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Abstract: Aimed at the problem of the green scheduling problem with automated guided vehicles
(AGVs) in flexible manufacturing systems (FMS), the multi-objective and multi-dimensional optimal
scheduling process is defined while considering energy consumption and multi-function of machines.
The process is a complex and combinational process, considering this characteristic, a mathematical
model was developed and integrated with evolutionary algorithms (EAs), which includes a sectional
encoding genetic algorithm (SE-GA), sectional encoding discrete particle swarm optimization
(SE-DPSO) and hybrid sectional encoding genetic algorithm and discrete particle swarm optimization
(H-SE-GA-DPSO). In the model, the encoding of the algorithms was divided into three segments
for different optimization dimensions with the objective of minimizing the makespan and energy
consumption of machines and the number of AGVs. The sectional encoding described the sequence
of operations of related jobs, the matching relation between transfer tasks and AGVs (AGV-task),
and the matching relation between operations and machines (operation-machine) respectively for
multi-dimensional optimization scheduling. The effectiveness of the proposed three EAs was
verified by a typical experiment. Besides, in the experiment, a comparison among SE-GA, SE-DPSO,
H-SE-GA-DPSO, hybrid genetic algorithm and particle swarm optimization (H-GA-PSO) and a tabu
search algorithm (TSA) was performed. In H-GA-PSO and TSA, the former just takes the sequence of
operations into account, and the latter takes both the sequence of operations and the AGV-task into
account. According to the result of the comparison, the superiority of H-SE-GA-DPSO over the other
algorithms was proved.

Keywords: green scheduling; automated guided vehicle; flexible manufacturing system;
multi-objective and multi-dimensional; energy consumption; genetic algorithm; discrete particle
swarm optimization

1. Introduction

With the development of the manufacturing industry and the changes of the competitive market,
meeting customer’s diverse demands and improving service quality has become the main direction
of shifting their strategy for manufacturing enterprises, and flexible manufacturing system (FMS)
become an effective way to meet these needs. At the same time, intelligent manufacturing has become
a major trend in the development of manufacturing [1–3]. Under the background, FMS provides
great flexibility for the intelligent manufacturing workshop and plays more and more important roles
in intelligent manufacturing, especially to meet concurrent production of various parts on one or
more pieces of large equipment. An FMS consists of material handling devices (automated guided
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vehicles (AGVs) and robots), workstations, automated storage systems, and so on. An AGV is an
automatic transport vehicle, which can navigate along a planned route with different guidance ways
and systems [4]. It is widely used to transfer material in modern production systems and enhance the
efficiency of it [5–7]; all AGVs can have unified scheduling using a central computer control system so
that all shop floor operations would be controlled through an AGVs system.

AGVs scheduling of FMS is an important problem, which can affect the productivity, delivery
cost and service quality to a great extent; it also determines the efficiency of the whole production
system [8]. In most of the existing studies, the sequence of operation of related jobs and the matching
relation between transfer tasks and AGVs (AGV-task) are the main ways to optimize the AGV
scheduling problem; they are two related dimensions, which are important and effective in AGV
scheduling [9]. Deroussi et al. proposed a solution method for the simultaneous scheduling for the
sequence of operation and allocation of AGVs [10]. Lacomme et al. introduced a framework based
on a disjunctive graph to model the joint scheduling problem of machines and AGVs [11]. Baruwa
et al. proposed a simultaneous scheduling method of machines and AGVs based on a timed colored
petri net approach [12]. Besides, there are also some practical conditions in the workshop that have
been taken into consideration by researchers in their studies, such as battery charging of AGVs, cost of
operation, time of operation, and so on [13–16]. Cai et al. developed a mixed regional control model
for production tasks to solve the problem of task scheduling and coordination control presented by a
multi-AGV system [17]. Novas et al. proposed a novel approach by taking resource-constraints, the
loaded and the empty movements of the device, into account [18]. Mchaney proposed several methods
that can be used to account for the impact of various battery usage schemes on AGV simulations [19].
Kabir et al. investigated how the duration of battery charging for AGVs can be varied to increase
flexibility and manufacturing capacities of a manufacturing system [20]. Yan et al. investigated
the capability to evaluate reliability issues in AGVs by considering the health management of these
vehicles and their optimal mission configuration [21]. Although a lot of studies has been carried
out for AGV scheduling by building different models, there are also some other conditions that
need to be considered for further optimization of AGVs scheduling. In FMS, a lot of machines are
versatile; it means that a single machine can process multiple operations and has different processing
capabilities for different operations. Therefore, it is useful to optimize machine selection in the process
of manufacturing by optimization of AGV scheduling. A similar problem has been studied by many
researchers for manufacturing resource combinatorial optimization (MRCO) [22–25] and has provided
important references for the optimization of machine selection in FMS by AGVs.

In the aspect of optimization objectives of AGVs scheduling in FMS, earlier studies have mainly
concentrated on minimizing the makespan of all related jobs, and have been effectively applied
on increasing productivity and the resource utilization rate [8,15,16]. Sometimes, the makespan is
presented in the form of the travel distance of all AGVs [26]. Caridá et al. proposed a method for AGV
scheduling in FMS using fuzzy systems with the objective of minimizing the makespan [27]. Chang et
al. proposed a hybrid genetic algorithm (HGA) to improve the makespan solution for the distributed
FMS scheduling problem [28]. Achmad et al. proposed a non-dominated sorting biogeography-based
optimization (NSBBO) scheduling method in FMS with the objective of minimizing the makespan
problem and total earliness [29]. However, as one of the most important parts in FMS, the number
of them heavily influences the profitability in an FMS and increasing the utilization rate of AGVs
is important for optimizing the performance of the FMS [30–32]. Some studies have been carried
out to meet the demand for better optimal scheduling of AGVs in FMS. Mousavi et al. proposed an
optimal scheduling model for AGVs that the objectives of which are the minimization of the makespan
and number of AGVs while considering the AGVs battery charge; two optimization algorithms were
also developed in the model [15,16]. Vivaldini et al. presented a methodology for the estimation of
the minimum number of AGVs required to execute a given transportation order within a specific
time-window [33]. With the development of green manufacturing, studies have been done for a green
workshop by considering the energy consumption of the machines, which is also an important running
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cost [34–36]. Therefore, the energy consumption of the machines should be one of the objectives of
AGV scheduling in FMS to reduce the cost and optimize the manufacturing quality, which few have
taken into account.

In summary, although a lot of effective studies have been done on the AGV scheduling problem
in FMS, there is still value and a need for further research into the two problems as follows:

(1) It is of great value for enterprises to take more objectives such as energy consumption of
machines into account for synthetically optimizing the manufacturing process and benefit the FMS.

(2) In FMS, optimizing the sequence of operations and the matching relation between transfer
tasks and AGVs are just two dimensions to improve the performance of the production system, but, as
we know, many machines have a variety of process capabilities, and optimizing machine selection
should be an important part for increasing the resource utilization rate and the productivity in FMS.

