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Abstract: With the development of intelligent manufacturing technology, the material handling
system (MHS) faces larger resilience challenges that threaten the sustainability of the system. To
evaluate system resilience, the disturbance that the system may experience and the system response
need to be identified in advance. This paper proposes a systematic and innovative approach
to performing resilience-related disturbance analysis, i.e., disturbance mode and effects analysis
(DMEA). Using this method, the possible disturbance modes, their occurrence probabilities, and
the quantitative effects on system performance can be collected in a bottom-up process, and the
information can be applied to further resilience quantification. Moreover, a quantitative system
resilience evaluation framework for the MHS based on DMEA and the Monte Carlo method is
presented. Production is defined as the key performance index of the system and is monitored to
reflect the resilience behavior of the system after the disturbance occurs. The resilience of a tire
tread handing system is quantified in our case study, and the results show the effectiveness of our
DMEA-based resilience evaluation method. We also find that a reasonable system configuration and
maintenance strategy can effectively improve system resilience, and a trade-off can be made between
resilience and cost.

Keywords: resilience evaluation; disturbance mode identification; performance degradation and
recovery process; material handling system

1. Introduction

Manufacturing provides a solid foundation for economic and societal developments, and it
is the mainstay industry of the country. However, the manufacturing process consumes a lot of
the world’s resources, such as water and energy, and part of the consumption becomes a type
of waste. Sustainable manufacturing presents a new manufacturing system paradigm from the
perspective of sustainability. In broad terms, sustainable manufacturing can be considered as an
integrated strategy to reduce the environmental impacts caused by manufacturing [1], with the aim of
coping with environmental challenges by minimizing natural resource consumption and improving
manufacturing quality. Today’s sustainable manufacturing faces challenges related to maintaining
manufacturing continuity because of potential disturbances. Resilience is an effective way to combat
these unpredictable disturbances, and it helps to improve performance sustainability [2].

The material handling system (MHS), a vital part of the manufacturing plant, faces more
complicated and uncertain disturbances in intelligent processes. Those unexpected events may
lead to production delays or even breakdowns, as well as economic losses. Pioneers have tried to
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provide more sustainable MHSs that are resilient to these disturbances and can reduce resource waste.
Here, resilience is the ability of the system to absorb the effects of a disturbance and quickly return
to the normal operational state. In general, MHSs help promote sustainable manufacturing in two
ways. On the one hand, as a “bridge” between one production line and the next, MHSs integrate
all sustainable manufacturing processes within the factory as a whole. Rajesh [3] illustrated that
increasing the resilience of each manufacturing process in a factory or a supply chain can reduce
the disruption probability and enhance the resilience and sustainability of the whole system. On
the other hand, studying MHSs’ response to a disturbance, i.e., resilience issues, helps improve the
efficiency of the entire manufacturing system by preventing overtime work and additional resource
consumption. A sustainable system should be resilient. Pope et al. [4] referred to enhancing resilience
as one of the four discourses of “sustainable development” and “sustainability assessment”. Jayal
et al. [5] claimed that sustainable manufacturing differentiates itself from other concepts (e.g., green
manufacturing) partly for its notion of recovery ability. Of course, a resilient system is more sustainable.
It is not only able to withstand the disturbances caused by the external environment but also able to
reduce the waste of production resources through adaptation and recovery. For example, Nakano [6]
proposed a “Vee” model to test the disruption and resilience of the system, aiming to realize sustainable
manufacturing. Through a detailed, triangulated secondary data analysis and industry survey, Thomas
et al. [7] summarized the tools, methods, and models that UK manufacturing companies adopted and
applied in order to achieve resiliency and economic sustainability. The result showed that companies
with better sustainability and resilience developed and applied more resiliency and sustainability
models. Hence, in this paper, we focus on the resilience of the MHS and how it benefits sustainable
manufacturing.

The MHS-related literature is rich, but most published studies have focused on system dispatching
and scheduling [8–10] and routing planning [11–13], aiming to improve system performance and
decrease the cost. Twenty years ago, researchers started to analyze the reliability of the MHS and tried
to improve the performance and reliability of the system together. For example, Tavana et al. [14]
considered reliability to be an essential property of the MHS, modeled it as a cost function, and applied
both cost and time measures as bi-objectives in the stochastic programming problem. Karimi et al.
[15] analyzed and simulated the reliability of flexible manufacturing systems and used a bi-objective
nonlinear optimization model to maximize shop reliability, as well as minimize production time.
Beschorner and Glüer [16] further analyzed the availability of the MHS on the basis of the maximum
flow that could be transported from the source to the destination in the system, i.e., they evaluated the
percentage of the maximum flow that the MHS could provide with the consideration of component
failures. Robustness, the ability of the system to maintain its function despite internal or external
disruptions, has also been examined in relation to the MHS [17–19]. These studies deal with how to
reduce the possibility of failures and how to adapt to system failures. In this paper, we further focus
on the system behavior after the disturbance while considering both adaption and recovery abilities,
i.e., the resilience of the system.

