes only focus on the water variation in suitable arid areas. Besides,
singular monitoring indicators have certain degree of defects, deviation or uncertainties. Researchers
often need to identify the most appropriate one for specific applications [6]. For that reason, the
comprehensive use of multiple indicators can compensate for single index defects, improving the
monitoring and evaluation accuracy [19].

In this study, we attempted to construct a comprehensive evaluation method for the dynamic
remote sensing monitoring of grassland degradation/restoration on a medium scale. Meanwhile, we
proposed climate use efficiency (CUE) as a new index in monitoring grassland ecosystem function
to mitigate the disturbance of climate fluctuation. We then quantitatively diagnosed grassland
degradation/restoration in the TRSR during 2001–2016. This study could serve as a theoretical
reference for the treatment and rational utilization of grassland resources, offering demonstration and
reference for similar research.

2. Study Area and Materials

2.1. Study Area

The study area is the TRSR (see Figure 1), which located in the hinterland of the Tibetan Plateau
(31◦39”–36◦12” N, 89◦45”–102◦23” E), known as the “Water Tower of China”, the headstream of
three major rivers in East Asia (i.e., the Yangtze River, the Yellow River and the Lancang River).
Around 40% of the world’s population depends on, or is influenced by, these rivers [20]. The TRSR
covers an area of 350,000 km2, in which the area of SRYa, SRYe, SRLa accounts for 43.2%, 39%, and
17.8%, respectively [21]. The TRSR is mainly constituted of mountainous landform with the altitude of
3335–6564 m. The climate is typical high-altitude plateau monsoon type, with annual mean temperature
from −5.38 ◦C to 4.14 ◦C and annual precipitation from 262.2 mm to 772.8 mm [22]. The grassland
ecosystem is primary in the TRSR region, which accounts for 65.37% of the total area. The population
is about 568,000 and most of the residents are nomadic Tibetan [21]. Because of rigorous climate and
topography, grassland ecosystems in this region are fragile and consequently prone to damage and
degeneration [22]. Over the past decades, grassland degradation in the TRHR has attracted much
attention. The lives of residents are threatened by a deteriorating regional ecosystem and declining
water conservation function.
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Figure 1. The map of location, administrative division, elevation and sub-regions in TRSR. 
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MOD13A3. The red and thermal infrared bands to calculate surface bareness were extracted from 
MOD13A2 and MOD11A2, respectively. Soil temperature data were also from MOD11A2. All of the 
MODIS data were downloaded from https://wist.echo.nasa.gov/api/at 1km space resolution and time 
span 2001–2016 with each year growth season (May-September). MODIS Reprojection Tools (MRT) 
was applied to mosaic and resampling of the images. Then, the maximum value composite (MVC) 
method was used to obtain monthly data. 

Climate data included monthly average temperature, precipitation, and solar total radiation data 
in 50 standard meteorological sites provided by the China Meteorological Science Data Service Center 
(http://cdc.cma.gov.cn) from 2001 to 2016 in the TRSR and surrounding areas. Through the 
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The Carnegie–Ames–Stanford Approach (CASA) model, a light energy utilization process-based 
model, was applied to compute the actual NPP in the study. The CASA model is driven by remote 
sensing, meteorological data, and vegetation types. It has been calibrated by more than 1900 
measured sites around the world[25] and also widely used in grassland productivity research. The 
specific calculation method and parameter setting were based on previous studies [26–28]. In the 
CASA model, the formula of NPP calculation is showed compactly as follows:  
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2.2. Data Collection and Processing

Moderate Resolution Imaging Spectroradiometer (MODIS) Monthly-L3 data products were
adopted in this study. NDVI (Normalized Difference Vegetation Index) was directly extracted from
MOD13A3. The red and thermal infrared bands to calculate surface bareness were extracted from
MOD13A2 and MOD11A2, respectively. Soil temperature data were also from MOD11A2. All of the
MODIS data were downloaded from https://wist.echo.nasa.gov/api/ at 1km space resolution and
time span 2001–2016 with each year growth season (May-September). MODIS Reprojection Tools
(MRT) was applied to mosaic and resampling of the images. Then, the maximum value composite
(MVC) method was used to obtain monthly data.