To address the above concerns, this research developed a multi-objective and multi-dimensional
optimization scheduling mathematical model while considering energy consumption and
multi-function of the machines. In the model, the multi-objective is to minimize the makespan
and energy consumption of the machines and the number of AGVs; the multi-dimensional objective is
to simultaneously optimize the sequence of operation of related jobs, the matching relation between
transfer tasks and AGVs (AGV-task) and the matching relation between operations and machines
(operation-machine) for the multi-objective. To solve this kind of problem, evolutionary algorithms
(EAs) are the common methods [9,37–39]. Some distinct research in the scheduling context that can
also provide some new ideas for FMS with AGVs [40–42]. The model proposed in this research
will be optimized in three-dimensions, as mentioned earlier using three evolutionary algorithms
(sectional encoding genetic algorithm (SE-GA), sectional encoding discrete particle swarm optimization
(SE-DPSO) and hybrid sectional encoding genetic algorithm and discrete particle swarm optimization
(H-SE-GA-DPSO)) and the corresponding experiments and a comparison among them are introduced.
Besides, the hybrid genetic algorithm, particle swarm optimization (H-GA-PSO) and tabu search
algorithm (TSA) are also applied for the comparison; the former just takes the sequence of operation
into account, which is proposed in literature [15], and the latter takes both the sequence of operation
and AGV-tasks into account, which is proposed in literature [9].

The rest of this paper is organized as follows. The model, problem description and assumptions
are detailed in Section 2. The algorithm design is explained in Section 3. The experiment and discussion
are presented to verify the effectiveness of the algorithms proposed in this paper in Section 4. Especially,
a comparison among results SE-GA, SE-DPSO, H-SE-GA-DPSO, H-GA-PSO and TSA is provided to
prove the superiority of H-SE-GA-DPSO. Finally, Section 5 provides the conclusion of this paper and
indicates the research direction to a further extent.

2. Problem Description and Mathematical Model

2.1. Problem Description

On the basis of the current AGV multi-objective optimization scheduling problems in FMS, a
multi-objective and multi-dimensional scheduling model of AGVs is presented in this paper, as shown
in Figure 1. Let us assume that there are several jobs assigned to an FMS, which can be described as a
set of jobs {J1, J2, ..., Jn}. Each of the jobs contains several operations. For instance, Ji is composed of
the sequence of operations {Oi(1), Oi(2), ..., Oi(mi)}. Some of the related machines {M1, M2, ..., Ms} in
this FMS are selected to execute these operations with limited AGVs {A1, A2, ..., At}, and each of them
can meet one or more of the operations {Oa(b), Oc(d), ..., Oe(f )}. The same operation can be executed
by different machines with different energy consumption. Therefore, the corresponding candidate
machines for Oi(j) are marked as {Mx, My, ..., Mz}. In this model, the operating time and energy
consumption of each operation executed on each candidate machine, standby energy consumption of
each machine per unit time, logistics time among all machines are pre-known. The assumptions in the
model are as follows:
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• All AGVs have a unit-load capacity.
• There are no battery charge problems on any AGV.
• AGVs and machines operate continuously without breakdown.
• There are no traffic problems, collision, deadlock.
• AGV loading and unloading times are fixed and considered as travel times.
• AGVs can always park at their unloading locations.
• The velocity of AGVs is constant.
• The start point (SP) of each job is in the home position (H) of the AGV.
• The machine-to-machine distances and SP-to-machine distances are known.
• Each machine operates only one product at a time.
• The setup times are included in the time of production.
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Figure 1. Schematic diagram of multi-objective optimization scheduling problems in the model by
considering multiple optimization dimensions.

To formulate the mathematical model of the problem, the related parameters and variables are
summarized in the Appendix A attached to this paper.

2.2. Mathematical Model

Three objects, which include the makespan, energy consumption and the number of AGVs are
taken into account in the mathematical model. It can be formulated as follows.

Minimizing the makespan. The mathematical expression of the makespan (MS) can be
expressed by:

MS = max{MFTk}= max{AFTl+T(k, Nk)}= max{ot(i)}
= max{tt(i)+ot(i, mi)}

(1)

MFTk =
Nk

∑
p=1

(T(k, p) + WT(k, p)) (2)

AFTl =
Nl

∑
q=1

(T(l, q) + WT(l, q)) (3)

ot(i) = ots(i, 1) +
mi

∑
j=1

(ot(i, j) + otw(i, j)) (4)
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tt(i) = tts(i, 1) +
mi

∑
j=1

(tt(i, j) + ttw(i, j)) (5)

WT(k, p) = Ts(k, p)− Te(k, p− 1) (6)

WT(l, q) = Ts(l, q)− Te(l, q− 1) (7)

otw(i, j) = ots(i, j)− ote(i, j− 1) (8)

ttw(i, j) = tts(i, j)− tte(i, j− 1) (9)

ot(i, j), T(k, p) = ote(i, j)− ots(i, j),
if Oi(j) is assigned to M(k) and index of it for M(k) is p

(10)

tt(i, j), T(l, q) = tte(i, j)− tts(i, j),
if TAij is assigned to AGV l and index of it for AGV l is q

(11)

Subject to:
MS ≤ DT (12)

n

∑
i=1

mi =
s

∑
k=1

Nk (13)

n

∑
i=1

mi =
t

∑
l=1

Nl . (14)

Here, Equation (1) defines the calculation method of MS, which can be represented by the
maximum finish time of the operations assigned to each machine (i.e., max{MFTk}), the maximum
finish time of traveling tasks assigned to each AGV (i.e., max{AFTl+T(k,Nk)}), the maximum finish
time of operations of each job (i.e., max{ot(i)}) or the maximum finish time of traveling for each job
(i.e., max{tt(i)+ot(i,mi)}). Equations (2) and (6) define the calculation method of related values, which
determine the result of max{MFTk}. Equations (3) and (7) define the calculation method of related values
which determines the result of max{AFTl+T(k,Nk)}. Equations (4), (8) and (10) define the calculation
method of related values, which determines the result of max{ot(i)}. Equations (5), (9) and (11) define
the calculation method of related values, which determines the result of max{tt(i)+ot(i,mi)}.

Constraint number (12) ensures the feasibility of completion time by meeting the demand of DT.
Constraint numbers (13) and (14) define the numerical relationship of mi, Nk and Nl in Equations (1)–(5).

Minimizing energy consumption. The mathematical expression of energy consumption can be
expressed by:

ES = esw + ese (15)

esw =
s

∑
k=1

esw(k) =
s

∑
k=1

Nk

∑
p=1

WT(k, p)× wesu(k) =
n

∑
i=1

mi

∑
j=1

otw(i, j)× wesu(k) (16)

ese =
s

∑
k=1

ese(k) =
s

∑
k=1

Nk

∑
p=1

es(k, p) =
n

∑
i=1

mi

∑
j=1

es(i, j). (17)

Here, Equation (15) defines the ES of all machines by completing all jobs. Equations (16) and (17)
define the calculation methods of esw and ese, which compose ES. In Equation (16), otw(i,j)×wesu(k)
means the Mk is chosen to executing the operation number j of job number i.