To the best of our knowledge, there is no published research about the resilience of the MHS. As
the MHS is a part of the manufacturing system, the resilience research in this field is introduced as a
reference. Gu et al. [20,21] defined four parameters, i.e., throughput settling time, overtime to recover,
production loss, and total underproduction time. These were applied as four resilience measures to
analyze multistage manufacturing systems, and the authors applied the discrete time Markov Chain
to quantify system resilience. They found that parallel systems can provide better resilience than serial
ones, and the existence of caches can effectively mitigate the impacts of disruptions. Fisher et al. [22]
qualitatively presented the advantages of using historical manufacturing data stored in the cloud to
improve process resilience. The supply chain is similar to the MHS: Brandon-Jones et al. [23] studied
both the robustness and resilience of the supply chain, and Li et al. [24] proposed a simulation method
to quantitatively analyze the effects of network structure on the resilience of supply chain networks.
According to the literature above, many research efforts focus on resilience concepts, metrics, and
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evaluation frameworks, but the means to identify disturbances and retrieve data for disturbance
effects analysis are seldom referenced. Some scholars have applied failure mode and effects analysis
(FMEA) to resilience assessment [25–27], but these studies only used the risk priority number (RPN),
a semi-quantitative measure, and we still lack quantitative disturbance analysis methods. Usually,
there are five basic types of data: (1) test data, which are obtained by conducting tests or experiments,
such as in Bruelheide and Luginbühl [28], Ledger et al. [29], Pascale et al. [30]; (2) survey data, which
are gathered using questionnaires, such as in Shirali et al. [31], Azadeh et al. [32,33]; (3) field data,
which are monitored during system operation, such as in Almeida and Vieira [34], Pradhan et al. [35];
(4) simulation data, which are collected by system modeling and simulating, such as in Li et al. [24],
Ma et al. [36], Tran et al. [37], Almajali et al. [38]; (5) historical data, including public data that are
available on the Internet (such as in Liu et al. [39]) and field data from similar systems (such as in Zio
and Piccinelli [40]). Although there are so many types of data, there is no systematic way to collect and
use the information. A common situation in resilience evaluation is the lack of knowledge of how to
systematically identify disturbances and how to obtain system response data after disturbances.

To solve this problem, a disturbance mode and effects analysis (DMEA) method is proposed to
analyze the disturbance for resilience evaluation, and a resilience quantification framework based on
the Monte Carlo method is also addressed. This method and framework help perform a resilience
evaluation more conveniently and systematically, and these properties coincide with the sustainability
of a manufacturing system to some degree. Our research benefits not only system analysts but
also system designers working to achieve resilience and sustainability goals, which can be used as
decision-making factors when a trade-off needs to be made between high production and low energy
and economic consumption. The remainder of the paper is organized as follows. Section 2 describes the
structural and functional composition of MHSs. Section 3 proposes a DMEA method for disturbance
analysis as part of resilience evaluation. Section 4 gives the detailed procedures of the DMEA-based
MHS resilience evaluation framework. In Section 5, a tire tread handling system is introduced to
demonstrate the effectiveness of our method, and we also discuss how the system configuration affects
its performance and resilience. Finally, concluding remarks are provided in Section 6.

2. Problem Description

This paper considers material picking, transport, and storage among various pieces of equipment
throughout a facility, namely, MHSs, as shown in Figure 1. The different levels of automation define
the diversity of MHSs and vary from manual handling to automatic handling. Typical equipment
includes material transport equipment (e.g., automated guided vehicles (AGVs), rail-guided vehicles
(RGVs), conveyors, and hoists and cranes), storage systems (e.g., bulk storage, rack systems, shelving,
and bins), unitizing equipment (e.g., containers, pallets, palletizers, and depalletizers), identification
and tracking systems (e.g., barcodes, radio frequency identification (RFID) tags, and sensors) [41,42].

This study concentrates on a systematic disturbance analysis method for the resilience evaluation
of MHSs. A resilient MHS is able to withstand disturbances and return to a normal status quickly, and
its recovery strategy includes (1) self-healing by the system and (2) manual repair. In this paper, the
following assumptions are made:

1. The equipment and caches in the system have a limited capacity.
2. Disturbances that occur to the MHS are independent.
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Figure 1. The general constitution of the material handling system (MHS).

3. Disturbance Analysis Method: DMEA

This paper aims to solve the problem of how to analyze the disturbance and then evaluate system
resilience at the design stage. Essentially, the resilience curve describes the performance change process
after all kinds of external disturbances and internal failures. Before the resilience evaluation, we need
to identify the disturbance and the system response. Thus, a bottom-up method, DMEA, is proposed.

Our DMEA method is effective for identifying all potential disturbance modes of components,
equipment, and software in the design and manufacturing process, as well as the effects of each
disturbance mode, at the design stage. For the purpose of system resilience quantification, we need to
obtain the data that include the potential disturbance modes, their occurrence rates, and the effects
(i.e., the performance degradation and recovery process of the system). The disturbances of the system
need to be analyzed by the following steps:

1. Function and structure analysis of the system. The indenture levels of the system are specified
on the basis of a function and structure analysis. Here, the indenture levels are used to identify or
describe the relative complexity of the system. Typical indenture levels include the system level,
subsystem level, unit level, and part level. We need to choose the indenture levels appropriately
because an insufficient analysis may result in missing some critical disturbance modes, and an
excessive analysis may cause resource waste.

