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Abstract: China’s rapid economic development has resulted in a series of serious environmental
pollution problems, such as atmospheric particulate pollution. However, the socioeconomic factors
affecting energy-related PM2.5 emissions are indistinct. Therefore, this study first explored the change
in PM2.5 emissions over time in China from 1995 to 2012. Then the STIRPAT (Stochastic Impacts
by Regression on Population, Affluence, and Technology) model was adopted for quantitatively
revealing the mechanisms of various factors on energy-related PM2.5 emissions. Finally, the
Environmental Kuznets Curve (EKC) hypothesis was adopted to examine whether an EKC
relationship between affluence and energy-related PM2.5 emissions is present from a multiscale
perspective. The results showed that energy-related PM2.5 emissions in most regions showed
an increasing trend over the study period. The influences of the increase in population, energy
intensity, and energy use mix on energy-related PM2.5 emissions were positive and heterogeneous,
and population scale was the major driving force of energy-related PM2.5 emissions. The effects of
the increase in the urbanization level and the proportion of tertiary industry increased value to GDP
on energy-related PM2.5 emissions varied from area to area. An inverse U-shape EKC relationship
for energy-related PM2.5 emissions was not verified except for eastern China. The conclusions are
valuable for reducing PM2.5 emissions without affecting China’s economic development.

Keywords: energy-related PM2.5 emissions; STIRPAT model; influence factors; Environmental
Kuznets Curve

1. Introduction

The rapid advancement of China’s industrialization has led to a deterioration of air quality
in China. Severe air pollution has spread from developed regions, especially in the developed
eastern provinces, to the whole country. The frequency of hazy weather showed a significant
upward trend, and air pollution has increasingly become a core issue that constrains sustainable
development and ecologically friendly urban development [1,2]. Therefore, effective control of
pollutant emissions and effective improvement of urban environmental air quality have become
important targets for the Chinese government [3]. Fine particulate matter (PM2.5) can not only be
suspended in the air, but also generates new pollutants through chemical reactions and reduces
atmospheric visibility [4]. In addition, PM2.5 pollution can seriously affect human health [5–7]. Many
medical studies have shown that long-term exposure to air containing PM2.5 can cause respiratory
diseases and cardiovascular diseases, damage the body’s immune system, and increase the risk of death
in exposed populations [8–11]. The number of premature deaths per year in China due prolonged
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exposure to polluted air exceeds 1.25 million [12]. In the winter of 2013, the maximum concentration
of PM2.5 in Beijing exceeded 1000 µg/m3 [13]. Therefore, the PM2.5 pollution problem has increasingly
become the focus of China’s air pollution prevention and control, and is also one of the hotspots of
atmospheric environment research.

Many scholars have carried out a large number of studies on PM2.5 pollution in recent years.
The research has mainly focused on the transboundary diffusion of PM2.5 [14–16], the health effects of
PM2.5 [17–20], source analysis of PM2.5 pollutants [21–24], simulation of PM2.5 concentration [25–28],
spatiotemporal changes and patterns of PM2.5 pollution [29–31], contributing factors analysis of PM2.5

concentration [32–35], establishing a PM2.5 emissions inventory [36,37], and determining the dispersion
of PM [38–40]. Total pollutant discharge control is a measure for environmental management, so
reducing PM2.5 emissions will be a commendable means of preventing PM2.5 pollution. In 2012,
new air quality standards were formulated, and PM2.5 concentration was listed as a routine key
environmental monitoring index for the first time. In 2013, the Chinese government published 10
air pollution control measures to cope with serious and persistent PM2.5 pollution. The Chinese
government is also trying to expand the scope of air quality monitoring. The monitoring sites for PM2.5

