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Abstract: In recent decades, climate change, mostly caused by CO2 emissions, has become a critical
issue of concern to people worldwide. It is necessary for countries all around the world to reduce
carbon emissions. China, as the world’s largest carbon emitter, is under great pressure to implement
carbon-reduction strategies. Technological progress plays a crucial role in balancing environmental
and economic development. The main objective of this work is to empirically compare the effects
of government and enterprise research and development (R and D) on carbon-emission reduction
using the panel data of 30 Chinese provinces from 2009 to 2016. The effects of both government and
enterprise R and D investment on carbon intensity are compared in detail through a linear model and
a threshold-regression model. Linear-regression results shows that both government and enterprise
R and D decrease carbon intensity, while enterprise investment tends to be more instant. Further
threshold-regression results indicate that the effects of government and enterprise R and D on carbon
intensity are different in different urbanization stages. Guiding enterprises to invest in R and D in
medium-developing areas, and increasing government support and subsidies for R and D activities
in underdeveloped areas should be an important goal of the government policies.
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1. Introduction

Global warming has become one of the most severe global problems. It is caused by the increase
in atmospheric greenhouse gases, most notably CO2, which mainly comes from the burning of fossil
fuel [1]. The problems caused by CO2 emissions are becoming increasingly serious [2]. Controlling
carbon emissions has now become a global political, economic, and social issue. To avoid threats from
global warming, the international community and numerous countries are making emission-reduction
efforts. The European Union (EU) has been running a carbon market in 31 countries since 2005. The EU
Emissions Trading Scheme (EU ETS), as the first, largest, and most prominent system for regulating
carbon emissions in the European Union, has reduced CO2 emissions and increased low-carbon
innovation [3,4]. With the rapid growth of CO2 emissions, China overtook the United States as
the world’s largest CO2 emitter in 2006. This trend has placed enormous international pressure on
China [5]. It is vital for China to implement more efficient carbon-emission reduction strategies [6,7].
China put forward a quantitative goal to control greenhouse-gas emissions in 2009. In 2011, China’s
Twelfth Five-Year Plan stated that carbon intensity must be decreased by 17%, along with a 16%
decrease in energy consumption during this time period. In 2015, China confirmed the goal that CO2

emissions would peak around 2030, and that they would strive to reach this goal as early as possible.
Therefore, under this ambitious goal, the question arises of how to achieve low-carbon development
under China’s realistic national conditions.

Numerous studies have been conducted to investigate carbon emissions in China, as well as to
identify their influencing factors [8–12]. There is always a dilemma between economic development
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and environmental protection. Economic growth, which is based on the consumption of fossil
fuels, is closely related to environmental degradation [13]. Scholars have come to the consensus
that innovation plays a critical role in decreasing carbon emissions. The mechanism to achieve the
balance between development and environment is technological progress. Gerlagh claimed that the
value of technological progress is reflected in two aspects [14]. On the one hand, carbon prices are
lowered, which reduces the burden of mandatory emission reduction. On the other hand, carbon
reductions under technological progress may generate learning benefits, thereby reducing cost. Wei
and Yang researched the influence of technological progress on CO2 and indicated that R and D and
the introduction of new technologies contributed to carbon-emissions reductions [15]. Some other
studies also indicated that economic development and technological progress were the most crucial
factors influencing CO2 emissions [16–18]. In conclusion, technological progress plays a key role in
promoting less pollution and more sustainable economic activities.