2. Disturbance identification and effects analysis. As a bottom-up method, the analysis begins
at the lowest indenture level and continues upward. At each indenture level, all possible
disturbances, their occurrence probabilities, the performances that may be affected, and the
degradation and recovery behaviors are identified, as shown in Table 1. The information obtained
from a lower level can be used further during the analysis of a higher level.

Table 1. Disturbance mode and effects analysis form.

(1) System: (3) Compiled by: (5) Date:
(2) Part name: (4) Approved by: Page of

No. Part
Name Function Disturbance

Modes
Disturbance

Causes
Occurrence
Probability

Disturbance Effects

Performance Affected Performance Degradation and Recovery

In Table 1, the first column, “No.”, is the disturbance mode number in the table; the second
column, “Part name”, is the name of the part in the current indenture level, and all parts under
the current indenture level need to be analyzed; the third column, “Function”, is the functional
description of the part; the fourth column, “Disturbance modes”, is the way in which a disturbance
occurs; the fifth column, “Disturbance causes”, lists the physical or chemical processes, design defects,
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part misapplication, natural disasters, human attacks, or other processes that are basic reasons for
internal failures or external disruptions; the sixth column, “Occurrence probability”, provides the
occurrence rate of the corresponding disturbance mode; the seventh and eighth columns, “Disturbance
effects”, describe the results or consequences to the part due to the corresponding disturbance mode,
including the performance metrics that may be affected and the performance change behaviors after
the disturbance. The first six columns are similar to those in an FMEA. As the FMEA method is widely
used in the design stage, it is easy to extend to disturbance analysis. The innovativeness of the DMEA
method lies in its quantitative description of the disturbance effects and the consideration of the system
recovery. Specifically, “performance affected by the disturbance” in the seventh column concentrates
on all possible performance metrics of the system and implicitly expresses which performance metric
may fluctuate in the corresponding disturbance mode. “Performance degradation and recovery”
presents the degradation function and recovery function of the corresponding system performance
after the disturbance. DMEA provides a quantitative expression of the performance behavior after a
component causes a disturbance in the system, thus constituting a bottom-up system evaluation.

In general, the following are typical curve models of performance degradation and recovery:

1. Continuous curve

• Linear model. System performance linearly declines from the normal value Q0 to the lowest
value Q1 after the disturbance, or the performance linearly recovers from Q1 back to Q2 by
taking some recovery actions, as shown in Figure 2a.

• Nonlinear model. As shown in Figure 2b, system performance continuously declines from
normal to the degraded state or restores to its normal state, and the speed of the performance
degradation or recovery is not constant.

2. Discrete curve

• In this model, system performance is defined within a limited number of states. After the
disturbance, system performance is gradually reduced and then gradually restored, as shown
in Figure 2c.

P
erfo

rm
a
n
c
e

Time

Disturbance

0

Recovery

t0

Q0

Q1

t1 t2

Q2

Degra-

dation

0 t0

Q0

Q1

t1 t2

Q2

Time

Recovery

P
erfo

rm
a
n
c
e

Disturbance

Degra-

dation

(a) (b)

0 t0

Q0

Q1

t1 t2

Q2

t3 t4 t5

Time

Recovery

P
erfo

rm
a
n
c
e

Disturbance

Degra-

dation

(c)

Figure 2. Three typical performance degradation and recovery models: (a) continuous linear model;
(b) continuous nonlinear model; (c) discrete model.
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In Figure 2, there are three possibilities after the recovery: (1) system performance is fully restored,
i.e., Q2 = Q0; (2) after recovery, the system performs better than before, i.e., Q2 > Q0; and (3) after
recovery, the system only maintains a lower performance than before, i.e., Q2 < Q0.

4. Resilience Evaluation Based on DMEA

In the quantitative analysis of the resilience of the MHS, a resilience metric needs to be first defined
and then its values are assessed [43]. The metric of resilience varies with the designer’s understanding
of the concept of resilience. In general, it can be summarized into deterministic measures [44–46] and
probabilistic measures [47,48]. The two types of metrics reveal the resilience behavior of the system
to a certain disturbance and a random disturbance, respectively. Although no resilience research has
been found for the MHS, some studies analyzing the resilience of the supply chain can be used as a
reference. For example, Li et al. [24] proposed a maximum allowable recovery time that is based on a
deterministic resilience metric and an expectation-based probabilistic metric. Since these two resilience
metrics have clear physical meanings, they are applied in this paper. For details, see Section 4.5.

To evaluate the system, one can apply analytical, simulation, or test methods. Among them, the
simulation method is advantageous for evaluating the resilience of a system because (1) the analytical
resilience expression is difficult to obtain; (2) the test method consumes a lot of money, and the test
cannot be conducted before the prototype of the system is available. The randomness characteristic of a
disturbance makes the Monte Carlo-based simulation an efficient method to evaluate system resilience.
As a combination of our DMEA method and Monte Carlo-based simulation, our resilience evaluation
procedure is shown in Figure 3.

System Workflow

1. MHS Modeling

2. Key Performance Index (KPI) Determination

System Configuration Disturbance Analysis

3. DMEA

4. Simulation Run Without Disturbance 5. Simulation Run With Disturbance

6. MHS Resilience Evaluation

Simulation Run

KPI Data Collection

Performance Normalization

Disturbance 
Injection

Figure 3. General procedure for conducting a disturbance mode and effects analysis (DMEA)-based
resilience evaluation for MHSs.