concentration have increased from 612 in 2013 to 1436 in 2016. After that, a couple of studies tried to
quantify the socioeconomic factors contributing to PM2.5 emissions and reveal the dynamic relationship
between these variables in recent years. For instance, Guan et al. [41] adopted the input-output method
and the structural decomposition analysis (SDA) method to quantify influencing factors on China’s
primary PM2.5 discharge from 1997 to 2010. Meng et al. [42] applied an input-output model for
revealing the influence of trade contributing to primary PM discharge in Beijing. Lyu et al. [43]
employed the Logarithmic Mean Divisia Index (LMDI) method for exploring the major driving force
of primary PM2.5 discharge from 1997 to 2012 in China. Xu et al. [44] applied the SDA method for
identifying the socioeconomic factors contributing to China’s primary air pollutant discharge.

The concept of the Environmental Kuznets Curve (EKC) hypothesis is that environmental quality
initially deteriorates with economic growth, and then increases as economic development reaches
a certain level. In recent years, this hypothesis has been used to empirically study the relationship
between environmental quality and per capita income. For instance, the EKC hypothesis was applied
by Brajer et al. [45] to test whether air pollution presented an inverted-U-type EKC relationship with
economic growth. The EKC hypothesis for CO2 and SO2 emissions’ relationship with economic
growth in the United Kingdom was verified by Fosten et al. [46]. In Malaysia, the EKC hypothesis for
carbon dioxide emissions’ correlation with increasing income was discovered by Saboori et al. [47].
Shahbaz et al. [48] discovered evidence supporting an inverted-U-shaped nexus between financial
development and carbon dioxide emissions. Hao et al. [49] verified an inverted-U-shaped EKC
relationship for PM2.5 concentrations in 73 Chinese cities with economic growth. The research by
Wang et al. [50] confirmed that sulfur dioxide emissions had an inverted-U-shaped link with economic
growth. The EKC hypothesis for three pollutant emissions (carbon dioxide, industrial wastewater, and
industrial waste solid) in China was examined by Li et al. [51] and the results approved this hypothesis.
Chen et al. [52] applied the EKC hypothesis to explore the nexus between affluence and Air Pollution
Index (API) in China.

In summary, there are still some limitations in the existing literature. Firstly, the input-output
method, the SDA method, and the LMDI method are often used in the existing research, but the
econometric analysis method is seldom used. Secondly, there are few papers analyzing the factors
contributing to PM2.5 discharge, especially about the regional differences in China’s energy-related
PM2.5 emissions influencing factors. Thirdly, although a lot of researchers have studied the EKC
relationship between pollution and economic development, this paper is different because it examines
primary PM2.5 emissions for the first time. The main contributions of this study are: (1) filling the gap in
that the econometric analysis method is seldom used to reveal the influencing factors of energy-related
PM2.5 emissions. It can also be regarded as an example of using the STIRPAT (Stochastic Impacts by
Regression on Population, Affluence, and Technology) model to examine the influencing factors of
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energy-related PM2.5 emissions. (2) The EKC hypothesis is used to study the relationship between
energy-related PM2.5 emissions and GDP for the first time, and this paper contributes to the empirical
literature. (3) The study can improve the public’s understanding of the changes of PM2.5 emissions with
economic growth, which is valuable for harmonizing economic growth and PM2.5 emissions reduction.

This paper has three main objectives: (1) exploring the change in PM2.5 emissions over time;
(2) revealing quantitatively the influencing factors of energy-related PM2.5 discharge from a multiscale
perspective; (3) examining whether an EKC relationship between affluence and energy-related PM2.5

emissions is present from a multiscale perspective.