Climate data included monthly average temperature, precipitation, and solar total radiation data
in 50 standard meteorological sites provided by the China Meteorological Science Data Service Center
(http://cdc.cma.gov.cn) from 2001 to 2016 in the TRSR and surrounding areas. Through the specialized
climate data space interpolation program ANUSPLIN (version 4.3) [23], interpolation processing
obtained a weather raster data that is consistent with the NDVI data pixel size and geographical
projection. Soil texture data is extracted from Harmonized World Soil Database (version 1.1) [24].

3. Methods

3.1. The Calculations of Actual and Potential NPP

The Carnegie–Ames–Stanford Approach (CASA) model, a light energy utilization process-based
model, was applied to compute the actual NPP in the study. The CASA model is driven by remote
sensing, meteorological data, and vegetation types. It has been calibrated by more than 1900 measured
sites around the world [25] and also widely used in grassland productivity research. The specific
calculation method and parameter setting were based on previous studies [26–28]. In the CASA model,
the formula of NPP calculation is showed compactly as follows:

NPP = FPAR × APAR × ε, (1)

https://wist.echo.nasa.gov/api/
http://cdc.cma.gov.cn
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where FPAR is Fraction of Photosynthetically Active Radiation intercepted by green vegetation, APAR
is vegetation absorbed photosynthetically active radiation, ε is light use efficiency, which is restricted
by temperature and precipitation. [29]

To ensure the contrast of the actual NPP with the potential NPP (that is, the NPP was only
considered for climatic conditions), the calculation of the climate productivity model with the potential
NPP is the same frame as CASA, except for the FPAR calculation. The differences of both are as follows:
in the CASA model, the FPAR is estimated by NDVI:

FPARNDVI =
NDVI − NDVIi,min

NDVIi,max − NDVIi,min
× (FPARmax − FPARmin) + FPARmin (2)

where NDVI represents the NDVI value in a month; NDVIi,min and NDVIi,max represent the maximum
and minimum NDVI values of a certain vegetation cover type, respectively; FPARmax and FPARmin are
0.95 and 0.001, respectively. Their values are independent of the vegetation cover type.

In the potential NPP model, FPAR were estimated with a Beer-Lambert law, as follows:

FPARclim = 1 − e−k×LAI , (3)

where k is the light extinction coefficient. We take a constant value of 0.5, typical for herbaceous
vegetation [30]; LAI (Leaf Area Index) indicates leaf area index (m2m−2).

LAI = LAImin + f sw × f st × (LAImax − LAImin) (4)

where LAImin and LAImax represent the minimum and maximum value of the leaf area index,
respectively. fsw and fst represent the limits of soil moisture and soil temperature on vegetation
growth, respectively [24]. The calculations are as follows:

f st = min
(

1, max
(

0, 1 − 0.0016 × (298 − LST)2
))

(5)

where LST is land surface temperature indicated soil temperature; Wmax indicates the maximum soil
moisture content that is soil texture dependent empirical coefficient:

f sw = min

(
1, max

(
0,

Wsoil
Wmax

Wcrit

))
(6)

Wmax = 0.332 − 7.251 × 10−2sand + 0.1276 log10 clay + 0.2552 (7)

Wcrit is constant at 0.25, showing that the fractional water content reflecting the permanent wilting
point; Wsoil indicates the soil water content, which was potential to accumulate soil moisture over
several months as a state variable [31];

Wsoil(t) = Wsoil(t−1) + (Prcpt − Ept)× RDR i f Prcpt < Ept (8)

Wsoil(t) = Wsoil(t−1) + (Prcpt − Ept) i f Prcpt ≥ Ept (9)

where Prcpt is precipitation at month t, Ept is potential evapotranspiration at month t, RDR is relative
drying rate scalar for potential water extraction as a function of soil moisture. If month average air
temperature is below 0 ◦C, Prcpt and Ept are defined as 0, which means that there is no water exchange
between soil and atmosphere, and all precipitation accumulates as snow, which is added to Prcp in
the first month of air temperature being above 0 ◦C. Ep is calculated using the same method as CASA.
RDR is calculated as follows:

RDR =
1 + a

1 + aθb (10)
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where a and b are empirical content that relate to soil texture and θ is the soil water content of the
previous month [31]:

a = e−4.396−7.15clay−4.88sand2−0.4285sand2
(11)

b = −3.14 − 22.2clay2 − 34.84sand2clay (12)

where clay and sand indicate clay and sand percentage (actual decimal value) of soil texture, respectively.

3.2. Calculation of Vegetation Coverage

The dimidiate pixel model, regarded as the simplest model of the linear spectral mixture analysis
method to extract vegetation coverage, was applied to calculate grassland vegetation coverage.
A highly significant correlation was observed between NDVI and vegetation coverage; hence, the
vegetation coverage could be extracted directly from NDVI [32]. The expression formula is as follows:

Ci =
NDVI − NDVImin

NDVImax − NDVImin
(13)

where Ci is the vegetation coverage; NDVImax and NDVImin represent the maximum and minimum
NDVI values of the study area, respectively. In this study, NDVImax and NDVImin are respectively
defined by 95% and 5% quantile NDVI pixels in the growth season of TRSR (May ~ September), which
eliminates extreme pixel values (similarly hereinafter).

3.3. Calculation of Surface Bareness

Wang et al. [33] presented an imperviousness index (Normalized Difference Imperviousness Index,
NDII) associated with surface visible red reflectivity and thermal infrared radiation. They further
established the surface bareness index on the basis of NDII [34]. Although bareness is correlated with
the concept of vegetation coverage, it is not a complementary set of coverage but an index containing
surface reflectance and temperature, attributed to evaluation of urban ecological environments by
remote sensing. Vegetation evapotranspiration could conspicuously reduce surface temperature
compared to exposed soil surface under direct sunshine in growing season. These differences could
be presented on image pixel values of grassland ecosystems [35–37]. Based on the above theoretical
basis and practical research, this study introduces the surface bareness index to the remote sensing
evaluation system of grassland ecological degradation. The calculation method of NDII is as follows:

INDII =
λr − λt

λr + λt
(14)

where INDII is the NDII value; λr and λt are the red band and thermal infrared band of the remote
sensing image, respectively. Bareness index Fb calculated based on INDII:

Fb =
INDII − INDIImin

INDIImax − INDIImin
(15)

where INDIImax and INDIImin represent 95% and 5% quantile of all image pixels values of the study area
in the lushest vegetation month (July), respectively.

3.4. Calculation of Climate Utilization

The inter-annual variability of climatic condition causes “harvest” and “less harvest years” of
vegetation growth, which could easily interfere with the judgment of land degradation/restoration.
RUE, the ratio of NPP to the corresponding precipitation, has been used to solve this problem [21,38,39].
Therefore, it can exclude the effects of inter-annual variability of precipitation on the diagnosis of
grassland degradation. Though RUE is well applied in arid and semiarid, some studies have revealed
that the effect of precipitation on the TRSR vegetation is significantly less than that of radiation and
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temperature [27,40]. Thus, considering the effects of radiation and temperature, this study presents a
new degradation-monitoring index for climate utilization efficiency (CUE):

CUE =
NPPa

NPPp
(16)

where NPPa and NPPp are the actual and potential NPP for the current year, respectively. CUE
indicates the utilization efficiency of the main climatic factors, including light, temperature, and water
in grassland ecosystems.