4.1. MHS Modeling

The MHS system is a typical queuing system, and its workflow is the basis of the modeling of this
system. To model the MHS system and evaluate its resilience, we require the following types of data:

• System configuration data, such as system composition, equipment layout parameters (e.g., the
position, length, width, and height of the equipment), and equipment functional parameters (e.g.,
velocity, acceleration, operation time, and transport time of the equipment).
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• Simulation-related data, such as the iteration number, time duration, and granularity of
the simulation.

• Disturbance-related data, such as the minimum acceptable value of the resilience, the disturbance
probability, the performance degradation curve, and the recovery curve. See Section 4.3 for details.

4.2. Key Performance Index Determination

Resilience is measured on the basis of the key performance index (KPI) of the system, so we need
to select representative and easily accessible performance parameters. Bruneau et al. [44] summarized
four dimensions of resilience, i.e., technical, organizational, social, and economic, for various types of
physical and organizational systems.

For a man-made system like the MHS, technical resilience and economic resilience often attract
company managers. Technical resilience refers to the ability of the MHS (including components, their
interconnections and interactions, and the entire system) to perform at an acceptable level when the
disturbance occurs. Economic resilience refers to the capacity of the system to reduce both direct
and indirect economic losses resulting from the disturbance. In this paper, an efficiency parameter,
production (e.g., annual production, monthly production, and daily production), is used as the KPI
of the MHS. It is a typical technical parameter, and it can also reflect the system’s economics, as
production loss directly influences the company’s profit.

4.3. DMEA

Resilience behavior is the result of a disturbance, so disturbance-related data are critical to
the resilience evaluation. As referenced in Section 4.1, three types of data—occurrence probability,
performance degradation curve, and recovery curve—are required in the resilience evaluation. Table 1
provides a method to collect these data. The occurrence probabilities of all potential disturbance modes
are recorded in a digital form, and the performance degradation and recovery curves are recorded
differently due to different curve types.

1. For a continuous linear curve, the following data are required:

• the system’s lowest performance value after the disturbance (Q1) and its distribution;
• the time duration of the performance degradation (t1 − t0) and its distribution;
• the performance after recovery (Q2) and its distribution;
• the time duration of the performance recovery (t2 − t1) and its distribution.

2. For a continuous nonlinear curve, data are required as follows:

• the system’s lowest performance value after the disturbance (Q1) and its distribution;
• the performance function of the degradation process;
• the performance after recovery (Q2) and its distribution;
• the performance function of the recovery process.

3. For a discrete curve, the following data are needed:

• performance values of all possible states;
• the system’s lowest performance value after the disturbance (Q1) and its distribution;
• the time duration and its distribution at each state during system degradation and

recovery, respectively.

4.4. Simulation Run without/with Disturbance

Using the system model in Section 4.1 and the resilience-related data collected in Section 4.3, we
can run the system simulation without and with disturbance, and the KPI values can be monitored.
After performance normalization, the normalized KPI without and with disturbance can be compared
and applied to calculate system resilience, as presented in Section 4.5. Most of the procedures in
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the simulation run without and with disturbance are the same, differing only by the presence of
disturbance, which needs to be injected in the latter case.

4.4.1. Disturbance Injection

Disturbance injection is the first step in the simulation run with disturbance. The occurrence of a
disturbance, the degradation, and the recovery of the performance are random, so we need to sample
the disturbance mode and its effects (i.e., the performance degradation and recovery curve) before
disturbance injection.

We can use the occurrence probability to determine the disturbance mode that will be injected.
Adding the probabilities of all disturbance modes together as D and sampling a random number in
the interval [0, D] allow the disturbance mode to be determined using a random sampling method.

The inverse function method can be used to sample the disturbance effects (i.e., the performance
degradation and recovery curve) according to the corresponding distribution that is analyzed in the
DMEA form.

Once the disturbance mode and effects are determined, the disturbance can be injected into the
MHS simulation run, and the behavior of the MHS under such disturbance can then be monitored.

4.4.2. Simulation Run and KPI Data Collection

The simulation is run without disturbance, and the production of the MHS under normal
conditions is obtained. Then, the simulation is run with disturbance according to the sampling
results, and the production value change process after the disturbance is injected is recorded.

4.4.3. Performance Normalization

With the min-max normalization method, the production of the MHS can be normalized as

Q (t) =

{
1, (P(t) ≥ P0) ,

P(t)
P0

, (P(t) < P0) ,
(1)

where Q(t) is the normalized performance at time t, P(t) is the production value of the MHS after the
disturbance at time t, and P0 is the production value in the normal state. Equation (1) is similar to the
performance normalization method applied in Henry and Ramirez-Marquez [49]. We also consider
the possibility that the performance after the recovery may exceed the normal performance: we define
the normalized performance under such a situation as 1, as the performance goal is satisfied.