2. Research Area and Data

2.1. Research Area

In order to analyze the socioeconomic factors affecting energy-related PM2.5 emissions from
different scales, two research areas with different administrative scales were chosen in this paper.
Mainland China was the first research area (Figure 1). With the start of Chinese economic reform in
1978, China’s economy underwent rapid development that resulted in a series of serious environmental
problems and massive energy-related PM2.5 emissions. However, the influence mechanism of
socioeconomic factors contributing to energy-related PM2.5 emissions is still ill-defined. The eastern
region, central region, and western region were together chosen as the second research area. Due
to natural conditions and policy factors, eastern China took the lead in development and formed a
relatively complete industrial economic system, while the development of central and western China
was relatively slow, which makes China’s regional economic development imbalanced. Regional
differences in China are becoming more and more prominent, mainly in the following three aspects:
(1) the difference in regional economic development level; (2) the difference in regional economic
structure; (3) the difference in per capita income level. Different regions inevitably have different
socioeconomic factors contributing to energy-related PM2.5 emissions.
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2.2. Data Sources

Based on data availability, this study selected the time series dataset of 30 provinces in China in
1995–2012, excluding Hong Kong, Macao, Taiwan, and Tibet. The provincial primary energy-related
PM2.5 emissions data in China were downloaded from the Multi-resolution Emission Inventory for
China (MEIC). The data of the provincial gross domestic product (GDP), provincial total population,
urban population, coal use, energy use, and the tertiary industry (primary industry refers to industry
for the production of food and other biological materials, including planting, forestry, animal
husbandry, aquaculture, etc.; secondary industry refers to industry that reprocesses the basic materials
provided by the primary industry and nature, including mining, manufacturing, power, gas and
water production and supply, construction, etc.; tertiary industry refers to the service industry, mainly
including transportation, communications, commerce, catering, financial industry, education industry,
etc.) increased value were all obtained from the National Bureau of Statistics of China. In order to
eliminate inflation, GDP was calculated at a constant price in 1995. The detailed description of the
data used in this study are shown in Table 1.

Table 1. Description of the data used in this study.

Data Data Description Year Unit Source

Provincial PM2.5
emissions data

Including PM2.5
emissions data of 30
provinces

1995–2012 ton http://www.meicmodel.
org/dataset-meic.html

Provincial GDP Including GDP of 30
provinces 1995–2012 108 yuan http://www.stats.gov.cn/

Provincial total
population

Including the total
population of 30
provinces

1995–2012 104 persons http://www.stats.gov.cn/

Provincial urban
population

Including urban
population of 30
provinces

1995–2012 104 persons http://www.stats.gov.cn/

Provincial coal use Including coal use of
30 provinces 1995–2012 ton of standard coal China Energy Statistics

Yearbook

Provincial energy use Including energy use
of 30 provinces 1995–2012 ton of standard coal China Energy Statistics

Yearbook

the tertiary industry
increased value

Including the tertiary
industry increased
value of 30 provinces

1995–2012 108 yuan http://www.stats.gov.cn/

3. Methodology

3.1. Time Variation Trend (Slope)

The simple linear regression model is a method frequently used to detect the time variation trends
of observation data. The equation is as follows:

Slope =
n ∑n

a=1 aIa −∑n
a=1 a ∑n

a=1 Ia

n ∑n
a=1 a2 − (∑n

a=1 a)2 , (1)

where n denotes the time span and is equal to 18, and Ia represents the energy-related PM2.5 emissions
in a year.

3.2. STIRPAT Model

The formula is as follows:
I = a Pb Ac Td e, (2)

http://www.meicmodel.org/dataset-meic.html
http://www.meicmodel.org/dataset-meic.html
http://www.stats.gov.cn/
http://www.stats.gov.cn/
http://www.stats.gov.cn/
http://www.stats.gov.cn/
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where I denotes energy-related PM2.5 emissions, P indicates the total population, A expresses the
affluence, T represents the technology level, a denotes the model coefficients, b, c, and d represent the
simulation coefficient of independent variables, and e means the error value sustainability-425450.