3.5. Grassland Degradation/Restoration Classification and Grading Standard Construction

In order to use the remote sensing information efficiently, a comprehensive evaluation index (EI)
for the monitoring of grassland degradation was established with four indexes: actual NPP, CUE,
vegetation coverage, and surface bareness. Among them, NPP is a comprehensive indicator to analyze
grassland degradation [1,13,41], but yearly NPP obviously fluctuates with current weather conditions.
Therefore, it is hard to separate degradation tendency from regular weather fluctuation. CUE can
eliminate the influence of weather fluctuation effect on grassland degradation monitoring. Vegetation
coverage and surface bareness are visual indexes of grassland degradation. Four types of indexes
were normalized firstly, and principal component analysis (PCA) was carried out. If the sum of the
first several principal component reaches 80%, these components are extracted as EI. The calculation
method is:

EIj =
4

∑
j=1

Ij × aj (17)

EI =
EIj − EImin

EImax − EImin
(18)

Ij represents the respective contribution rates of vegetation coverage, surface bareness, NPP, and
CUE; aj is the corresponding values of their first principal component of the eigenvector. EImax and
EImin represent 95% and 5% quantile of all pixels in the study area, respectively.

Temporal trends of the index values were examined by ordinary least square analysis [42], which
is a generally reliable method. If the slope is positive, the grassland is restorable; otherwise, it is a
degrading one.

3.6. Model Verification

NPP data converted from field measurement biomass are used for model validation. The biomass
data measured 50 quadrate plots with 1 km × 1 km in August 2012 in TRSR. Each quadrate was
sampled 5 replicated with 1 × 1m square area. The vegetation coverage and aboveground biomass
data were obtained. Carbon allocation ratio is 58.7:41.3 between the underground and aboveground
parts according to a study about carbon flux of meadows in the Tibetan Plateau [43]; the measured
NPP is obtained as:

NPPmeasure = DMAG ×
(

1 +
41.3
58.7

)
× 0.542 (19)

where DMAG is the aboveground dry matter, 0.542 accounts for the carbon content rate of grass dry
matter [26].

The simulated NPP, vegetation coverage, and surface bareness obtained good results from the
measured data, respectively (Figure 2). A strong negative correlation was observed between the
MODIS retrieved bareness and the measured vegetation coverage, indicating that the index can be
contrasted with the vegetation coverage index and the feasibility of introducing the evaluation system.
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Figure 2. Comparison between simulated and measured data. (a) Actual NPP validation, (b) vegetation
coverage and bareness index validation.

4. Results

4.1. Spatiotemporal Pattern of Four Monitoring Indexes

The spatial distribution characteristics of vegetation coverage (mean value of multi-year
2001–2016) are shown in Figure 3a. The annual average coverage was 50.40%, showing decreasing
distribution characteristics from southeast to northwest. The grassland coverage is high, mostly
75–90%, in Zeku, Henan located to the east of 100◦ E and southern part of the TRSR, while coverage is
low (<25%) in Zaduo, Golmud located to the west of 94◦ E.
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The average surface bareness of the TRSR was 69.80%, and spatial distribution was opposite to
vegetation coverage. The bareness was high (>75%) in Zaduo, Golmud, and Qumalai in the northern
edge of the TRSR and other places west of 94◦ E, while relatively low (<50%) in Zeku and Henan
County areas east of 100◦E, and Yushu in the southern part of the TRSR (Figure 3b).
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The average NPP of the TRSR was 198.74 g m−2 year−1, showing decreasing distribution
characteristics from southeast to northwest, which is consistent with the distribution of hydrothermal
gradients in the TRSR (Figure 3c).

The spatial distribution of CUE showed obvious spatial heterogeneity (Figure 3d), presenting a
spatial pattern high in the east and low in the west. The average of CUE was 57.69% during 2001–2016.
The region with high CUE value is located to the east of TRSR; the CUE value in Gande, and Henan
County can reach more than 100%. The region with low CUE (mainly < 25%) is distributed in Zhiduo,
Geermu County, and other places in the northwest.