4.5. MHS Resilience Evaluation

In this paper, deterministic resilience, presented in Li et al. [24], is applied to quantify the
resilience of the MHS under a certain disruption i, i.e.,

RD,i =

∫ t0+Ta
t0

Q(t)dt∫ t0+Ta
t0

Q0(t)dt
=

∫ t0+Ta
t0

Q(t)dt

Ta
, (2)

where t0 is the time when the disturbance occurs, Ta is the maximum allowable recovery time of the
system determined by users, and Q0(t) and Q(t) are the normalized performance at time t in the
normal state and after the disturbance, respectively. For the MHS, as the production in the normal
state is stable, i.e., P0(t) = P0 and Q0(t) = 1, we have

∫ t0+Ta
t0

Q0(t)dt = Ta. The resilience calculated in
Equation (2) is the ratio of the light colored area to the colored area in Figure 4, and it qualifies the
average performance percentage of the system within the specified time interval [t0, t0 + Ta].

In practice, real-time monitoring of the performance of the MHS is difficult or unnecessary, both
technically and cost-effectively. To facilitate performance monitoring, we can monitor the system
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production every ∆t and get several discrete performance observation values. Using trapezoidal
integration, system resilience can be computed as

RD,i ≈
Q(t0) + Q(tm) + 2

m−1
∑

j=1
Q(tj)

2Ta
, (3)

where tm = t0 + Ta; tj = t0 + jTa/m; and m is the number of discrete points monitored within the time
interval [t0, t0 + Ta].

After obtaining the deterministic resilience under different disruptions, the probabilistic
resilience can be calculated as

RA = E(RD) and R̂A =

n
∑

i=1
RD,i

n
, (4)

where n is the number of the deterministic resilience. RA is the expectation of system resilience and
reflects the average resilience of the MHS. R̂A is an estimate of RA and is calculated by taking the
average of the deterministic resilience under different disturbances.
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Figure 4. The deterministic measure of resilience.

5. Case Study

5.1. Case Overview

This case is an automatic tire tread handling system from an actual factory manufacturing line
in China. As Figure 5 shows, the system consists of an extruder, an AGV, an automated storage and
retrieval system (ASRS, which includes a hoister, an RGV, a stacker, and a large warehouse). The tire
tread handling process is as follows: (1) the tire tread is extruded at the extruder and loaded onto the
pallet; (2) after the pallet is fully loaded, it will be sent to the AGV point where it waits in line to be
transported by the AGV; (3) when the AGV is available, it will carry the pallet to the entrance of the
ASRS and then return for the next delivery; (4) in the ASRS, the pallet waits for the hoister to lift it up
and load it onto the RGV if the RGV is available; (5) the RGV then transports the pallet to the stacker
point; (6) when the stacker is available, it takes the pallet of tire treads to the designated storage unit
and carries a pallet of tire treads out to the next process.

In the warehouse, 195 pallets of tire treads, which is the production capacity of the extruder for 12
h, are pre-placed before the simulation starts. Every time the stacker stores a pallet in the warehouse, it
picks one out. So, the inventory of the warehouse is relatively stable. The store and pickup strategy of
the ASRS is random. Table 2 shows the system configuration parameters, and the daily production of
this automatic tire tread handling system is 390 pallets in the normal state. If the daily production plan
is not completed due to component failures, the corresponding economic loss is 500 Yuan/pallet.
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Figure 5. The automatic tire tread handling system.

Table 2. The configuration parameters of the automatic tire tread handling system.

Parameter Value Parameter Value

Discharge time interval of the extruder 221.4 s/pallet

Hoister

Material pick-up duration (P2,1) 8 s

Maximum allowable recovery time 4 h Material drop-off duration (P2,2) 1 s

AGV

Transport duration from extruder 45 s Transport duration from the AGV 17.5 sto the AGV pick-up location (P1,1) drop off location to hoister cache (P2,3)

Forward velocity (P1,2) 1.33 m/s

RGV

Duration of vehicle go (P3,1) 12 s

Turn velocity (P1,3) 0.5 m/s Duration of vehicle return (P3,2) 11 s

Acceleration (P1,4) 0.2 m/s2 Material drop-off duration (P3,3) 2 s

U-turn duration (P1,5) 25 s

Stacker

Material pick-up/drop-off duration (P4,1) 22 s

Material pick-up/drop-off duration (P1,6) 15 s Lift velocity (P4,2) 0.67 m/s

Straight path length of AGV go 35.6 m Walk velocity (P4,3) 2.67 m/s

Straight path length of AGV return 36.9 m Acceleration (P4,4) 0.5 m/s2

Turning path length of AGV go 7.4 m

Shelving

Number of floors 7

Turning path length of AGV return 10.3 m Number of upper horizontal storage units 24

U-turn times of AGV go 0 Number of lower horizontal storage units 25

Turn times of AGV go 1 Width of the storage unit 1.47 m

U-turn times of AGV return 1 Height of the storage unit 2.325∼2.425 m

Turn times of AGV return 1

5.2. Disturbance Analysis and Resilience Evaluation

5.2.1. DMEA

Using the DMEA method in Section 3, the potential disturbance modes, as well as their effects,
can be identified. In this problem, we only consider internal disturbances; external disruptive events
ranging from natural disasters (e.g., earthquakes, hurricanes) to man-made faults (e.g., terrorists) are
not considered. There are 86 disturbance modes identified in the automatic tire tread handling system,
and some of them are shown in Table 3. The function, disturbance modes, disturbance causes, and
occurrence probabilities originate from the FMEA form directly, system performance degradations
resulting from different disturbance modes are estimated empirically, and the distributions of the
recovery time are estimated using 1190 maintenance data of similar products. Taking the disturbance
mode “tire treads exceed on the left” of the stacker (i.e., the 84th disturbance mode) as an example, with
an occurrence probability of 1.45× 10−6, the stacker performance metrics P5,1∼P5,4 reduce to 0%, 50%,
and 80% of their original performances with probabilities of 50%, 30%, and 20%, respectively. Using
maximum likelihood estimation and the chi-square goodness-of-fit test, we find that the performance
recovery duration time in this disturbance mode obeys the log–normal distribution with the parameters
(2.678, 0.2652).
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Table 3. Partial DMEA form of the tire tread handling system.