After taking natural logarithm, Equation (2) was transformed into:

ln(I) = ln(a) + b ln(P) + c ln(A) + d ln(T) + ln(e). (3)

As the STIRPAT model gives consideration to the individual impact of different changes in P, A,
and T on the pollutant emissions and can be extended by incorporating other factors and appropriately
decomposing each factor, this method is widely applied to reveal the factors affecting pollutant
discharge. For instance, Li et al. [53,54] utilized a STIRPAT model for exploring the influence of
different factors on China’s CO2 emissions. A STIRPAT model was utilized for detecting the major
factors affecting Beijing’s carbon dioxide emissions [55]. Shafiei et al. [56] explored the determinants of
carbon emissions in the Organization for Economic Co-operation and Development (OECD) countries
based on the STIRPAT model. Shahbaz et al. [57] explored the determinants of Malaysian energy use
based on the STIRPAT model and found that urbanization was the major factor affecting Malaysian
energy use growth. Laureti et al. [58] explored the determinants of Madrid’s NOx discharge based on an
augmented STIRPAT model. Zhang et al. [59] utilized a STIRPAT model for revealing the relationships
between population aging and CO2 emissions from multiscale perspective. Wang et al. [60] attempted
to combine the STIRPAT model with a semi-parametric regression model for revealing the link
between the income/urbanization and industrial CO2 discharge. Xie et al. [61] employed an improved
STIRPAT model for exploring the transportation infrastructure and urban carbon emissions nexus.
Chai et al. [62] adopted a comprehensive LMDI-STIRPAT-PLSR model for analyzing influencing factors
with regard to natural gas consumption. Wang et al. [63] quantified the major driving factors for
Xinjiang’s CO2 emissions from different development stages. Zhang et al. [64] utilized an STIRPAT
model for identifying the inherent relation between urbanization and CO2 emissions. Yang et al. [65]
utilized a STIRPAT model to quantify the influences of natural and socioeconomic parameters for
CO2 emissions.

Therefore, some factors, namely, U (Urbanization), S (Industrial mix), and E (Energy use mix),
were incorporated to build the extended STIRPAT model for quantitatively revealing the influencing
factors on energy-related PM2.5 emissions in 1995–2012. The ln(A) in Equation (3) was decomposed
into ln(A) and (lnA)2 for testing whether there was an EKC relationship between energy-related PM2.5

emissions and wealth growth [66,67]. Detailed information on variables is displayed in Table 2. The
final STIRPAT model can be described by the following equation:

ln(I) = ln(a) + β1 ln(P) + β21 ln(A) + β22 (lnA)2 + β3 ln(T) + β4 ln(U) + β5 ln(E) + β6 ln(S) + ln(e), (4)

where U refers to urbanization; E means energy use mix; and S represents the industrial mix. β1,
β21, β22, β3, β4, β5, β6 are all fitting coefficients. When P, A, T, U, E and S are varied by 1%, ‘I’ will
wave by β1%, β21 + 2β22 lnA%, β3%, β4%, β5% and β6% respectively. Moreover, if β21 > 0 and β22 < 0,
this indicates that an inverse-U-shaped EKC relationship is present between energy-related PM2.5

emissions and economic development [68].
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Table 2. Description of variables.

Variables Symbol Definition Unit

Primary PM2.5
emissions I Energy-related PM2.5

emissions accounting ton

Population size P Provincial total population 104 persons

Affluence A GDP divided by population Yuan per capita

Technology level T Energy use per unit GDP ton of standard coal/104 Yuan

Urbanization U Urban population divided by
total population %

Energy use structure E The ratio of coal use to total
energy use %

Industrial structure S The tertiary industry increased
value divided by GDP %

3.3. Multicollinearity Testing

Multicollinearity represents a situation in which there is a strong and linear correlation between
independent variables. If multicollinearity is present among explanatory variables in the linear
regression model, it will lead to: (1) an OLS estimator with large variance and low precision; (2) the
individual effects of variables not being judged; (3) a nonsense significance test; and (4) an unstable
regression model [69]. These unstable alterations will bring about an unreasonable regression model,
thus providing unreliable results for variables.

