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Abstract: Distribution network loss analysis is crucial for the economic operation in residential
distribution networks. The increasing level of distributed generation (DG) has considerably improved
the overall sustainability but raised the uncertainty in system losses and exacerbated voltage
profiles. This paper presents a nodal distribution loss analysis approach in which the losses induced
by loads and DGs are calculated recursively. In order to characterize the uncertainty, the Latin
hypercube sampling (LHS)-based approach is presented for obtaining DG output samples. Further,
the LHS-based sampling and loss analysis methods are combined into a proposed stochastic
framework for loss analysis, which takes into account the DG output uncertainty. Case studies
on a 36-bus radial distribution network verified the stochastic loss analysis method. Compared with
the simple random sampling method, the proposed LHS-based stochastic loss analysis method can
reach the same accuracy level for nodal voltages and losses more efficiently.

Keywords: distribution loss analysis; stochastic analysis; distribution power flow; Latin hypercube
sampling; distributed generation

1. Introduction

1.1. Background and Motivation

As the electric power industry become more and more deregulated, changes are taking place in the
power distribution network for retail power delivery. Distributed generations (DGs), controllable loads
and the demand response (DR) programs are being integrated into the active distribution networks
(ADN), which provide better controllability and higher efficiency. An essential issue for ADN is to
quantify the power losses associated with generators and loads so that the network efficiency can be
evaluated and the operations can be optimized.

DGs in the distribution network is composed of various, controllable and non-controllable energy
sources. For example, roof-top solar panels and small-scale wind generators are uncontrollable
generations which depend on the availability of solar irradiance and wind speed, respectively.
Although controllable energy sources, including household energy storage systems and gasoline
generators, are typically used in complementary with the non-controllable sources, the power output
of DGs is still subject to high uncertainty, which may significantly affect the distribution loss analysis.

1.2. Literature Review

The existing work in distribution loss analysis traces back to transmission network loss analysis.
Proposed methods in the literature include
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1. Prorated (pro rata, PR) method which distributes the losses based on the actual power consumption
of devices, regardless of network configuration and the load locations [1]. The PR method is simple
to implement but unfair for loads that are near the generation sources. In other words, loads that
are remote from the generations should have accounted for more losses, which is not considered in
the PR method.

2. Distance-adjusted pro rata (DAPR) method. The distance of the load to a root node, such as
a generation source, along with the power demand, are considered as a megawatt-mile factor [2].
The DAPR method includes the distance factor but does not consider the nonlinear characteristics
of the power flow.

3. Incremental loss method. By using the linearization in the Newton–Raphson method for solving
the power flow, the incremental losses can be derived by perturbing the loads or generations with
a small value [3–6]. This method assumes a single slack bus or distributed slack buses and can
cause over-calculation of total losses since the slack bus is not included in the iterations. Another
disadvantage of this method is the unsuitability for ADN, which has a high R/X ratio.

4. Network analysis based methods. This type of methods calculates the losses based on the
network impedance or admittance matrix [7]. Methods in this category include the Z-bus
method [8], the modified Y-bus method [9], branch-current decomposition method [10], and the
succinct method [11].

5. Power tracing methods. This type methods traces the losses based on branch power flow and
the connected nodal injections. Existing traceing methods include graph theory-based tracing
methods as proposed in [12,13] and various tracing algorithms [14–17]. Normalization is required
if the method overestimates or underestimates the total losses.

A comprehensive review of the loss allocation methods can be found in [18]. To adopt and apply
the above-mentioned methods for radial distribution systems with DGs [19], which create multiple
points of sources, considerations must be given for (a) the radial topology of the distribution networks;
(b) the characteristics of the net generation nodes (power sources) and the net load nodes (power sinks);
and (c) the uncertainty of the output of DGs. This paper adopts a fair nodal power tracing method [20],
which takes into account the network topology and does not assign losses to the pure power sources.

In terms of the uncertainty of DG outputs, the existing literature on stochastic analysis can be
summarized as follows.

1. Monte–Carlo based simple random sampling (SRS) method. This method first takes a large
number of random samples for each group of random variables. If the number of samples is large
enough, according to the large number theory, the samples could represent the random variables.
Next, calculations are performed over each group of the random variables, and the results are
analyzed to obtain the statistics.

2. Monte–Carlo based reduced sampling methods. Different from the simple random sampling,
these methods use more sophisticated sampling techniques, such as layered sampling, to reduce
the redundancy of samples and thus reduce the computational burden [21].