For an open economic subject, there are two main sources of technological progress, technological
innovation and technological introduction. Technological innovation comes from domestic R and
D activities. Technology introduction is mainly achieved through two methods, one is the direct
introduction of foreign advanced technology, and the other is the indirect introduction of advanced
technology through foreign direct investment (FDI) and international trade channels. Empirical studies
were conducted to examine the relationship between technology introduction and carbon emissions.
The introduction of management and advanced technologies in host countries is considered to be
conducive to a better environment [19]. Sun et al. examined the effect of FDI and trade openness on
carbon emissions through the autoregressive distributed lag (ARDL) model, the findings of which
indicated that both FDI and trade promoted carbon-emission reduction [20]. The results also validate
the important role of technological advances in curbing carbon emissions. Similarly, technological
innovation could not only promote economic growth, but also lead to activities and products that
are more efficient and less polluting. Sun et al. proposed that every technological innovation plays a
powerful role in carbon-emission reduction [21]. Technology innovation is mainly achieved through
domestic R and D investment. Similar papers regard R and D as a measure of technology innovation.
The question attracting the attention of scholars is whether R and D can be regarded as a driver of
less-polluting economic growth. Previous studies proved that R and D spending in the energy sector
is beneficial to carbon-emission abatement. However, in addition to the energy sector, the innovation
process and carbon emissions involve many other economic sectors. Improving the environment is
a major issue that needs the participation of all economic sectors. Therefore, when analyzing the
factors influencing carbon emissions, it is also necessary to take the effect of aggregate R and D
into consideration. To fill this gap, Fernández et al. examined the influence that aggregate R and D
spending can have in reducing the level of carbon emissions, and therefore achieving sustainable
growth [13]. Results reveals that aggregate R and D involving all economic sectors is favorable in
carbon-emission reduction. R and D activities present both direct and indirect beneficial influences
on the environment. From a direct perspective, R and D motivates the production of green products
and incentivizes high-efficiency technology, which helps mitigate carbon emissions. In an indirect
perspective, R and D plays a crucial role in promoting the optimization of industrial structures. Thus,
no matter whether R and D spending is on a specific sector or aggregate, the result that R and D is a
key factor in improving the environment is consistent.

There are two main sources for R and D in China, government R and D investment and enterprise
R and D investment. In 2006, the Chinese government put forward the strategic goal of establishing
the main position of enterprise technology innovation. However, in addition to the mainstream view
of promoting the enterprise as the subject, there are also many other opinions, such as entrepreneurial
and pluralistic subjects. In 2015, the Chinese State Council proposed the establishment of a national
innovation system based on enterprises, and realized the main position of enterprise R and D
investment and technological innovation. In recent years, enterprise R and D expenditures have
rapidly increased; although the total amount is still growing, the proportion of government R and D
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has tended to decrease [22]. Driven by a series of national policies, enterprise R and D expenditures in
almost all regions have accounted for more than 50% of the total. In this case, can the establishment of
an enterprise R and D subject be maximized to reduce carbon emissions in different regions? Is there
any distinction in the effect of different R and D subjects on carbon emissions in China? Since the
development gap between different regions in China is very large, should there be a difference in the
establishment of R and D input subjects at different levels of development to maximize carbon-emission
reduction? Although carbon emissions have been widely studied, the above questions remain to be
further explored. There is still no comparative research on the differences between different sources of
R and D. This is the motivation for this research. The final object of this paper is to find the optimal R
and D subject to minimize emissions for areas at different development levels.

Since carbon intensity (calculated as the ratio of CO2 emissions to GDP) is one of the most
important indexes and is used to control for CO2 emissions [23,24], it is of vital significance to evaluate
the relationship between R and D investment subjects and carbon intensity in China. This paper
aims to find the different effects on carbon intensity between government and enterprise R and D
investment through a panel-regression model. Additionally, R and D investments on carbon intensity
might crucially depend on the extent of development level. There is enormous distance in development
in different areas in China. In areas with different levels of urbanization, due to industry choices and
other factors, there are also differences in the environmental impact of government and enterprise R
and D inputs. Therefore, we further explored the effect of changes at different urbanization stages by a
threshold-regression model. The final question that remains to be answered is whether maximizing
carbon-emission reduction requires constructing different R and D input subjects for regions with
different levels of development. Understanding the distinction of the effect of different R and D sources
on carbon emissions is of great significance to enact effective policies and conduct carbon-emission
reductions from an R and D perspective. To solve the above questions, this paper takes the panel
data of the R and D investment of the government and enterprises in 30 regions in China as a sample,
and judges the differences in contribution between different R and D subjects. At the same time,
a threshold-regression model was constructed to analyze the effect of different R and D subjects at
different levels of development.

Thus, the distinction of this work from previous research lies in the following aspects. First,
the effects of government and enterprise R and D investments on carbon intensity were compared in a
model. Both effects were simultaneously taken into consideration, rather than focusing on one of them
alone or just the total. Second, by using the panel-threshold model, and regarding urbanization level as
the threshold variable, analysis of the impact of different R and D input entities on carbon intensity at
different development levels was carried out. Therefore, based on the conclusions, the relative policy
implications provide insight for the decision-making of the Chinese government on maximizing the
effect of R and D investment on carbon intensity, as well as quickly reaching that goal. More details
about the method and data are introduced in Section 2.