There are many methods to assess “strong and linear correlations” between factors, such as
the variance inflation factor (VIF) and correlation matrix. VIF, calculated by the ordinary least
square (OLS) regression method, is the most commonly used method to evaluate whether there
is multicollinearity between independent variables in regression models. The larger the VIF, the more
serious the multicollinearity. It is generally believed that there is serious multicollinearity if a VIF is
greater than 10 [70–72].

3.4. Ridge Regression

Ridge regression is an improved OLS estimation method because it abandons its unbiased
property and can effectively decrease the standard error. Ridge regression is a more practical and
reliable way to obtain fitting coefficients at the cost of precision loss. If there is multicollinearity
between independent variables, the value of determinant of X’X matrix is approximately 0 (X is an
n×b matrix (rank b) of independent variables). Therefore, matrix (X’X)−1 will be hypersensitive to tiny
changes in the data. If X’X is added to the constant matrix KI under the condition K ≥ 0, the sensitivity
of (X’X + KI)−1 will be improved (K is the constant). Therefore, the coefficients estimation of ridge
regression is more stable than the OLS regression method. Its estimator is as follows:

β(K) = (X’X + KI)−1 X’Y. (5)

If K = 0, its estimator is the result of OLS regression; if K→∞, its sustainability-425450 is close to
0, so K should not be too large.

4. Results

4.1. The Variation Trend of Energy-Related PM2.5 Emissions

The energy-related PM2.5 emissions in 1995–2012 in China and the three economic zones are
displayed in Figure 2. During the period from 1995 to 2006, the energy-related PM2.5 emissions in
the three economic zones showed an increasing trend. The rise of energy-related PM2.5 emissions in
western China was the fastest. The growth rate of energy-related PM2.5 emissions in central China
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was the second highest. Energy-related PM2.5 emissions in the eastern regions grew slowly and
remained basically unchanged. During the period from 2006 to 2012, there were obvious differences
in the changes of energy-related PM2.5 emissions. Energy-related PM2.5 emissions in eastern China
featured a downward trend, while energy-related PM2.5 emissions in central and western China
showed an upward trend. A simple linear regression model was used to calculate the slopes of
energy-related PM2.5 emissions from 1995 to 2012. The slope was 5.29 × 104 tons/year in China, and
the energy-related PM2.5 emissions were fluctuating upward. The slope was −4.21 × 104 tons/year
in the eastern region, indicating a downward trend from 1995 to 2012. The slope of central and
western China were 3.61 × 104 tons/year and 5.89 × 104 tons/year respectively, which showed that
energy-related PM2.5 emissions had an upward trend in 1995–2012.Sustainability 2018, 10, x 7 of 15 
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Figure 2. The variation trend of energy-related PM2.5 emissions.

4.2. Results of Multicollinearity Inspection

According to the data collected, OLS regression was adopted in SPSS to determine whether
multicollinearity is present (OLS results are displayed in Table 3). Several VIFs were much higher than
10, which implied that multicollinearity between independent variables was present. Therefore, the
coefficients fitted by the OLS regression method cannot be guaranteed and the OLS results cannot be
applied to quantify the factors affecting energy-related PM2.5 emissions. Obviously, in order to get
reliable regression results, the multicollinearity between independent variables must be eliminated.

Table 3. OLS results.