(1) System: (3) Compiled by: (5) Date:
(2) Part name: (4) Approved by: Page of

No. Part
Name Function Disturbance

Modes
Disturbance

Causes
Occurrence
Probability

Disturbance Effects

Performance Affected Qi,1 t1 − t0 Qi,2 t2 − t1

1
AGV

take tire treads
to the warehouse

entrance

drive unit fails drive unit design 1.14× 10−4 P1,1∼P1,6 1,0.8,1 0 Q1,0 1,10,10
2 circuit connection fails process problem 5.71× 10−5 P1,1∼P1,6 6,[0.5,0.8],[0.2,0.8] 0 Q1,0 1,20,20
3 control system fails external interference 2.28× 10−4 P1,1∼P1,6 6,[0.5,0.8],[0.2,0.8] 0 Q1,0 1,30,30
... ... ... ... ... ... ... ... ... ... ...
84

stacker
carry tire

treads to the
storage unit

tire treads exceed on the left bias of the pallet 1.45× 10−6 P5,1∼P5,4 6,[0,0.5,0.8],[0.5,0.3,0.2] 0 Q5,0 4,2.678,0.265
85 tire treads exceed on the right bias of the pallet 1.58× 10−6 P5,1∼P5,4 6,[0,0.5,0.8],[0.5,0.3,0.2] 0 Q5,0 4,2.632,0.248
86 task execution timeout network interruption 6.57× 10−7 P5,1∼P5,4 6,[0,0.5,0.8],[0.5,0.3,0.2] 0 Q5,0 4,2.732,0.314

Note: (1) In the seventh column, Pi,j is the jth performance parameter of the ith component, and P1,1∼P1,6 and P5,1∼P5,4 are the parameters of the AGV and stacker
in Table 2, respectively; (2) The ”Performance Degradation and Recovery“ in Table 1 is replaced by Qi,1, t1 − t0, Qi,2, and t2 − t1, as the performance degradation and
recovery process of the automatic tire tread handling system is the continuous linear type; (3) Qi,1 and t2 − t0 are random variables, and the explanations of the two
parameters in different distribution types can be seen in Table 4, respectively; (4) It is assumed that the performance of the component drops directly to Qi,1 after the
disturbance and then restores to the normal state after recovery, i.e., t1 − t0 ≡ 0 and Qi,2 ≡ Qi,0 for all i.

Table 4. Explanations of common distributions and their parameters in Table 3.

Distribution Type Distribution Type No. Characteristic Parameters

1 2

Uniform distribution X ∼ U(a, b) 1 a b
Exponential distribution X ∼ E(λ) 2 λ -
Normal distribution X ∼ N(µ, σ2) 3 µ σ

Log–normal distribution lnX ∼ N(µ, σ2) 4 µ σ
Log-logistic distribution X ∼ LL(eµ, 1/s) 5 µ s

Discrete distribution 6 [d1, d2, ..., dn] [p1, p2, ..., pn]

Note: In the discrete distribution, d1, d2, ..., dn are n possible values of the parameter; p1, p2, ..., pn are the possibilities at each value; and ∑n
i=1 pi = 1.
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5.2.2. Resilience Evaluation

Using the DMEA and Monte Carlo-based simulation method detailed in Section 4, we evaluated
the resilience of the tire tread handling system, and Figure 6 shows an example of the system’s resilience
behavior after a certain disturbance. In Figure 6, the system begins operating in the normal state with a
daily production of 390, and the disturbance occurs at 105 h on the stacker and causes a sharp decline
in daily production. After the recovery action is taken, daily production restores to the normal state
rapidly. Using Equation (2), the resilience to this particular disturbance is calculated to be 0.9225. Here,
the simulation granularity is 10 min, i.e., the performance of the system is monitored and sampled
every 10 min.

Figure 6. The resilience behavior of the tire tread handling system (example).

To characterize the resilience of the tire tread handling system subjected to random disturbances,
the expectation of system resilience can be estimated using Equation (4).