The structure of the rest of the paper is organized as follows: In Section 2, the research design,
including model selection, variable screening, and researching hypothesis, are presented. The empirical
results of the linear and nonlinear regressions are displayed in Section 3. The last section reaches
conclusions on the research and gives relevant policy implications for the Chinese government.

2. Materials and Methods

First, we constructed a regression model based on provincial panel data and compared the
effects of R and D investment from the government and enterprises on carbon intensity. Furthermore,
considering the wide development distance between different regions in China, we assumed that, in
areas with different development levels, the effects are also different. Therefore, we constructed
the threshold-regression model regarding urbanization as a threshold variable and assuming a
threshold of r. It was assumed that, once the urbanization level exceeded or fell below the r value,
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there would be significant differences in the effect of government and enterprise R and D investment
on carbon intensity.

2.1. Panel-Regression Model

The panel-regression model was selected as a fundamental model. A panel-regression model
is applicable to observations with multiple individuals over multiple periods, and has been widely
utilized in empirical studies [25]. The Hausman test is first used to determine whether the fixed-effect
model (FE) or the random-effect model (RE) is a more appropriate estimator [26]. To correct for
heteroscedasticity and sequence correlation, a generalized least-squares (GLS) method could be a
possible alternative method. In a review of the specific situation and previous research, some control
variables were employed in our model, in which FDI, INDUS, and POP denote the federal direct
investment, ratio of secondary industry to the total, and the population, respectively. The specific
hypothesis model is as follows:

lnCIi,t = α0 + α1lnGOVIi,t + α2lnENTIi,t + α3lnFDIi,t + α4 INDUSi,t + α5lnPOPi,t + et (1)

where subscript i (i = 1, 2, 3, . . . , K, N) indicates regions, and subscript t (t = 1, 2, 3, . . . , K, T) denotes
time. αm (m = 0, 1, . . . , 7) are the coefficients to be calculated; CI is carbon intensity; GOVI and ENTI are
the core independent variables, government R and D investment and enterprise R and D investment.
Although much research has examined the factors influencing carbon emissions, the difference in our
model lies in focusing on comparing the effect of government and enterprise R and D investment.
In addition, it is necessary to consider that the effect may take some time after expenditure occurs.
For this reason, a temporal lapse of 1–2 years of R and D investment was introduced for the analysis.

2.2. Threshold-Regression Model

The threshold was originally employed by Hansen [27,28], which allows nonlinear relationships
between each independent variable and dependent variable at different intervals. Wu et al. argued that
areas at different economic development stages present different carbon emissions characteristics [29].
Wu et al. advised that policy strategies for mitigating carbon emissions should be customized for
different stages of urbanization [10]. Since there is a large gap in the development levels between
different provinces in China, it is necessary to take the development level of different regions into
consideration. Although previous studies have claimed that R and D is beneficial for carbon-emission
reduction, further study with consideration of the different development stages is imperative so that
carbon-reduction policies can be more targeted. To empirically analyze the effect, this work introduced
the urbanization level of a region as a proxy of its development level.

Therefore, this paper assumes that there is a threshold r. The effects on carbon intensity show
significant differences at different development levels. The double threshold-regression hypothesis
model is as follows:

lnCIi,t = α0 +α1lnGOVIi,t × I(URBi,t < r1) + α2lnGOVIi,t × I(r1 ≤ URBi,t ≤ r2)

+α3lnGOVIi,t × I(URBi,t > r2) + α4lnENTIi,t × I(URBi,t < r1)

+α5lnENTIi,t × I(r1 ≤ URBi,t ≤ r2) + α6lnENTIi,t × I(URBi,t > r2)

+α7lnFDIi,t + α8 INDUSi,t + α9lnPOPi,t + εt

(2)

where αm (m = 0, 1, . . . , 7) are the coefficients to be calculated, and ri (i = 1, 2,) represents the threshold
value. URBi,t is the threshold of variable urbanization, which is based on the development level of the
area. The multiple-threshold model can be extended accordingly.
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2.3. Variables and Data