Whole of China Eastern Region Central Region Western Region

Unstandardized
Coefficients VIF Unstandardized

Coefficients VIF Unstandardized
Coefficients VIF Unstandardized

Coefficients VIF

lnP 1.015 2.052 1.004 1.789 1.085 3.764 1.050 2.709
lnGDP 3.057 518.962 2.784 918.240 −0.582 1792.491 1.679 929.583

(lnGDP)2 −0.160 510.146 −0.144 901.297 0.040 1751.724 −0.081 926.299
lnT 0.361 2.503 0.360 2.575 0.573 3.110 0.315 17.961
lnU 0.352 15.351 −0.108 14.333 0.234 9.384 0.314 24.376
lnE 0.396 2.005 0.354 3.520 0.534 3.682 0.264 2.143
lnS −0.449 1.779 −0.174 4.096 0.161 2.182 −0.107 1.498
C −11.637 2.052 −9.415 1.692 3.764 −6.455 2.709
R2 0.972 0.950 0.936 0.969

F test 1315.992 619.027 207.514 413.653
Sig. 0.000 0.000 0.000 0.000

Notes: P (Population), T (Technology level), U (Urbanization), S (Industrial mix), and E (Energy use mix).
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4.3. Ridge Regression Estimation

The ridge regression method was applied to fit Equation (4) for reducing the impact of
multicollinearity between independent variables; the simulation coefficients are shown in Table 4.
Its estimation coefficients are selected according to the ridge trace. When K = 0.1 (whole of China),
K = 0.05 (eastern region), K = 0.08 (central region), K = 0.1 (western region), the ridge trace is almost
stable. The specific coefficients are displayed in Table 4.

Table 4. Ridge regression results.

Coefficient Whole of China Eastern Region Central Region Western Region

lnP 0.864 *** (58.868) 0.936 *** (42.164) 0.839 *** (22.985) 0.828 *** (42.464)
lnGDP 0.081 *** (7.713) 0.033 * (1.695) 0.089 *** (6.976) 0.112 *** (8.337)

(lnGDP)2 0.001 ** (1.977) −0.002 * (−1.725) 0.005 *** (6.669) 0.006 *** (7.769)
lnT 0.174 *** (7.144) 0.288 *** (5.848) 0.420 *** (9.862) 0.419 *** (3.108)
lnU 0.213 *** (5.206) −0.122 (−1.548) 0.052 * (1.625) −0.031 (−0.607)
lnE 0.526 *** (13.409) 0.453 *** (6.642) 0.511 *** (18.221) 0.286 *** (7.769)
lnS −0.679 *** (−9.775) −0.242 *** (−2.128) −0.073 * (−1.841) −0.063 (−0.517)
C 4.348 *** (12.201) 4.319 *** (7.691) 4.490 *** (13.899) 3.483 *** (6.387)
R2 0.919 0.944 0.913 0.918

F test 864.446 545.495 150.587 304.106
Sig. 0.000 0.000 0.000 0.000
K 0.1 0.05 0.08 0.1

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level. T statistics are in parentheses. P
(Population), T (Technology level), U (Urbanization), S (Industrial mix), and E (Energy use mix).

4.4. Empirical Analysis

4.4.1. The Whole of China

For the whole of China, population scale, energy intensity, urbanization, and energy use mix
all had a positive and statistically effects on energy-related PM2.5 emissions, whereas the negative
effects of industrial mix on energy-related PM2.5 emissions was significant. The fit coefficients of
energy-related PM2.5 emissions to population scale, energy intensity, urbanization, and energy use mix
were 0.864, 0.174, 0.213, and 0.526 respectively, which showed that energy-related PM2.5 emissions
increased with the increase of total population, technology level, urbanization level, and ratio of
coal use to total energy use. The fit coefficients of energy-related PM2.5 emissions to industrial mix
was −0.679, indicating that China’s energy-related PM2.5 emissions declined with the increase of the
proportion of added value of tertiary industry to GDP. Moreover, the fit coefficients of energy-related
PM2.5 emissions to per capita GDP and its square were all positive and significant at the level of 5%.
This indicated that an EKC relationship between wealth and energy-related PM2.5 emissions was not
present in China during this study period.