Minimizing the number of AGVs. The number of AGVs is denoted by NA. Generally, more
AGVs means a smaller makespan while it also means increased costs. Therefore, it is important to
minimize the number of AGVs to optimize the performance of the FMS.

Multi-objective evaluation. The decision is usually made by considering a comprehensive result
when there are several objectives that have to be taken into account. Pareto has given an effective
method for us to solve multi-objective optimization problems. In the method, Pareto-optimal set and
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Pareto-front refer to a group of best trade-off schedules and a set of Pareto solutions respectively [15].
The overall fitness function formulation for the three objectives is described by:

f (x) = ϕ1 f1(x) + ψ1 ϕ2 f2(x) + ψ2 ϕ3 f3(x) (18)

ϕ1 + ϕ2 + ϕ3 = 1ϕ1> 0, ϕ2 > 0, ϕ3 > 0. (19)

ϕ1, ϕ2 and ϕ3 are the weights of three objectives respectively and they are constrained by
Equation (19). f 1(x), f 2(x) and f 3(x) in Equation (18) correspond to the fitness functions of the three
objectives. Therefore, the overall fitness function is described by:

f (x) = ϕ1MS + ψ1 ϕ2ES + ψ2(1− ϕ1 − ϕ2)NA. (20)

ψ1 and ψ2 in Equation (18) are the ratios to balance among the objectives with different ranges of
value [41]. To facilitate the calculation and analysis by considering the main part of the ES and NA,
they are defined by:

ψ1 =
DT

max(ese)
(21)

ψ2 =
DT

max(NA)
. (22)

The expression max(ese) in Equation (21) is the maximum energy consumption by completing the
operation of all jobs.

3. Algorithm Design

The genetic algorithm (GA) and particle swarm optimization (PSO) are the most typical
evolutionary algorithms (EAs) to solve AGV scheduling problems. The GA is a search algorithm based
on the mechanics of the natural selection process. It has the capability of simultaneous evaluation of
many points in the search area, which increases the probability of finding the global solution to the
problem [15]. Besides, the encoding method of the GA is very flexible [43–46], and it can be used to
solve different types of problems using a suitable encoding format. PSO is a population EA, which
is inspired by social behavior of bird flocking; this kind of algorithm makes use of the population
wisdom to search cooperatively so as to find the optimal result in the solution space. Compared
with other algorithms, it is more robust as it can work with limited information such as the fitness
evaluation of each particle [47]. The encoding method of PSO can meet the continuous and discrete
variable values, therefore, it can be used to solve both the extremum approximation and MRCO
problems [48,49]. To improve the performance of the algorithms, hybrid EAs have also been studied in
a lot of research by integrating the advantages of the compensatory properties of each algorithm to
obtain better results [50–52].

On this basis, a hybrid sectional encoding genetic algorithm and discrete particle swarm
optimization (H-SE-GA-DPSO) have been developed to meet the model proposed in this paper.
It is a hybrid algorithm, which has the characteristics of the genetic algorithm and particle swarm
optimization. In the algorithm, both the chromosome encoding and particle encoding are divided into
three segments for multi-dimensional optimization scheduling. Correspondingly, sectional encoding
genetic algorithm (SE-GA), sectional encoding discrete particle swarm optimization (SE-DPSO), hybrid
genetic algorithm and particle swarm optimization (H-GA-PSO) and a tabu search algorithm (TSA) are
also proposed and compared with H-SE-GA-DPSO. Here, H-GA-PSO has been proven to be a more
effective algorithm in optimizing the sequence of operations [15]. Besides, as two related dimensions,
both the sequence of operation and AGV-tasks have been taken into account for further optimization
in studies by TSA [9]. The related steps and configurations of SE-GA and SE-DPSO respectively are
shown in Sections 3.1 and 3.2. Figure 2 illustrates the flowchart of H-SE-GA-DPSO, which is explained
in detail in Sections 3.1 and 3.2.
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particle swarm optimization (H-SE-GA-DPSO).

3.1. Sectional Encoding Genetic Algorithm

The sectional encoding genetic algorithm (SE-GA) is the main algorithm of the proposed
H-SE-GA-DPSO; it can also provide optimized solutions independently. The basis of it is the GA; the
difference is that the chromosome encoding it is divided into three segments for multi-dimensional
optimization scheduling. Therefore, the main steps of it are similar to the GA that can be described
as follows:

Step 1. Initializing parameters. It involves setting the crossover rate (CR), the mutation rate (MR),
population size (PS), length of a chromosome (LC), the maximum number of iterations (NCmax), related
basic data and so on. Table 1 shows the data structure for the model proposed in this research. The
column ‘Gene code(g)’ of ‘SgSo’, the column ‘Gene code(g)’ of ‘SgOm’ and the column ‘Gene code(g)’
of ‘SgAt’ show the code of the segment of sequence of operations (SgSo), segment of operation-machine
(SgOm), segment of AGV-task (SgAt) of a chromosome (Cr) respectively, which will be discussed later.

Step 2. Initializing population. A set of chromosomes will be generated in this step.
Chromosome encoding. The encoding used in this paper is real number coding according to the

needs of the problem. As shown in the column ‘Gene code(g)’ of ‘SgSo’ of Table 1, each gene code
defines an operation related to a job. The order of genes represents the priority of operations, which
decreases from left to right. In the column ‘Gene code(g)’ of ‘SgOm’, each gene code defines a machine
to execute an operation. Different from SgSo, the order of it is fixed according to the original sequence
of operations. In the column ‘Gene code(g)’ of ‘SgAt’, each gene code defines an AGV to execute a
traveling task. The order of it is the same with SgOm.
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Table 1. General schematic for reading data.

SE-GA
(C1)

Chromosome (Cr)

Operations
(Oi(j))

SgSo SgOm SgAt

Gene
Number

(Ge)

Gene
Code (g)

Gene
Number

(Ge)

Gene
Code (g)

Gene
Number

(Ge)

Gene
Code (g)

G1 1 Gθ+1 1 G2θ+1 1 O1(1)
G2 1 Gθ+2 3 G2θ+2 3 O1(2)

. . . . . . . . . . . . . . . . . .
Gm1 1 Gθ+ m1 2 G2θ+ m1 2 O1(m1)

2 s 5 O2(1)
. . . . . . . . . . . .
2 5 4 O2(m2)

. . . . . . . . . . . .
n k NA On(1)
. . . . . . . . . . . .