We counted the different pixel values of vegetation coverage (Figure 4a), surface bareness
(Figure 4b), NPP (Figure 4c), and CUE (Figure 4d) in the three river source areas: SRYe had high
vegetation coverage, NPP, CUE, but low bareness. The average coverage, bareness, NPP, and CUE
were 59.50%, 58.98%, 321.86 g cm−2 year−1, and 84.01%, respectively, whereas the corresponding
distribution rates of their peak values were 60–85%, 50–80%, 290–500 g cm−2 year−1, and 75–120%.
SRYa had low vegetation coverage, NPP, CUE and high bareness. The average coverage, bareness,
NPP, and CUE were 40.17%, 74.75%, 196.97 g cm−2 year−1, and 53.13%, respectively, whereas the
corresponding distribution rates of their peak values were 15–80%, 70–85%, 50–350 g cm−2 year−1,
and 15–100%. SRLa had low vegetation coverage, NPP, CUE and high bareness. The average coverage,
bareness, NPP, and CUE were 51.42%, 62.71%, 300.26 g cm−2 year−1, and 80.94%, respectively, whereas
the corresponding distribution rates of their peak values were 60–72%, 60–75%, 350–450 g cm−2 year−1,
and 80–110%.
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Figure 4. Statistics of pixel value count of mean annual index in each river source region over 2001–2016.
(a) Vegetation coverage, (b) surface bareness, (c) NPP and (d) CUE.

We analyzed the trend of four ecological indicators during 2001–2016, the spatial pattern of
which is shown in Figure 5. In the whole of TRSR, the vegetation coverage has an overall upward
trend (not shown in the fig) with average annual change rate of 0.53% year−1 (p < 0.01). The fastest
growing regions were Maduo, Xinghai, and northern margin of Zeku County. The distribution of
the coverage’s rapidly decreasing region was dispersed (Figure 4a). The average value of surface
bareness exhibited a downward trend at a rate of −0.24% year−1 (p < 0.05). The area of rapid decrease
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was concentrated in SRYe, Gander, Long, south of Maduo County, and northeast of Yushu County,
all located in the southern part of SRYe. The fast-growing area was in northwest Golmud, Xinghai
and Maqin (Figure 5b). NPP has an insignificant downward trend (−0.71g Cm−2yr−2) (p > 0.05).
The area where NPP decreased rapidly was concentrated in the southern parts of SRYa and SRLa.
The fast-growing area was located in Xinghai and Zeku County northern margin (Figure 5c). The CUE
showed an insignificant upward rate of 0.45% yr−1 (p > 0.05). The fastest-growing regions were in Dari,
Gande, Moduo, Chengduo County and the eastern parts of Qumalai and Zaduo County (Figure 5d).Sustainability 2019, 11, x FOR PEER REVIEW 10 of 16 
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4.2. Spatial Distribution Characteristics of Grassland Degradation Status

As shown in Table 1, the cumulative contribution rate of the first principal component reached
93.12%. Thus, the first principal component was extracted as EI. The corresponding values of the first
principal component of the eigenvector are 0.45, 0.25, 0.70, and 0.49.

Table 1. Principal Component Analysis of four surface index.

Principal Component ORIGINAL Eigenvalue

Eigenvalue Percent of Eigenvalues Accumulative of Eigenvalues

1 0.05 93.12 93.12
2 0.00 3.31 96.43
3 0.00 2.50 98.93
4 0.00 1.07 100.00

Figure 6a shows the trend of annual average EI in the TRSR grassland during 2001–2016. It showed
an insignificant increasing trend (p > 0.05), and the rate of change was 0.39% year−1. The lowest EI
(0.45) was in 2003 and highest (0.55) in 2012. The whole TRSR was marked off as five types of change
scenarios according to the significant levels of EI trend with F-test: extremely significant degradation
(ESD, slope < 0, p < 0.01), significant degradation (SD, slope < 0, 0.01 < p < 0.05), insignificant variation
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(IV, p > 0.05), significant restoration (SR, slope > 0, 0.01< p < 0.05), and extremely significant restoration
(ESR, slope > 0, p < 0.01). The distribution characteristics are shown in Figure 6b. The largest proportion
was SR (64.14%), which was widely distributed in the region, mainly in Zeku County, Dari County,
Maduo County, Golmud East, and Zhiduo County South, followed by SD (29.91%), mainly in the
south and east of Maqin County, Yushu County, Nangqian County, and Zaduo County, the south-east
of Chenduo County, and Zhiduo County. The ESR of grassland was 3.04%, mainly distributed in the
northern part of Maduo County and the northern part of Zhiduo County. The grassland of insignificant
variation was 2.9%, mainly distributed in the west of Geermu and Zhiduo County, whereas extremely
significant degradation accounted for only 0.02%.
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degradation, SD indicates significant degradation.