4.4.2. The Eastern Region of China

For the eastern region, energy-related PM2.5 emissions were positively and statistically
significantly correlated with the population scale, energy intensity, and energy use mix. The fit
coefficients of energy-related PM2.5 emissions to population scale, energy intensity, and energy use mix
are 0.936, 0.288, and 0.453, respectively. This implied that the influences of the increase the increase
in the total population, technology level, and ratio of coal use increased the energy-related PM2.5

emissions in the eastern region. The proportion of tertiary industry increased value to GDP showed
a negative correlation with the energy-related PM2.5 emissions, and was statistically significantly
under the level of 5%. The proportion of increased value of tertiary industry to GDP increased by 1%,
which resulted in a 0.242% decrease in the energy-related PM2.5 emissions. Moreover, the sensitivity of
energy-related PM2.5 emissions production in eastern China to urbanization was minus but statistically



Sustainability 2019, 11, 1409 9 of 14

not significant. Interestingly, the fit coefficients of energy-related PM2.5 emissions to per capita GDP
and its square value were found to be statistically significant with a positive and negative correlation
at the level α = 0.1, respectively. Energy-related PM2.5 emissions first increased sharply and then
decreased with wealth growth, indicating that an EKC relationship between economic level and
energy-related PM2.5 emissions was present in the eastern region during this study period.

4.4.3. The Central Region of China

For the central region, the simulated elasticities were all statistically significant under the level
α = 0.1 or lower. Similar to the national scale, population size, energy intensity, urbanization, and
energy use mix all positively influenced energy-related PM2.5 emissions, whereas industrial mix
negatively affected energy-related PM2.5 emissions. The proportion of increased value of tertiary
industry to GDP increased by 1%, which resulted in a 0.073% decrease in the energy-related PM2.5

emissions. The elasticities of energy-related PM2.5 emissions to population scale, energy intensity,
urbanization and energy use mix were 0.839, 0.420, 0.052, and 0.511, respectively, indicating that
the impacts of the decrease in the total population, technology level, urbanization level and ratio of
coal use to total energy use all decreased the energy-related PM2.5 emissions in the central China.
Moreover, the elasticities of energy-related PM2.5 emissions to per capita GDP and its square value
were significant at the level α = 0.1 and showed a positive correlation. This demonstrated that the
existence of an inverted-U-type EKC relationship between wealth and energy-related PM2.5 emissions
in central China was not validated during this study period.

4.4.4. The Western Region of China

For the western region, the effect of the total population, technology level, and percentages of
coal use to total energy use on energy-related PM2.5 emissions were positive. The positive sensitivity
of total population, energy use per unit GDP, and percentages of coal use on energy-related PM2.5

emissions were 0.828, 0.419, and 0.286, respectively, which implied that the effects of the decrease
in total population, energy use per GDP and percentages of coal use fell by energy-related PM2.5

emissions. The effects of the urbanization level and the ratio of tertiary industry increased value
to GDP on energy-related PM2.5 emissions were all not significant even at the 10% level. Besides,
the simulated elasticities of energy-related PM2.5 emissions to per capita GDP and its square value
were all statistically significant with a positive correlation under the level of 1%, demonstrating no
EKC relationship between affluence and energy-related PM2.5 emissions in western China during the
study period.

5. Conclusions and Policy Recommendations

This study explored the change in PM2.5 emissions over time in China. Then, an extended STIRPAT
model was adopted for quantitatively revealing the various socioeconomic factors on energy-related
PM2.5 emissions from multiscale perspective in 1995–2012. Finally, the EKC hypothesis was adopted
to test whether there is an EKC relationship between affluence and energy-related PM2.5 emissions
from multiscale perspective and some conclusions have been drawn.