Gθ n G2θ 4 G3θ l On(mn)

SE-DPSO
(P1)

Particle (Pr)

Operations
(Oi(j))

SgSo SgOm SgAt

Dimension
Number

(dn)

Dimension
Code (dc) Code of Dimension (dc)

1 2 1 1 O1(1)
2 3 3 3 O1(2)

. . . . . . . . . . . . . . .
m1 c 2 2 O1(m1)

. . .

. . .
s 5 O2(1)

. . . . . . . . .
5 4 O2(m2)

θ . . . . . . . . .

. . . k NA On(1)
. . . . . . . . .

θ 1 4 l On(mn)

A chromosome (Cr) is expressed by:

Cr = {(Oi(j)), (Mi(j), (Ai(j)))|i = 1, 2, . . . , n, j = 1, 2, . . . , mi}
= {{O2(1), O1(2), . . . , Oi(j), . . . , On(mn), . . . , Oi(mi)︸ ︷︷ ︸

θ

},

{(M1(1), M1(2), . . . , M1(m1)︸ ︷︷ ︸
m1

), (M2(1), M2(2), . . . , M2(m2)︸ ︷︷ ︸
m2

), . . . , (Mn(1), Mn(2), . . . , Mn(mn)︸ ︷︷ ︸
mn

)},

{(A1(1), A1(2), . . . , A1(m1)︸ ︷︷ ︸
m1

), (A2(1), A2(2), . . . , A2(m2)︸ ︷︷ ︸
m2

), . . . , (An(1), An(2), . . . , An(mn)︸ ︷︷ ︸
mn

)}}

(23)

It meets the conditions as follows:
n

∑
i=1

mi = θ. (24)

The length of a chromosome is expressed by:

LC = 3 ∗ θ. (25)

Chromosome coding is explained by an example of three jobs (J1, J2, J3), and each
job has two, two, and three operations respectively, and Cr is a random construct of
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2312331︸ ︷︷ ︸
SgSo

21︸︷︷︸
J1

43︸︷︷︸
J2

532︸︷︷︸
J3︸ ︷︷ ︸

SgOm

13︸︷︷︸
J1

21︸︷︷︸
J2

123︸︷︷︸
J3︸ ︷︷ ︸

SgAt

. Here, in part of the SgSo, code ‘1’, ‘2’, and ‘3’ imply operations

of J1, J2, and J3 respectively, and from the left, the first ‘1’ represents the first operation of J1, the second
‘1’ represents the second operation of J1, the first ‘2’ represents the first operation of J2, and so on. In
part of the SgOm, from the left, the first ‘2’ represents the first operation of J1, executed by machine
number 2. The first ‘1’ represents the second operation of J1, executed by machine number 1. The first
‘4’ represents the first operation of J2, executed by machine number 4, and so on. In part of the SgAt,
from the left, the first ‘1’ means that the traveling task of the first operation of J1 is executed by AGV
number 1. The second ‘3’ means that the traveling task of the second operation of J1 is executed by
AGV number 3 and so on.

Step 3. Fitness evaluation. Each chromosome is evaluated by the makespan, energy consumption
and number of AGVs in accordance with Equations (1) to (17). In addition, the total fitness values
were calculated based on Equations (20) to (22).

Step 4. Generating a new population. A new population is generated by selection, crossover,
and mutation operation.

Selection. The roulette method, which is a probability random selection method, was used in this
study for the selection operator.

Crossover. A one-point crossover and a two-point crossover based on a partial string exchange
were employed, where the two-point crossover is illustrated in Figure 3a,b based on the example
in step 2. The offspring generated by the crossover may be an illegal encoding. For example, the
uncorrected code of the operation of a job may be seen in part of the SgSo. Therefore, these illegal SgSo
codes should be repaired as shown in Figure 3.
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Parent 1

Parent 2

offspring 1

offspring 2

offspring 1
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(b) After crossover and before repair

(c) After repair
 

Figure 3. Example of two‐point crossover of chromosomes. 

The number of crossovers is calculated by: 

  
2

CR PS
Number of crossovers


 .  (26) 

Figure 3. Example of two-point crossover of chromosomes.

The number of crossovers is calculated by:

Number o f crossovers =
CR× PS

2
. (26)
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Mutation. The number of mutations in each generation is calculated by:

Number o f mutations ∼= PS×MR. (27)

A one-point mutation operator was used in this study as shown in Figure 4. If the mutation
point belonged to SgSo, the offspring generated by the mutation may be illegal coding, which should
be repaired.
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Step 5. Termination. When the number of iterations reaches the maximum, the best individual
will be chosen as the result of the algorithm.

3.2. Sectional Encoding Discrete Particle Swarm Optimization

Step 1. Initializing parameters. The main content of it is setting the parameters in SE-DPSO,
which include the number of the swarm (NS), the learning factor 1 (LF1), the learning factor 2 (LF2),
the dimension of a particle (DP), the maximum number of iterations (NC_Pmax), the inertia weight (ω),
the related basic data and so on. The encoded description method is present in part of the SE-DPSO
of Table 1. The 2nd column shows the dimension number of SgSo of a particle (Pr), and the column
‘dimension code (dc)’, the column ‘SgOm’ and the column ‘SgAt’ show the dimension codes of SgSo,
SgOm, SgAt of a Pr respectively, which will be discussed later.

Step 2. Initializing swarm. A group of an initial swarm was created in this step. The initial
position (p) and initial velocity (v) of a particle were generated by:

p0
αβ = rand(0, 1) (28)

v0
αβ = rand(0, 1). (29)

Here, α, β are the index of a particle and the index of a dimension in the particle.
Step 3. Particle encoding. Considering the discreteness of the dimension codes of a particle in

this model, the smallest position value (SPV) rule and a discrete interval (DI) rule were applied to
transfer the position of a particle to a set of dimension codes. The representations of the codes in
SE-DPSO were the same as the codes in SE-GA. Two sub-steps for encoding a particle are as follows:

Applying SPV and DI rule. The SPV rule was used to transform the continuous codes in PSO to
discrete codes that are applicable to all types of scheduling problems [15], so as the DI rule. The SPV
rule was applied in SgSo while the DI rule was applied in the SgOm and SgAt of a particle.

Define the sequence of operations, operation-machine and AGV-task relationship. An
example with two jobs, three machines, and six available AGVs is shown in Table 2 for the explanation;
both of the jobs include three operations. The assumed position of a particle for this example is shown
in the 1st, 6th and 8th rows of Table 2. The definition method of the dimension codes of SgSo, SgOm,
SgAt in a particle will be explained as follows respectively.
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Table 2. Encoding of an example particle.