2.3.1. Explained Variable

Carbon intensity is defined as the ratio of CO2 emissions to GDP. It takes a region’s actual
level of economic development into account, and can thus reflect a region’s efforts to reduce carbon
emissions [30]. In reflecting the actual result without inflation, GDP was calculated based on a constant
year of 2009. So far, there are no direct carbon-emission observation data by province. However,
CO2 emissions are primarily generated from the burning of fossil fuels [5]. Considering this, existing
research usually uses energy consumption to indirectly estimate carbon emissions. Drawing on
relevant international data and the carbon-emission accounting method of the Intergovernmental
Panel on Climate Change (IPCC) [31], the consumption of fossil energy in each province was selected
as the basic data to calculate carbon emissions. Since Tibet’s historical data are missing, the panel
data for 30 provinces in China were collected as the research object. Referring to the China Energy
Statistical Yearbook statistical standard, energy consumption can be divided into nine types: coal,
gasoline, diesel, natural gas, kerosene, fuel oil, crude oil, electric power, and coke. Given that electric
power is produced from other energy, it can be ignored in this work. The calculation formula is as
follows:

CE =
8

∑
i=1

(CO2)i =
8

∑
i=1

Ei × NCVi × CEFi (3)

In this formula, CE is the total amount of CO2 emissions from all fossil-energy sources. NCVi
represents the average low calorific value of i energy, whose unit is KJ/kg·m3. CEFi represents the
CO2 emissions factor of i energy provided by the IPCC, whose unit is kg·CO2/TJ. The NCV and CEF
values of eight kinds of energy are displayed in Table 1.

Table 1. NCV and CEF values of eight kinds of energy.

Coal Gasoline Diesel Natural Gas Kerosene Fuel Oil Crude Oil Coke

NCV 20,908 43,070 42,652 38,931 43,070 41,816 41,816 28,435
CEF 95,533 70,000 74,100 56,100 71,500 77,400 73,300 107,000

2.3.2. Core Explanatory Variables

Technology innovation, which is mainly achieved through domestic R and D investment, plays
a key role in balancing development and environment. R and D investment is also regarded as a
measure of technology innovation in similar papers. This is also the reason why we chose R and D
as the core explanatory variable. The data of R and D expenditures were collected from the China
Science and Technology Statistics Yearbook. The two indicators are government and enterprise R and
D expenditures.

2.3.3. Threshold Variable

As mentioned above, we assumed that the effects of R and D on carbon emissions may be
influenced by the development level of the area. Considering relative studies, this paper chooses
urbanization, the ratio of urban population to the total, to denote the level of development of each
region [32,33].

2.3.4. Control Variables

To avoid other factors influencing result accuracy, this article takes other control variables into
consideration, including FDI, population scale, and industry structure. FDI is helpful to improve the
technology level. The existing literature has reported on the relationship between FDI and carbon
emissions, finding that the overall effect of FDI is good for the environment [18,34], as it is considered
to be conducive to a more efficient carbon reduction. Therefore, we introduce FDI as a control variable
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in this paper. There are two kinds of indicators of FDI in existing research. Acharkyya used a flow
indicator focused on the impact of FDI fluctuations on carbon emissions, while Grimes, Kentor, and
Jorgenson used a stock indicator focused on the effect of FDI scale [35,36]. A flow indicator was
selected in this paper, which is the annual actual use of foreign capital in each province. Population
scale is estimated by the number of people at the end of each year, which is directly from the China
Statistics Yearbook. As for industry structure, secondary industry is the main factor that influences
carbon intensity. Learning from Perkins and Neumayer’s method, industry structure is estimated by
the proportion of the secondary in GDP [37]. Similarly, data come from the China Statistics Yearbook.

2.4. Data Sources

The data in this paper are provincial panel data from the China Science and Technology Statistical
Yearbook and the China Statistical Yearbook. Considering factors of data availability and statistical
caliber changes, we selected 30 provinces as the research objective, and sample time interval was
limited to 2009–2016. This time interval also reflects the key period for China to establish a national
innovation system with enterprises as the mainstay. To exclude the influence of price factors and
heteroscedasticity, all the data related to the value pattern were subjected to the 2009 index-based price
index deflator and logarithmic transformation. The descriptive statistics of the main variables are
presented in Table 2. The average investment of enterprise R and D investment is much higher than
that of government R and D.