We further summarized the proportions of areas with different grassland degradation/restoration
situations based on significant levels in the three sub-region (SRYa, SRYe and SRLa) (Figure 7).
The restorable area was larger than the degenerating area in each sub-region. The grassland in
SRYa of ESR, SR, IV, SD, ESD accounted for 29.50%, 10.10%, 48.69%, 4.92% and 6.78%, respectively.
The grassland in SRYe, ESR, SR, IV, SD, ESD accounted for 12.93%, 6.17%, 66.11%, 7.23% and 7.56%,
respectively. The grassland in SRLa, ESR, SR, IV, SD, ESD accounted for 26.55%, 10.08%, 51.43%,
3.70% and 8.24%, respectively. Grassland in SRYa had the maximum percentage of restoration, while
grassland in SRYe had minimum percentages of degradation.
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5. Discussion

The degeneration pattern of the TRSR grassland was formed in the 1970s, during which the
herdsmen pursued immediate interest. The government also lacked an effective protective policy and
management guidance plan, thus unreasonable human activities took place. For instance, overgrazing
and reclamation aggravated the degradation of TRSR vegetation [12,44]. In view of this, the TRSR
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nature reserve was established in 2000 and promoted to status of the National Nature Reserve in 2003.
The Three-River Source Region Nature Reserve Ecological Protection and Construction Project was approved
in 2005, and a series of grassland ecological restoration measures, such as fencing, rodent control,
“Black Beach” management, ecological migration, and ecological compensation, were implemented.
Through manual visual interpretation of the two-phase TM image, Xu et al. [45] analyzed the grassland
restoration situation of the TRSR in 2004–2012. They found that the grassland ecological environment
improved obviously after the implementation of the TRSR ecological protection and construction
project. The restoration of grassland distribution was good in the periphery of Eling and Zaling
Lake, in the middle and north of Qumalai County, and in Chenduo County, whereas the degradation
in Zhiduo County was serious. This result is consistent with the present findings. Community
degradation is also a manifestation of grassland degradation, which is still difficult to achieve in
large-scale remote sensing monitoring. Although vegetation productivity and coverage increased
during the restoration of the TRSR, the community structure was not improved [46]. In addition,
local climatic conditions have deteriorated over the last twelve years or so [27], and the grassland
restoration and ecological protection project in the TRSR is yet to be realized.

Vegetation and soil degradation are different aspects of grassland degradation, and soil
degradation is an essential manifestation of grassland degradation. Using vegetation indicators—such
as biomass, coverage, or productivity—as diagnostic indicators of the health status of grassland
ecosystems may result in the mistaking of natural vegetation growth for dynamic and grassland
degradation, thereby complicating the process of soil degradation monitoring. In view of this, some
studies have regarded the recuperability after a drought [47,48] or precipitation utilization [49,50]
as land degradation diagnostic indicators. However, these indicators only consider precipitation,
which is suitable for hot arid and semi-arid areas because of its absolute effect on vegetation growth.
In the TRSR, the effect of precipitation on grassland is obviously less than that of radiation and
temperature [27,40]. In particular, radiation plays a key role in vegetation growth [27]. This study
suggests that CUE can manifest response and utilization efficiency of grass ecosystem with main
climatic factors (light, temperature and water). It also has good robustness to inter-annual climatic
fluctuation on grassland degradation monitoring. Therefore, it is more suitable to monitor the health
status of grassland ecosystem in the alpine region. Even more, the CUE index plus local climate
condition can partly reflect the degradation of grassland soil. In addition to the normal range of
climatic fluctuations, extreme meteorological disasters, such as drought and low temperature, may
cause a short period of damage to the grassland, resulting in grassland degradation. In this case,
the fluctuation of the CUE value will have a certain lag (that is, the CUE value of the year may
not be reduced, and the low value of the period after the climatic condition is restored). The vast
grassland ecosystems that are at high altitudes or in high latitudes, temperature, radiation, and other
climatic factors, significantly influence the growth of grassland vegetation. Compared with RUE,
CUE can reduce the impact of climate fluctuation on ecosystem health evaluation. Thus, CUE is more
suitable for remote sensing monitoring of grassland degradation/restoration in the Alpine region.
In addition, in this study, the surface bareness index was introduced into the grassland ecological
degradation of remote sensing evaluation system, achieving a good verification effect. Introduction of
the index can improve utilization of remote sensing data on grassland resource monitoring and enrich
evaluation indicators.