SgSo

Particle example 0.21 0.32 0.43 0.18 0.66 0.89

Applying SPV rule 2 3 4 1 5 6
Job codes 1 1 2 1 2 2

Corresponding
operations in each job O1(1) O1(2) O2(1) O1(3) O2(2) O2(3)

SgOm

0.1 0.3 0.5 0.7 0.3 0.7

Corresponding
machines M1, M2, M3 M2, M3 M2 M1, M3 M2, M3 M1, M2

Applying DI rule
(Index of machines) 1 2 2 3 2 2

Corresponding
operations in each job O1(1) O1(2) O1(3) O2(1) O2(2) O2(3)

SgAt

0.93 0.21 0.49 0.37 0.86 0.18

Applying DI rule
(Index of AGVs) 6 2 3 3 6 2

Corresponding
operations in each job O1(1) O1(2) O1(3) O2(1) O2(2) O2(3)

As shown in the 1st and 2nd rows of Table 2, the continuous codes of SgSo in the particle are (0.21,
0.32, 0.43, 0.18, 0.66, 0.89). According to the SPV rule, the corresponding discrete codes should be (2, 3,
4, 1, 5, 6). In descending order, 0.18 is the smallest value and its discrete code should be 1; 0.89 is the
largest value and its discrete code should be 6 and so on. The 3rd row of Table 2 shows the job codes
of SgSo in the particle; the smallest three numbers of the discrete codes in the 2nd row of Table 2 are
assigned to the first job, so the job code should be 1. The largest three numbers are assigned to the
second job, so the job code should be 2.

As shown in the 5th and 7th rows of Table 2, the position of SgOm in the particle is SgOm_P = (0.1,
0.3, 0.7, 0.2, 0.3, 0.7). According to the DI rule, the corresponding discrete codes should be SgOm_C
= (1, 2, 3, 2, 2, 2). As shown in the 6th and 8th rows of Table 2, O1(1) can be executed by M1, M2 and
M3. As a result, if SgOm_P(1) is between 0 and 0.33, then SgOm_C(1) should be 1; if SgOm_P(1) is
between 0.34 and 0.66, then SgOm_C(1) should be 2 and so on. In the example, SgOm_P(1) is 0.1, which
is between 0 and 0.33, so SgOm_C(1) should be 1. O1(2) can be executed by M2 and M3. As a result, if
SgOm_P(2) is between 0 and 0.50, then SgOm_C(2) should be 2, otherwise, SgOm_C(2) should be 3. In
the example, SgOm_P(2) is 0.3, which is between 0 and 0.50, so SgOm_C(2) should be 2. O1(3) can only
be executed by M2, so SgOm_C(3) should be 2.

As shown in the 9th and 10th rows of Table 2, the position of SgAt in the particle is (0.93, 0.21, 0.49,
0.37, 0.86, 0.18), according to the DI rule, the corresponding discrete codes are (6 2 3 3 6 2). Here, the
number of available AGVs is six and the value 0.93 is between 5/6 and 6/6. Thus, the corresponding
code should be 6; the value 0.21 is between 1/6 and 2/6, hence the corresponding code should be 2,
and so on.

Step 4. Fitness evaluation. Each particle is evaluated by the makespan, total energy consumption
and number of AGVs by Equations (1) to (17). In addition, the total fitness values will be calculated
based on Equations (20) to (22).

Step 5. New swarm. The position and velocity of the particles were updated to generate a new
swarm. Step 3, step 4 and step 5 were repeated up until the termination criterion.

The velocity of each particle was updated by:

vt+1
αβ = ωvt

αβ + c1r1(pbest
αβ − pt

αβ) + c2r2(gbest
β − pt

αβ). (30)
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Here, c1 is self-confidence and c2 is swarm confidence. ω is the inertia weight, which is varying
with a random method as shown in Equation (31).{

ω = µ + σ ∗ N(0, 1)
µ = ωmin + (ωmax −ωmin) ∗ rand(0, 1)

(31)

The position of the particle was updated by:

pt+1
αβ = pt

αβ + vt+1
αβ . (32)

Step 6. Termination. The iteration was terminated when the number of iterations reached its
maximum, then the gbest was returned as the best solution.

4. Simulation Experiments and Discussion

4.1. Initial Data

To demonstrate the effectiveness of the proposed model, a numerical experiment was used in this
paper. This experiment included eight jobs (J1, ..., J8) with 10 machines (M1, . . . , M10), and there were
three to five operations in each job. In the experiment, up to six AGVs were available. Table 3 shows
the associated data between the operations and machines. Table 4 shows the AGV travel time among
H points and the machines.

Table 3. Basic information about the relationship between operations and machines.

Job(Ji)
Mk/ ot(i,j)/ ec(i,j)/ wecu(k)

Oi(1) Oi(2) Oi(3) Oi(4) Oi(5)

J1

M1/28/3.22/0.012
M4/25/2.91/0.012
M6/31/3.84/0.017

M2/21/3.82/0.015
M8/23/3.15/0.014

M5/22/2.67/0.011
M7/25/3.08/0.016
M10/27/2.72/0.021

J2
M3/12/2.15/0.020
M9/16/2.23/0.019 M2/24/2.53/0.015 M1/11/1.79/0.012

M8/15/1.93/0.014 M10/16/2.37/0.021 M5/18/2.44/0.011
M7/13/2.21/0.016

J3 M9/17/3.22/0.019
M2/18/2.78/0.015
M5/23/3.62/0.011
M7/21/2.50/0.016

M4/19/3.14/0.012
M8/15/2.93/0.014

M1/13/2.34/0.012
M6/16/2.45/0.017

J4
M2/22/3.25/0.015
M8/27/3.23/0.014

M1/19/3.33/0.012
M5/21/3.32/0.011

M3/23/3.67/0.020
M10/21/3.52/0.021

M6/28/4.13/0.017
M7/33/4.21/0.016

J5
M5/31/3.67/0.011
M10/27/3.55/0.021

M3/19/2.21/0.020
M4/24/2.32/0.012
M8/22/2.24/0.014

M1/14/2.54/0.012
M2/13/2.56/0.015
M9/16/2.63/0.019

J6
M4/25/3.11/0.012
M7/27/3.23/0.016 M3/30/4.11/0.020 M1/21/3.76/0.012

M5/18/3.68/0.011
M2/12/1.97/0.015
M9/15/1.91/0.019 M10/27/3.41/0.021

J7
M3/15/2.23/0.020
M6/19/2.27/0.017

M4/30/3.95/0.012
M7/33/3.87/0.016

M1/16/2.08/0.012
M8/17/2.11/0.014

J8
M5/23/3.54/0.011
M10/21/3.42/0.021

M3/25/3.73/0.020
M6/22/3.82/0.017

M2/27/4.21/0.015
M4/32/4.33/0.012



Sustainability 2019, 11, 1329 13 of 24

Table 4. AGV traveling time among H points and machines.