Table 2. Description of variables.

Variable Definition Unit Mean Std. Dev. Min Max

CI CO2 emissions divided
by GDP

Ton/104

Yuan RMB
3.2416 2.0662 0.5562 10.28856

GOVI Government R and D
investment

108 Yuan
RMB

70.9664 107.8413 2.7933 649.8845

ENTI Enterprise R and D
investment

108 Yuan
RMB

253.0658 310.0617 4.8884 1454.074

POP Population at the end of
each year 104 4520.939 2702.857 568 10999

FDI Actual use of foreign
capita

108 Yuan
RMB

455.3318 414.3027 0.8040679 1901.171

INDUS Proportion of the
secondary to the GDP % 0.4617 .08303 0.1926 0.5905

URB Proportion of urban
population to the total % 0.5628 0.1269 0.3641 0.8960

2.5. Multicollinearity Test

Considering several explanatory variables in the econometric model, the multicollinearity test
was carried out to assess whether there is multicollinearity between the explanatory variables. If the
variance inflation factor (VIF) were between 0 and 10, multicollinearity was acceptable. Results
show that the VIF value of all variables are less than 10, which means multicollinearity in this model
is acceptable.

3. Results

3.1. Linear Panel Regression Analysis

First, we identified the effects of government and enterprise R and D on carbon intensity using a
fundamental panel-regression model. Based on Hausman’s test, whose null hypothesis means that
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a random effect is more suitable, P value is greater than 0.05, without rejecting the null hypothesis.
Thus, RE is regarded as a more appropriate estimator. A GLS estimator is employed in order to avoid
heteroscedasticity and serial correlation. The results of the fundamental linear regression are presented
in Table 3.

Table 3. Panel-regression results.

Variables Original Lag-1 Lag-2

lnGOVI −0.05914
(0.239)

lnENTI −0.21862
(0.000)

lnGOVI1
−0.19221

(0.000)

lnENTI1
−0.04336

(0.250)

lnGOVI2
−0.18298

(0.000)

lnENTI2
−0.04266

(0.172)

Constant 20.13513
(0.000)

20.2273
(0.000)

20.40902
(0.000)

lnFDI −0.0583623
(0.025)

−0.0572226
(0.023)

−0.0635421
(0.015)

lnPOP 0.111707
(0.288)

0.0017492
(0.985)

−0.0302818
(0.750)

INDUS 1.583567
(0.000)

1.633302
(0.000)

1.699714
(0.000)

Wald chi2 95.11 87.63 91.94
Prob > chi2 0.0000 0.0000 0.0000

The original coefficients of government and enterprise R and D investment are −0.05914 and
−0.21862. Enterprise input is more effective and significant in this model. In the one-year lag model,
government and enterprise R and D investment effect is −0.19221 and −0.04336. In the two-year lag
model, the two coefficients are −0.18298 and −0.04226. Government input tends to be more effective
and significant. Concluding from Table 3, government and enterprise R and D both curb carbon
intensity, while enterprise takes less time than government. From a long-term perspective, government
investment is more effective. A possible reason for this phenomenon is that the foci of the two types
of investment are different, as the government concentrates on fundamental research, which takes a
long time to complete, and enterprises pay more attention to specific research and the utilization of
technologies that emphasize a short payback time.

3.2. Threshold-Regression Model

Before using the threshold-regression model, the asymptotic distribution and accompanying
probability of F-statistics in the form of three threshold models are calculated by the bootstrap
self-sampling method for finding the most proper threshold-regression model. As shown in Table 4,
the double-threshold model is significant. Therefore, double-threshold regression was employed for
analysis. The robust results of the double threshold regression are shown in Table 5.

Table 4. Threshold-regression-model estimation results.

Threshold Model F-Value P-Value 1% 5% 10%

Single threshold 4.8596 0.0750 10.7560 5.7565 4.2124
Double threshold 6.1522 0.0290 10.2658 4.1972 2.3816
Triple threshold 5.9762 0.0720 13.8880 6.9905 4.9525
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Table 5. Double-threshold-regression model results (Robust).