In recent years, research on grassland remote sensing monitoring has shown a developing
tendency of data multi-scale, multi-source. The monitoring index has been transformed from a
single index to comprehensive multiple indexes [5]. For example, Li et al. [51] found that the
comprehensive evaluation index obtained from the weighted average of plant height, vegetation
cover, and aboveground biomass is higher than that of the remote sensing vegetation index derived
from Landset TM4/TM5. In addition, Zhou [52] assessed the grassland degradation pattern of
China by the comprehensive index of NPP and grassland coverage. Our study used several
remote sensing data products, introduced two indexes (CUE and bareness) into the large area of
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grassland degradation remote sensing monitoring, and constructed comprehensive evaluation factors
of grassland degradation/restoration with two structural indexes (vegetation coverage and surface
bareness) and two functional indexes (NPP and CUE). Taken together, the results of this study suggest
that NPP, vegetation coverage, and surface bareness can be used to reflect the state of grassland
ecosystems. Moreover, the introduction of CUE can reduce the influence of fluctuation of climatic
factors (especially radiation and temperature). The bareness index, including surface reflectance
and surface temperature properties, can also reflect soil degradation. The availability of remote
sensing and meteorological data ensures the feasibility of this method for large-scale grassland
ecosystem monitoring.

Grassland degradation can be defined as two categories, i.e., absolute and relative degradation,
depending on degradation reference system [53]. The degeneration pattern of the TRSR grassland
showed formation in the 1970s, and degradation in 2001. Therefore, our assessment of grassland
degradation is not the absolute degradation of the natural grassland in ideal state but in the specific
period and classification, according to the significant test. In the future, technological advancements
such as free availability of satellite image in time series, online sharing of ecological data through crowd
sourcing, and open access datasets will promote mapping and monitoring of grassland degradation
across a range of scales. We should explore the diagnosis and monitoring of the absolute degree of
grassland degradation in future works.

6. Conclusions

In this study, a simple remote sensing-based method to monitor grassland degradation was
developed. CUE was proposed as a new index in monitoring grassland ecosystem function to mitigate
the disturbance of climate fluctuation. EI, a comprehensive evaluation index, was established to
monitor grassland degradation. Grassland degradation/restoration in the TRSR was evaluated
quantitatively from 2001 to 2016. The vegetation coverage and CUE of the grassland showed upward
trends, and their respective annual change rates were 0.75% and 0.45% year−1. The surface bareness
and NPP showed downward trends, with annual change rates of −0.37% year−1 and −0.24 g cm−2

year−2, respectively. 67.18% of the grassland of TRSR showed a recovery trend. During the study
period, the grassland of the SRYe had high vegetation coverage, NPP, and CUE and low degree of
bareness, whereas the grassland of the SRYe had low vegetation cover, NPP, and CUE and high degree
of bareness. The overall restoration of the SRYe was the best, followed by SRYa. Meanwhile, the status
of SRLa was poor. We hope that our method will provide more comprehensive views of degradation
remote sensing monitoring in grasslands at high altitudes or in high latitudes.
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