5.3. Error Analysis

Samples xi obtained from Monte Carlo simulations are independent and identically distributed
(i.i.d.) random variables. According to the central limit theorem, if the expectation and variance of
these i.i.d. variables are finite, then the arithmetic average of the samples follows a normal distribution
with mean µ and variance σ2/n when the sample size n is large. The estimate of the error is as follows:

ε =
∣∣X− X̂

∣∣ < zα/2σ√
n

, (5)

where X̂ is the estimate of X (X̂ = ∑ xi/n), and 1− α is the confidence level (e.g., 1− α = 95%).
For our problem, we combine Equations (4) and (5) and obtain

εRA =
∣∣∣E(RA)− E(R̂A)

∣∣∣ < zα/2sRA√
n

, (6)

where sRA is the standard deviation of RA. It is obvious that the larger the number of iterations, the
smaller the simulation error and the longer the simulation time. It is generally necessary to make a
trade-off between the above two factors. Table 5 shows the error and simulation duration for different
numbers of simulation iterations. We chose 1000 as the number of simulation iterations, because it
reduces the (otherwise large) simulation error at a small simulation time cost.
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Table 5. Errors and duration for different numbers of simulation iterations.

No. Number of Iterations Error Duration (s)

1 500 0.006131 52.6959
2 1000 0.003437 89.2595
3 1500 0.003306 127.169
4 2000 0.003197 178.013
5 2500 0.002938 200.445
6 3000 0.002747 279.122
7 3500 0.002564 283.232
8 4000 0.002430 327.458
9 4500 0.002291 368.282

10 5000 0.002077 509.328

5.4. Results and Discussion

Using the 86 disturbance modes and the corresponding performance degradation and recovery
data identified through DMEA, the expectation of the resilience for the tire tread handling system
subjected to random disturbances is calculated to be R̂A = 0.9565 on the basis of 1000 simulation
runs. According to Equation (6), the simulation error is calculated to be 0.003437, which is within the
acceptable level.

The resilience evaluation results of the tire tread handling system can be further applied to enhance
the resilience of the system. System optimization with the consideration of resilience helps reduce
resource waste, increase system efficiency, and improve the sustainability of the whole manufacturing
system. Section 5.4.1 discusses two system resilience enhancement methods from the perspectives of
system configuration and maintenance management, and Section 5.4.2 discusses how the results affect
system sustainability.

5.4.1. System Resilience Enhancement Methods

(1) Perspective of system configuration

At the design stage, we need to find a reasonable equipment configuration, and a trade-off is
usually performed between the performance and cost of the system. Usually, there are three types of
costs: acquisition cost, operation cost, and maintenance cost. The three costs are shown in Table 6.

Table 6. Cost parameters of the tire tread handling system.

Equipment Acquisition Cost
(Yuan/Unit)

Operation Cost
(Yuan/Unit Year)

Maintenance Cost

Hardware Manpower (Yuan/Hour)

AGV 900,000 10,000 Determined by
the disturbance

mode
500Hoister 150,000 1000

RGV 200,000 1000
Stacker 1,000,000 10,000
Cache 100,000 - - -

Storage Unit 2700 - - -

In this problem, we consider that (1) there is only one extruder and one stacker in the system;
(2) the warehouse lies in two rows with seven floors each, and 24 and 25 storage units exist on each
floor of the two rows; and (3) the numbers of AGVs, hoisters, RGVs, and caches are variables. We
analyzed the tire tread handling system with different equipment configurations, and the cost, the
normal daily production, and the resilience of the system are compared in Table 7.
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Table 7. Comparisons of the tire tread handling system in different system configurations.

Case No. Number of Cost (Yuan) Daily Production
(Pallet) Resilience

AGV Hoister RGV Cache Acquisition Operation Maintenance Total

1 1 1 1 1 3,276,100 22,000 95,000 3,393,100 390 0.9565
2 2 1 1 1 4,176,100 32,000 173,000 4,381,100 390 0.9867
3 1 2 1 1 3,426,100 23,000 102,000 3,551,100 390 0.9716
4 1 1 2 1 3,476,100 23,000 107,000 3,606,100 390 0.9700
5 1 1 1 2 3,376,100 22,000 95,000 3,493,100 390 0.9720

In Table 7, Case 1 is the initial configuration, and Cases 2–5 add redundancy to each type of
equipment. One can see that both the cost and the resilience of the system increase, and the daily
production retains the same value. Actually, the daily production of the tire tread handling system
cannot exceed the number extruded by the extruder, which is exactly 390 pallets per day. When we
configure redundancy for the AGV, the resilience increases from the original 0.9565 to 0.9867, but the
cost also increases rapidly. On the other hand, if the hoister, the RGV, or the cache at the warehouse is
configured redundantly, the resilience improves to about 0.9700 with a much smaller cost increase.
Using these analysis results, a trade-off between cost and performance can be determined.

(2) Perspective of maintenance management

Different types of equipment play specific roles in the tire tread handling process.
Correspondingly, different disturbances in these pieces of equipment result in different system
performance responses, which influence the resilience. To compare the resilience responses caused by
different disturbances in different equipment, eight disturbances were injected into different pieces of
equipment, and the maintenance cost, the resilience to the particular disturbance, the corresponding
production and economic losses are shown in Table 8.

Table 8. Comparison of different disturbances to different pieces of equipment.