Variable Coefficient t-Statistic P-Value

lnFDI −0.0105 −0.3899 0.6972
lnPOP −0.4720 −0.4650 0.6426
INDUS 0.3445 0.8798 0.3804

lnGOVI-1
(URB < 0.5334) −0.0233 −0.2236 0.8234

lnENTI-1
(URB < 0.5334) −0.3099 −4.1198 0.0001

lnGOVI-2
(0.5334 ≤ URB ≤ 0.5592) −0.0828 −0.8011 0.4244

lnENTI-2
(0.5334 ≤ URB ≤ 0.5592) −0.2457 −3.2507 0.0014

lnGOVI-3
(URB > 0.5592) −0.1538 −1.8189 0.0710

lnENTI-3
(URB > 0.5592) −0.1911 −2.8675 0.0048

F 6.1522
P 0.0290

The two thresholds of urbanization level are 0.5334 and 0.5592, which divide the sample into
three intervals. The proportion of each interval is 48%, 11%, and 41%. In provinces with urbanization
level below the first threshold, the effect of enterprise R and D investment on curbing carbon intensity
is much more efficient and significant than that of the government. The coefficient of enterprise R
and D investment at this interval is −0.3099 with a p-value of 0.0001. When it comes to the medium
urbanization level, while enterprise investment is still more effective, with a coefficient of −0.2457
and a p-value of 0.0014, the distance of two coefficient becomes shorter. In regard to areas with higher
urbanization, the two effects have a tendency to be consistent. The results indicate a different effect
between different sources of R and D, which prompts us to find the underlying reasons behind it.

The urbanization level and the proportion of enterprise R and D investment of the 30 regions are
presented in Figure 1. In most regions, enterprise R and D is much higher than that of government,
with an enterprise R and D proportion value of more than 0.50. As mentioned above, the 30 provinces
are divided in three intervals according to threshold values, urbanization level. The first stage is from
Gansu to Shanxi, as shown in Figure 1. The second stage is from Ningxia to Hubei. The rest is the third
stage. Concluding from the threshold-regression results, it was calculated that, in lower development
areas, the effects of enterprise R and D on carbon emissions reduction is much larger. In provinces
with high urbanization, governments tend to be more effective than at the lower urbanization level.
However, no matter the stage, the effect of enterprise R and D is larger than that of government R and
D, although there is a tendency to be consistent in higher urbanization level. From the proportion
of R and D investment, we can see that the investment amount of enterprise R and D is much larger
than that of government. Considering the scale, enterprise R and D takes up more carbon emissions
than government R and D, which means that the government exchanges a small amount of R and
D investment for a larger carbon-emission-reduction effect. This may be related to government
investment strategies. Generally, government R and D investment follows international development
trends, which pay much attention to fundamental R and D activities.

Based on the theory of comparative advantage, government input decisions are largely based on
local resource endowments. Drawing on mature development routes and the industrial structure of
developed regions, the government compares local resource-endowment advantages, selects key and
high-tech industries that meet their comparative advantages, and prioritizes R and D investment to
accelerate the upgrading and optimization of the local industrial structure. Therefore, government
research and development can produce positive environmental effects.
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Figure 1. Urbanization level and enterprise R and D investment ratio of 30 regions (average of six
years).

For deep analysis, samples can be divided into three intervals based on the two-threshold value:
low, medium, and high development levels. Tables 6 and 7 show the ratio of government and
enterprise R and D investment in the three intervals between 2011 and 2016. Generally, distribution is
not balanced, with both focusing much more on high development-level areas. According to the above
result, enterprise R and D is more effective at the low development level, which means that enterprise
R and D investment is insufficient in low-developing areas where carbon-emission-reduction potential
is high. Additionally, enterprises need to pay more attention to medium-developing areas. In regard to
the government, the condition is different. Government R and D is more effective in high-developing
areas. From the perspective of dynamic development, the ratio of R and D in high-developing areas
tends to decrease, which needs improvement.

Table 6. Enterprise investment ratio.

Urbanization Stage 2011 2012 2013 2014 2015 2016

1 0.24 0.20 0.10 0.15 0.19 0.20
2 0.13 0.23 0.45 0.30 0.08 0.20
3 0.63 0.57 0.45 0.55 0.72 0.59

Table 7. Government investment ratio.