The results showed that energy-related PM2.5 emissions in most regions showed an increasing
trend over the study period. The effects of the increase in population size, energy intensity and energy
use mix on energy-related PM2.5 emissions were positive and heterogeneous in China, population
size was the major driving force of energy-related PM2.5 emissions. Higher urbanization increased
energy-related PM2.5 emissions for the whole of China and central China, whereas the effects of
urbanization level on energy-related PM2.5 emissions in eastern and western China were statistically
insignificant even at the level α = 0.1. The proportion of tertiary industry increased value to GDP
had negative influences on energy-related PM2.5 emissions for the whole of China and eastern and
central China, whereas the effects of the proportion of tertiary industry increased value to GDP on
energy-related PM2.5 emissions of western China was statistically insignificant even at the level α = 0.1.
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Moreover, the EKC relationship for energy-related PM2.5 emissions has not been verified, excluding
eastern China.

Population size had a significant positive effect on PM2.5 emissions. In general, an increase in
population size can affect PM2.5 emissions in two ways: (1) the agglomeration effect—increasing
population size often produces an agglomeration effect, which will improve technological level, public
transport sharing efficiency, and energy efficiency to reduce PM2.5 emissions; (2) the scale effect—the
increase in population size will directly or indirectly lead to an increase in energy consumption, which
will result in the increase of energy-related PM2.5 emissions. The results showed that the scale effect of
population size was significantly higher than its aggregation effect during the study period. Therefore,
in the future, the government should pay more attention to the role of the population agglomeration
effect for mitigating its scale effect on primary PM2.5 emissions. For example, the government should
use the media for publicizing the concept of a green life, striving to raise public awareness of low
energy use, advocating a low-energy lifestyle, and promoting sustainable consumption patterns
for households.

The eastern region demonstrated an EKC relationship as GDP increased. Most regions of
China have levels of PM2.5 emissions that are still increasing, that is to say, the PM2.5 emissions
will continue to be positively correlated with economic growth for some time. The “decoupling”
stage between PM2.5 emissions and economic growth has not yet arrived, which again illustrates
the urgency of energy conservation and emissions reduction. Therefore, the government should
emphasize sustainable development and further guide residents’ green travel and consumption in
order to achieve a win-win situation of stable economic growth and continuous decline of PM2.5

emissions. For example, advocating “low-energy transportation” is also an effective measure to reduce
PM2.5 emissions.

The effect of the increase in energy intensity on energy-related PM2.5 emissions was positive.
Technological progress can often affect PM2.5 emissions through production technology and emissions
reduction technology, that is to say, technological progress can reduce PM2.5 emissions, but also can
promote economic growth, resulting in an increase in PM2.5 emissions. The results showed that the
effect of production technology is significantly higher than that of emissions reduction technology
during the research period. Therefore, the government should accelerate research and development of
energy conservation technology, develop new energy-efficient products, implement incentive policies,
and guide enterprises to improve energy efficiency.

The effects of the increase in energy use mix on energy-related PM2.5 emissions were positive,
indicating that the increase of coal proportion increased primary PM2.5 emissions. Therefore, it is
necessary to adjust the energy use mix for mitigating its positive impact on energy-related PM2.5

emissions. The Chinese government should actively develop clean, green energy to reduce the
proportion of coal use.

Higher urbanization increased energy-related PM2.5 emissions for the whole of China and the
central region, whereas the impact of urbanization on energy-related PM2.5 emissions in the eastern
and western region was not significant. In the process of urbanization, building new buildings will
consume a large amount of energy. Therefore, the government should advocate the use of more
environmentally friendly materials instead of traditional cement and improve the quality of buildings
for reducing energy use.

The proportion of tertiary industry increased value to GDP had negative influences on
energy-related PM2.5 emissions, excluding the western region. This is because the leading industry in
the western region is secondary industry, and the tertiary industry accounts for a relatively low
proportion and develops slowly. Therefore, the government should promote the optimization,
transformation, and upgrading of industrial structures, and develop tertiary industry.

Our conclusions have improved the public’s understanding of the changes of PM2.5 emissions
with economic growth, and are valuable for harmonizing economic growth and PM2.5 emissions
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reduction. However, many influencing factors such as foreign direct investment, population age
structure, and consumption mode will be valuable to explore in further research.
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