Case No. Disrupted Equipment Maintenance Cost (Yuan) Resilience Production Loss
(Pallets)

Economic Loss
(Yuan)Manpower Hardware Total

1 AGV 500 6000 6500 0.9099 35.14 17,570
2 83 10,000 10,083 0.9958 1.64 820

3 Hoister 750 10,000 10,750 0.9792 8.11 4055
4 750 10,000 10,750 0.9968 1.25 625

5 RGV 500 600 1100 0.976 9.36 4680
6 83 1000 1083 0.9919 3.16 1580

7 Stacker 103.7 3000 3103.7 0.9792 8.11 4055
8 70 20,000 20,070 0.9932 2.65 1325

From Table 8, one can see that the AGV is very sensitive to some disturbances, and large
production losses may be caused by such disturbances and make the system less resilient. An
instructive suggestion is to perform preventive maintenance on time to avoid or reduce the effects
caused by these disturbances. We can also find that the system production losses that result from these
disturbances are different, and it means that if several disturbances occur at the same time, an optimal
maintenance sequence needs to figure out to enhance system resilience.

5.4.2. Sustainability Analysis

To date, there is no consensus on the definition and research boundary of sustainable
manufacturing, and its indicators are broad. The National Institute of Standards and Technology (NIST)
have defined indicators that can be used to measure the sustainability of manufactured products and
processes and established a neutral set of indicators in five dimensions: technological advancement,
performance management, economic growth, environmental stewardship, and social well-being [50].
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We analyzed the contribution of resilience to the tire tread handling system in these five aspects one by
one.

(1) A more resilient tire tread handling system represents more advanced technology. The trade-off
between cost and production can be better determined by adding resilience as an additional
constraint. Resilience can effectively describe the continuous performance change process of the
system after the disturbance and is more advanced than the previous two-state (i.e., the system
is either normal or faulty) or discrete multistate methods.

(2) As resilience can describe the feature of continuous changes in system performance, it is very
useful in performance management. The deterministic resilience measure in Equation (2)
characterizes the average performance of the system over a period of time after the disturbance.
For a given disturbance, a resilient strategy can be generated according to the performance
level of the system after the disturbance, and then the average performance of the system when
responding to the disturbance can be improved. For random disturbances, we can analyze the
resilience behavior of the system with different disturbances according to the DMEA method in
this paper, and we can then find a way to improve the average resilience of the system to these
disturbances.

(3) Under a given disturbance, a resilient system can be restored faster. Fast recovery increases
system production by consuming maintenance resources. In Table 8, one can see that a
more resilient recovery strategy significantly decreases the total expense (i.e., the sum of the
maintenance cost and the economic loss caused by the decrease in production). For example,
Case 1 has a total expense of 24,070 Yuan at a resilience level of 0.9099, while the total expense
in Case 2 decreases to 10,903 Yuan at a high resilience level of 0.9958. A highly resilient
manufacturing process realizes global economic savings, avoids overtime work, and prevents
additional resource consumption, thus promoting sustainable manufacturing. Exceptions may
exist when the failure is so severe that only an overhaul or even replacement can bring the
broken component back into use, as in Case 8. In this case, high resilience is obtained by direct
replacement of a part.

(4) The recovery strategy, which is determined with the consideration of resilience, helps increase
the average production of the tire tread handling system after the disturbance. This means that
the factory emissions per product can be reduced and that the resilient system is environmentally
friendly. Moreover, the recovery strategy for multi-failure conditions affects production
continuity a lot and determines the additional effort hours and resources, and this topic is
closely linked with resource consumption and environmental pressure, on which sustainability
has primarily focused [51]. Research concentrating on the optimal recovery strategy will be
conducted in the future.

(5) Because the resilience can improve the average performance of the system after the disturbance,
it is beneficial to manufacture more products facing the same situation. The richness of
commodities attracts customers and is conducive to improvement in social well-being.

6. Conclusions

This paper proposes a new disturbance analysis method for resilience evaluation, i.e., DMEA. With
the use of our method, quantitative information of disturbance occurrence probability, performance
degradation, and recovery behavior can be collected easily. With the data obtained by performing
DMEA, we also developed a Monte Carlo-based simulation method to estimate the resilience. The
effectiveness of this method was verified by conducting a resilience evaluation of a tire tread handling
system. The main contributions of this paper are as follows: (1) A systematic disturbance identification
and analysis method is proposed for the purpose of resilience qualification. Potential disturbance
modes can be identified and listed in a bottom-up method, and the disturbance effects are specified
using performance degradation and recovery functions. (2) A resilience measure for the MHS based
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on the daily production is proposed to enrich MHS resilience quantification, and few studies were
found to have explored this area before. (3) A resilience evaluation framework based on DMEA and
the Monte Carlo method is developed for the MHS. Using our DMEA-based resilience evaluation
method, the resilience of the MHS system can be analyzed and further optimized, thus enabling the
system to operate more efficiently and helping to reduce wasted resources. This method can also be
applied to other engineering systems, especially at the design stage.

In this paper, the current case study indicates that the resilience of the MHS can be enhanced
by reasonable system configuration and maintenance management. In our future work, we will
further study more advanced examples using our DMEA method and improve system resilience
by optimizing resilient system reconfiguration and maintenance strategies. As the AGV is the main
part of the MHS, we will focus on its scheduling strategy and recovery strategy. In the future, with
the development of intelligent technology, intelligent maintenance methods will be applied in the
manufacturing industry more extensively, and self-maintenance technology arising from this will
further enhance the resilience and sustainability of the system [52]. Our research will benefit the
generation of resilient and sustainable self-maintenance strategies.
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