Time(min) H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

H 0 7 11 16 12 10 20 8 19 18 23
M1 7 0 6 16 21 14 6 7 13 16 20
M2 11 6 0 21 9 7 11 18 23 15 22
M3 16 16 21 0 14 6 7 10 8 14 11
M4 12 21 9 14 0 11 17 13 22 5 19
M5 10 14 7 6 11 0 7 26 19 18 11
M6 20 6 11 7 17 7 0 4 13 17 18
M7 8 7 18 10 13 26 4 0 15 20 24
M8 19 13 23 8 22 19 13 15 0 13 19
M9 18 16 15 14 5 18 17 20 13 0 18
M10 23 20 22 11 19 11 18 24 19 18 0

According to the data in Table 3 and Equation (17), the value of max(ese) in Equation (21) was
calculated by:

max(ese) =
n

∑
i=1

mi

∑
j=1

max(es(i, j)). (33)

Therefore, the value of max(ese) is 94.25. Figure 5 shows the Gantt chart before optimization by
a random execution sequence and traveling sequence with six AGVs for the experiment, where Ai
represents AGV i. The nearest bars on the left side of each operation indicate the time that the AGV
transports the job from the previous operation to that operation, where the first bar and second bar
indicate the running time of the AGV with no-load and load respectively. The values of fitness, number
of AGVs, makespan, and energy consumption are 6, 420.67, 433 and 134.51 respectively. It is just an
available random scheme for this experiment and all of the six AGVs were applied; it is difficult to
be chosen as a high-quality solution. To optimize the solution for this experiment in FMS, the EAs
proposed in this paper were applied and verified in the next section.
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Figure 5. Gantt chart of a random sequence of the experiment using six automated guided vehicles
(AGVs) before optimization.

4.2. Parameters of the Algorithms Setting

The selection of parameters has a significant impact on the performance of the algorithms. To get
the best settings and parameters of the H-SE-GA-DPSO that can provide the best performance within
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a reasonable computation time, a parameter test experiment, based on an orthogonal design method
which is a low cost and effective parameter test method, was performed with the data as shown
in Section 4.1. In the experiment, four levels and eight factors, as shown in Table 5, were applied.
The experimental results are shown in Table 6. Here, each group of data was run 20 times with 500
iterations and the average value was taken as the result.

Table 5. Factors and their levels.

Levels
Factors

PS CR MR c1 c2 wmin wmax σ

1 100 0.2 0.05 0.01 0.3 0.01 0.3 0.2
2 150 0.4 0.08 0.05 0.5 0.05 0.5 0.4
3 200 0.6 0.1 0.1 0.7 0.1 0.7 0.6
4 300 0.8 0.2 0.2 0.9 0.2 0.9 0.8

Table 6. Experimental results of orthogonal test of the parameters of hybrid sectional encoding genetic
algorithm and discrete particle swarm optimization (H-SE-GA-DPSO).

Index PS CR MR c1 c2 wmin wmax σ Fitnesses Time

1 100 0.2 0.05 0.01 0.3 0.01 0.3 0.2 274.93 84.67
2 100 0.4 0.08 0.05 0.5 0.05 0.5 0.4 273.90 85.12
3 100 0.6 0.1 0.1 0.7 0.1 0.7 0.6 271.24 85.18
4 100 0.8 0.2 0.2 0.9 0.2 0.9 0.8 299.52 85.37
5 150 0.2 0.05 0.05 0.5 0.1 0.7 0.8 276.37 120.07
6 150 0.4 0.08 0.01 0.3 0.2 0.9 0.6 272.72 117.92
7 150 0.6 0.1 0.2 0.9 0.01 0.3 0.4 273.69 119.26
8 150 0.8 0.2 0.1 0.7 0.05 0.5 0.2 272.06 124.39
9 200 0.2 0.08 0.1 0.9 0.01 0.5 0.6 272.02 168.32
10 200 0.4 0.05 0.2 0.7 0.05 0.3 0.8 273.08 168.21
11 200 0.6 0.2 0.01 0.5 0.1 0.9 0.2 268.01 169.05
12 200 0.8 0.1 0.05 0.3 0.2 0.7 0.4 271.51 168.23
13 300 0.2 0.08 0.2 0.7 0.1 0.9 0.4 275.29 247.08
14 300 0.4 0.05 0.1 0.9 0.2 0.7 0.2 263.67 249.13
15 300 0.6 0.2 0.05 0.3 0.01 0.5 0.8 270.88 251.51
16 300 0.8 0.1 0.01 0.5 0.05 0.3 0.6 269.30 249.74
17 100 0.2 0.2 0.01 0.9 0.05 0.7 0.4 276.15 82.77
18 100 0.4 0.1 0.05 0.7 0.01 0.9 0.2 275.87 96.53
19 100 0.6 0.08 0.1 0.5 0.2 0.3 0.8 270.46 92.71
20 100 0.8 0.05 0.2 0.3 0.1 0.5 0.6 272.73 93.06
21 150 0.2 0.2 0.05 0.7 0.2 0.3 0.6 267.76 131.14
22 150 0.4 0.1 0.01 0.9 0.1 0.5 0.8 285.97 125.89
23 150 0.6 0.08 0.2 0.3 0.05 0.7 0.2 277.42 146.37
24 150 0.8 0.05 0.1 0.5 0.01 0.9 0.4 271.09 151.61
25 200 0.2 0.1 0.1 0.3 0.05 0.9 0.8 276.93 174.32
26 200 0.4 0.2 0.2 0.5 0.01 0.7 0.6 273.46 169.82
27 200 0.6 0.05 0.01 0.7 0.2 0.5 0.4 272.31 168.94
28 200 0.8 0.08 0.05 0.9 0.1 0.3 0.2 277.92 170.27
29 300 0.2 0.1 0.2 0.5 0.2 0.5 0.2 280.28 259.37
30 300 0.4 0.2 0.1 0.3 0.1 0.3 0.4 272.58 246.45
31 300 0.6 0.05 0.05 0.9 0.05 0.9 0.6 274.05 247.34
32 300 0.8 0.08 0.01 0.7 0.01 0.7 0.8 277.16 252.66
33 100 0.2 0.08 0.01 0.9 0.01 0.5 0.6 272.94 95.31

As shown in Table 6, it can be observed that the data in group 21 were the best configuration of
parameters, which provide the optimal solution within a reasonable computation time. According
to the data in Table 5, it can be observed that a larger population leads to a longer computation time.
Besides, compared with other groups of data, the values of CR and wmax of group 21 were smaller
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while the values of MR and wmin were larger; they and the values of the other parameters affect
the performance of the algorithm together. Therefore, to obtain optimal solutions and to ensure the
effective comparison of the algorithms within a reasonable computation time, the parameters setting
of each algorithm are shown in Table 7.

Table 7. Parameters setting of each algorithm.