Urbanization Stage 2011 2012 2013 2014 2015 2016

1 0.24 0.19 0.17 0.23 0.19 0.13
2 0.16 0.27 0.29 0.18 0.22 0.54
3 0.60 0.54 0.54 0.59 0.59 0.32

4. Conclusions and Implications

Global warming, which is primarily caused by CO2 emissions, has attracted attention from all
around the world. As one of the world’s largest emitters of carbon emissions, China is under great
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pressure to implement carbon-emission reduction. Based on this, a goal of carbon intensity peaking in
2030 was put forward by the Chinese government. Technology innovation plays a rather significant
role in balancing economic growth and environmental conservation. Researchers have empirically
testified that aggregate R and D is positively correlated with carbon-intensity reduction. Specifically,
do enterprise and government R and D investments both curb carbon intensity? The Chinese
government has proposed to establish a national innovation system that focuses on enterprise
innovation. However, a comparison between the effects of government and enterprise R and D
investment on carbon intensity has not been empirically examined. Thus, the question of which kind
of innovation-system effect on carbon intensity is the most proper remains to be answered. Realizing
this deficiency in the existing literature, this work aimed to explore the differences in the effect on
carbon intensity between government and enterprise investment in R and D. Using the panel data of
30 provinces in China, this work examined the difference between different R and D sources on carbon
intensity by panel regression. At the same time, the development level of different regions in China is
spatially uneven, which leads to a difference in industrial structures. This may result in a dissimilar
impact of different R and D subjects on carbon-emission reductions in different regions. Taking the
development level of each region into account, we then used a threshold-regression model analyzing
the different effects at different urbanization stages. The findings can be considered as an addition to
the empirical literature on technological progress and carbon-emission mitigation.

4.1. Conclusions

Concluding from the calculated results, both government and enterprise R and D investment
contribute to carbon-intensity reduction, although the primary goal of R and D investment is not the
environment. From an environmental perspective, government R and D investment tends to come
into effect in the long term, while enterprise R and D investment is more instant. This may mainly
be because the foci of each investment are different. Moreover, the threshold-regression results show
that the effects differ in different developing areas. In medium- and low-developing areas, enterprise
R and D investment is more effective than government investment, while in high-developing areas,
although enterprise R and D input still exceeds that of the government, there is a tendency of the
effect to be consistent. When the input scale is taken into consideration, government R and D provides
similar environmental benefits at a relatively lower cost. This may be due to differences in investment
content. Comparing investment proportion in different areas, both government and enterprise R
and D investment focus more on high-developing areas, which accounts for nearly 60% of the total.
It is concluded that, though its effect is the most prominent, enterprise R and D investments in
low-developing areas are not sufficient. From a dynamic perspective, increases in enterprise and
government R and D investment are slow in areas with a high-potential environmental effect.

4.2. Policy Implications

Under the ambitious goal of mitigating carbon emissions, Chinese policy makers are facing an
unprecedented challenge. Based on the above conclusions, we proposed some corresponding policy
suggestions in R and D investment. The government may have to try to re-evaluate its R and D
investment strategies to maximize the effect of both government and enterprise R and D investment
on carbon-emission reduction. Some possible implications are as follows.

The government could lead in constructing enterprise-leading innovation in medium- and
low-developing areas and draw on experience from developed areas. The government needs
to fully mobilize the enthusiasm of enterprise innovation, further adjusting the relationship
between the government and the market, as well as intensifying efforts to implement enterprise
technological-innovation policy. It should construct an environment that encourages enterprises to
carry out R and D innovation, and promote enterprises to implement fundamental and applied research.
It should also strengthen the main position of enterprise innovation in R and D investment and
improve the construction of enterprise R and D institutions. In view of the development characteristics
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of different regions, R and D investment and subjects should be established considering specific
conditions. In undeveloped areas, enterprises can be regarded as the main body to improve innovation.
In higher-developed areas, considering the government’s high efficiency in input–output and the high
effect of enterprises when creating development plans for areas, specific situations need to be analyzed.

On the basis of this study, it might prove fruitful to further investigate conditions in counterpart
countries. Researchers have shown that the effect of R and D on technology is different from country
to country. In this case, future-study directions are proposed to be comparing different countries’ R
and D investment effects on the environment considering multiple R and D subjects. The question that
remains to be further explored is whether the result is the same with all countries, or if it is not the
same under different backgrounds. Several future-study directions are thus proposed. Longer time
and a wider research scope could also be taken into consideration for deep research.
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