Algorithms Parameters

SE-GA PS = 150, CR = 0.2, MR = 0.2
SE-DPSO PS = 150, c1 = 0.05, c2 = 0.7, wmin = 0.2, wmax = 0.3, σ = 0.6

H-SE-GA-DPSO PS = 150, CR = 0.2, MR = 0.2, c1 = 0.05, c2 = 0.7, wmin = 0.2,
wmax = 0.3, σ = 0.6

H-GA-PSO PS = 150, CR = 0.2, MR = 0.2, c1 = 0.05, c2 = 0.7, wmin = 0.2,
wmax = 0.3, σ = 0.6

TSA Based on the related literature [9]

4.3. Experiment Results and Discussion

The parameters for the hardware and software platform are list as follows: Windows 10,
IntelIntel®Core™i7-4700MQ CPU, 2.40 GHz, 8 GB of RAM and the MATLAB 2016a (MathWorks,
Natick City, U.S.).

To verify the effectiveness of the algorithms proposed in this paper and the advantages of
H-SE-GA-DPSO over other algorithms, we performed a comparative experiment among the algorithms.
All the algorithms were run 20 times with 500 iterations by considering the complexity of the problem.

In this experiment, the value of DT was 400. ψ1 and ψ2 were calculated based on Equations (21)
and (22) respectively. The values of ϕ1, ϕ2 and ϕ3 were presumed to be 0.5, 0.2 and 0.3 respectively. In
Table 8, the fitness values were calculated based on Equation (20).

Table 8. The best optimization results of the five algorithms.

Algorithms
Average

Values of
Fitness

Average
Values of
Makespan

Average
Values of

Energy
Consumption

Average
Numbers of

AGVs

Values of
Mean

Computational
Time

SE-GA 286.76 241.40 109.05 4.90 82.33
SE-DPSO 311.43 263.45 111.87 5.65 96.16

H-SE-GA-DPSO 267.76 211.85 104.95 4.85 131.14
H-GA-PSO 310.13 253.00 111.19 5.95 137.86

TSA 272.45 216.95 106.60 4.90 148.69

The best optimization results of the five algorithms are shown in Table 8, and the results are the
average values after the algorithms being run 20 times. Compared with the result before optimization,
as shown in Figure 5, the algorithms were proven to be effective in optimizing FMS scheduling
with AGVs, and the number of AGVs decreases after optimization with SE-GA, H-SE-GA-DPSO and
TSA. Compared with SE-GA and SE-DPSO, H-SE-GA-DPSO can get a better solution on all the three
objectives even though they are all trying to solve the problem proposed on the three dimensions.
Therefore, the performance of the hybrid algorithm was improved. Compared with H-GA-PSO and
TSA, H-SE-GA-DPSO also can get a better comprehensive solution, although TSA can get a good result,
the longer computational time discounted it; besides, compared with H-SE-GA-DPSO, the energy
consumption of the result obtained by TSA was higher for ignoring the optimization of machine
selection. Therefore, H-SE-GA-DPSO was verified to be superior to the other algorithms.

The 20 groups of data corresponding to the results of 20 runs of each algorithm are shown in
Table 9. It can be observed that the optimal number of AGVs optimized with H-SE-GA-DPSO in this
experiment can be four or five. Besides, according to the results of each algorithm in Table 9, compared
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with the other algorithms, the results of H-SE-GA-DPSO had a smaller fluctuation range. As a result,
the H-SE-GA-DPSO is more stable for optimizing fitness and minimizing the number of AGVs than
the other algorithms.

Table 9. The 20 groups of data corresponding to the results of 20 runs of each algorithm.

Group
Numbers

SE-GA SE-DPSO H-SE-GA-DPSO H-GA-PSO TSA
Fitness
Values NA Fitness

Values NA Fitness
Values NA Fitness

Values NA Fitness
Values NA

1 283.97 5 302.61 6 267.02 5 311.34 6 268.14 4
2 288.22 5 303.77 6 272.47 5 303.71 6 268.05 4
3 280.47 5 297.10 6 264.84 5 319.92 6 257.24 5
4 290.13 5 314.55 6 272.16 5 298.77 6 274.32 6
5 286.47 5 304.89 6 262.00 5 308.00 6 266.79 5
6 286.60 4 318.13 5 270.36 5 297.91 6 272.21 5
7 288.38 5 305.45 5 271.25 5 318.64 6 259.46 5
8 297.83 6 317.55 6 260.91 5 312.78 6 276.08 5
9 303.52 5 325.18 6 271.62 5 311.86 6 262.57 5

10 279.32 5 316.09 5 264.26 4 309.95 6 270.11 4
11 283.85 5 299.63 6 274.43 5 303.21 6 276.49 4
12 277.01 5 322.33 6 261.51 4 309.85 6 275.45 6
13 283.42 4 291.04 6 269.45 5 310.76 6 267.69 4
14 290.57 6 316.45 6 258.78 5 315.64 6 281.90 5
15 279.99 4 309.10 6 266.22 5 315.64 6 281.97 6
16 290.95 6 342.85 4 270.40 5 315.07 6 281.75 5
17 280.45 5 307.36 5 276.77 4 316.68 6 268.66 4
18 289.96 5 314.90 5 262.12 5 310.88 5 266.19 5
19 277.39 4 313.54 6 268.98 5 302.03 6 296.97 6
20 296.76 4 306.07 6 269.60 5 309.90 6 277.03 5

As shown in Table 10, the experiments based on the data in Section 4.1 with different numbers
of available AGVs were performed and the results are presented in the table. Here, each experiment
was run 20 times using the H-SE-GA-DPSO. In Table 10, the numbers in parentheses indicate the
frequencies that those numbers themselves appeared in the corresponding experiment. According to
the results, four and five were further proven to be the optimal numbers of AGVs to meet the needs of
the jobs in Section 4.1. As the number of available AGVs increases, six and seven were also selected as
the optimal numbers of AGVs, which led to the increase of the values of fitness. Therefore, the results
of H-SE-GA-DPSO can be influenced by the number of available AGVs to a certain extent. However,
the H-SE-GA-DPSO was also proven to be stable and effective over a wide range.

Table 10. The experiments with different numbers of available AGVs using H-SE-GA-DPSO.

Data items
Numbers of Available AGVs

6 7 8 9 10

Average values of
fitness 267.76 268.11 270.20 273.45 276.03

Average numbers of
AGV 4.85 4.95 5.15 5.20 5.40

Number of AGVs 4(3), 5(17) 4(2), 5(17), 6(1) 4(1), 5(15), 6(4) 5(16), 6(4) 4(2), 5(10), 6(6), 7(2)

Figure 6 shows the performance of SE-GA, SE-DPSO, H-SE-GA-DPSO, H-GA-PSO and TSA in
the experiment above with six available AGVs. SE-DPSO was easy to fall into local convergence in this
experiment and H-GA-PSO just took the sequence of operations into account; the convergence of the
results was not satisfactory. Although SE-GA had a good convergence effect, its convergence rate was
slower than that of H-SE-GA-DPSO and TSA. Compared with the other algorithms, H-SE-GA-DPSO
and TSA had a good convergence rate and result, and the result of H-SE-GA-DPSO was slightly better
than that of TSA, which can be attributed to the consideration of machine selection in H-SE-GA-DPSO.
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The evolutionary curves of the makespan of the best fitness with six available AGVs are shown
in Figure 7. The convergence trends of them are roughly the same as the curves in Figure 6;
H-SE-GA-DPSO and TSA had a better optimization effect on the makespan.
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Figure 7. Evolutionary curves of the makespan of the best fitness using the five algorithms with six
available AGVs.

Figure 8 shows the evolutionary curves of energy consumption of the best fitness with six available
AGVs. It can be easily observed that the values of energy consumption converge quickly and fluctuate
within a certain range. In this aspect, the convergence result of H-SE-GA-DPSO was obviously better
than the TSA. Therefore, it is significant to consider machine selection on AGVs scheduling in FMS.
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six available AGVs.

Figure 9 shows the evolutionary curves of a number of AGVs of the best fitness with six available
AGVs. The evolutionary process of them was relatively simple. The number of AGVs was minimized in
the results obtained by H-SE-GA-DPSO and TSA. The numbers of AGVs obtained by other algorithms
was influenced by the initial population to some extent.
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six available AGVs.

Figure 10 shows the optimization sequence using only four AGVs, which was obtained by
H-SE-GA-DPSO. Compared with the sequence in Figure 5, all jobs were completed in less time,
although the number of AGVs was less. In Figures 6 and 8, the fitness and energy consumption were
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also less than that of the sequence in Figure 5. Overall, the application of H-SE-GA-DPSO to solve a
multi-objective and multi-dimensional scheduling problem is concluded to be an effective method.Sustainability 2019, 11, x FOR PEER REVIEW  19  of  24 
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To further verify the conclusion, a significance test of the results of the algorithms is provided.
According to the data of the fitness values in Table 9, we can get the data as shown in Table 11 using the
Shapiro-Wilk test and the corresponding box-plot is shown in Figure 11. In this test, the significance
level was α=0.05 and all of the p-values were larger than α. Therefore, the data obtained by the five
algorithms conform to a normal distribution. To analyze statistically significant differences in the data,
The tukey HSD method was applied in this paper. Table 12 shows the results of the test of homogeneity
of variances. Here, the significance level was also 0.05, so the variances don’t satisfy the condition of
homogeneity. The data of robust tests of equality of means obtained by the methods of Welch and
Brown-Forsythe show that the p-values were 0.00, which is smaller than 0.05. Therefore, statistically
significant differences among the fitness values were obtained with different algorithms in this paper.
In summary, the advantages of H-SE-GA-DPSO over other algorithms were further verified.

Table 11. The results of the normal distribution test using the Shapiro-Wilk method.

Algorithms SE-GA SE-DPSO H-SE-GA-DPSO H-GA-PSO TSA

Significance (p-value) 0.319 0.388 0.599 0.335 0.365
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Figure 11. The box-plot of fitness values obtained by the five algorithms.

Table 12. The results of the test of homogeneity of variances.

Levene Statistic degree of Freedom 1
(df1)

degree of Freedom 2
(df2) p-Value

2.743 4 95 0.033

5. Conclusions and Future Work

Aimed at the AGV optimization scheduling problem in an FMS environment, this research
developed a multi-objective and multi-dimensional optimization scheduling mathematical model while
considering energy consumption and multi-function of the machines. In this model, the multi-objective
was to minimize the makespan and energy consumption of machines and the number of AGVs. The
multi-dimensional objective was to simultaneously optimize the sequence of operations of related jobs,
the matching relation between transfer tasks and AGVs (AGV-task) and the matching relation between
operations and machines (operation-machine) for the multi-objective.

To meet the needs of the above model, three evolutionary algorithms (SE-GA, SE-DPSO and
H-SE-GA-DPSO) have been developed to realize multi-objective and multi-dimensional optimization
scheduling, which have been proven to be effective. According to the results of the comparison, the
superiority of H-SE-GA-DPSO over the other algorithms was proven. Overall, H-SE-GA-DPSO is a
good optimization method in multi-objective and multi-dimensional scheduling of FMS with AGVs,
and it can also be applied to more situations with the development of intelligent manufacturing and
green manufacturing.

In the future, it will be interesting to investigate the following issues:
The model proposed in this paper should be stretched from a workshop level to an enterprise

level and more factors should be taken into account for deeper optimization. H-SE-GA-DPSO should
be applied in a distributed computing environment to meet more complex computing needs.
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Appendix A

Table A1. Related parameters and variables.

i Index of jobs

j Index of operations in a job

k Index of machines

l Index of AGVs

n Number of jobs

mi Number of operations for Job number i

s Number of machines

NA Number of AGVs

Ji Job number i

Oi(j) Operation number j of job i

Mk Machine number k

Mi(j) Assigned machine for Oi(j)

Al AGV number l

Ai(j) Assigned AGV for traveling task of Oi(j)

H Home of AGVs

Nk Number of operations assigned to Mk

p Index of operations assigned to Mk

Ts(k,p) Start time of executing operation number p assigned to Mk

Te(k,p) End time of executing operation number p assigned to Mk

T(k,p) Executing time of operation number p assigned to Mk

WT(k,p) Waiting time before executing operation number p and after executing operation
number p-1 assigned to Mk

es(k,p) Energy consumption of operation number p assigned to Mk

wesu(k) Standby energy consumption of Mk in unit time

Nl Number of traveling tasks assigned to Al

q Index of traveling tasks assigned to Al

Ts(l,q) Start time of executing task number q assigned to Al

Te(l,q) End time of executing task number q assigned to Al

T(l,q) Traveling time of task number q assigned to Al
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Table A1. Cont.

WT (l,q) Waiting time before executing the traveling task number q and after executing the
traveling task number q-1 assigned to Al

ots(i,j) Start time of executing Oi(j)

ote(i,j) End time of executing Oi(j)

ot(i,j) Executing time of Oi(j)

otw(i,j) Waiting time before executing operation number j and after executing operation
number j-1

ot(i) Finish time of operations of Ji

TAij
Related traveling task to Oi(j) (Moving from the previous point of AGV to Mi(j-1)

and then to Mi(j) or H to Mi(j))

tts(i,j) Start traveling time of executing TAij

tte(i,j) End traveling time of executing TAij

tt(i,j) Traveling time of executing TAij

ttw(i,j) Waiting time before executing TAij and after executing TAi(j-1)

tt(i) Finish time of traveling of Ji

es(i,j) Energy consumption of executing Oi(j)

esw(k) Standby energy consumption of Mk

ese(k) Energy consumption of executing operations of Mk

esw Standby energy consumption

ese Energy consumption of executing operations

ES Energy consumption of all jobs

AFTl Finish time of traveling tasks assigned to Al

MFTk Finish time of operations assigned to Mk

MS, DT Makespan, Time of delivery
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