There is existing literature that studies the distribution network power flow problem and analyzes
the losses in a probabilistic or stochastic framework. Literature [22–26] studied the three-phase
power flow problem with uncertainty considering DGs using neural networks, and literature [27–29]
considered droop-based controls with stochastic load and generation characteristics in the power
flow formulation. Literature [30] proposed a sensitivity-based model for low-voltage distribution
systems with DGs. Some literature studied the distribution network reconfiguration problem [31]
with stochastic characteristics of electric vehicles and DGs in the objective of loss minimization [32].
Literature [33] studied the problem of allocating DG resource consider the stochastic features. To the
knowledge of the authors, there is currently no existing literature on analyzing the distribution network
loss considering the stochastic characteristics of DG outputs.
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The distribution network loss analysis method discussed in this paper is not a power flow
calculation method. Instead, it is a loss allocation method that takes the power flow solution and
allocates the losses to associated nodes (generations and loads). In particular, this paper adopts the
voltage correction power flow method to solve for bus voltages, generator reactive power, branch
power flows, and slack bus power injections. Power flow solutions using any particular power flow
solution methods can be used and adapted in the stochastic framework for loss analysis.

1.3. Contribution and Paper Organization

In this paper, the Latin hypercube sampling method is proposed for linearized distribution network
loss analysis in order to consider the uncertainty of DGs. The main contributions of this paper are:

1. Presenting a nodal power loss tracing method for quantifying the losses induced by DGs in the
distribution network. The presented model is linear and thus rapid to calculate for large data samples.

2. Proposing a Latin hypercube sampling backed stochastic loss analysis method that is applicable
for representing the uncertainty of DG power outputs. The sampling method is first introduced,
and the procedure to evaluate the samples are elaborated.

This paper is organized as follows: Section 1 gives an overview of the topic and introduces the state
of the arts in distribution network loss tracing and uncertainty handling. Section 2 presents the nodal
loss tracing method for distribution loss assessment. Section 3 presents the methodology for the Latin
Hypercube Sampling method for reducing the sample sizes in the Monte–Carlo simulations. Section 4
proposes the stochastic distribution loss evaluation and elaborates the procedure for integrating the
stochastic variables into the loss analysis model. Section 5 presents case studies and discussions in
a modified 36-bus system and compares the LHS-based method with the SRS-based method. Finally,
Section 6 draws the conclusions.

2. Distribution Network Loss Assessment

2.1. Basic Formulations for Loss Assessment

Consider a radial distribution network with distribution lines and nodes, where DGs and loads
can be connected. One of the nodes is used to connect the distribution network to the transmission
system. First, the following assumptions are made for assigning the network losses:

1. The loss assigned to the node connecting the distribution to the transmission networks is zero.
This node is responsible for balancing the power supply and demand but does not account for
any loss caused by power distribution.

2. The loss assigned to the load on the nodes where the net generation is positive, namely, the total
power generation is greater than the total load, is considered as zero. The load on such nodes are
fully supplied locally and will not incur any distribution loss.

More generally, let a distribution line i–k with the impedance Zik = Rik + jXik connect two nodes,
i and k, where the DG on node i sends power to the load on node k, the active power loss Lik on this
line can be given as

Lik = I2
ikRik =

P2
ik + Q2

ik
|Vi|2

Rik = c(P2
ik + Q2

ik), (1)

where Pik and Qik are the active and reactive power sending from i to k through the line; Vi is the nodal
voltage at node i; the loss coefficient c = Rik/|Vi|2. The two terms in (1) corresponds to the active
power loss due to sending active power and reactive power, respectively.

Consider two loads on the receiving end k with apparent power of Sload,k1 and Sload,k2, given as

Sload,k1 = Pload,k1 + jQload,k1, (2)
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Sload,k2 = Pload,k2 + jQload,k2. (3)

Take the transmitted active power for example, but also note that the following deductions apply
to the reactive power related losses, Pik can be expressed in terms of Pload,k1 and Pload,k2 as

Pik = Pload,k1 + Pload,k2 + Lik (4)

Denote the first term in (1) cP2
ik as Lp,ik and the second term cQ2

ik as Lq,ik. Therefore, the active
power loss due to transmitting active power from i to k can be expressed as

Lp,ik = cP2
ik = c(Pload,k1 + Pload,k2 + Lp,ik)

2, (5)

where Lp,ik is the portion of active power loss between line i–k caused by acitve power transmission,
which is denoted by the p in the subscript. In most cases, the active power loss Ploss,ik can be ignored
because it is usually small compared with Pload,k1 + Pload,k2. Equation (5) can be simplified into

Lp,ik ≈ c(Pload,k1 + Pload,k2)
2. (6)

Comparing Equations (5) and (6), the condition for the approximation to satisfy can be deduced
as (7)

0 = cLp,ik[Lp,ik + 2(Pload,k1 + Pload,k2)]. (7)

The solution to this condition is that the losses on the line, Lp,ik, is small enough. Although this
may be true for some nodes, such a condition might not hold for the whole system. This approximation
is more of an engineering practice than strict mathematical deduction. Other approaches, such as
Taylor expansion, may be employed to obtain linear approximations of (5).

Equation (6) indicates that both the loads k1 and k2 contribute to the losses collectively. Next,
the losses are distributed based on the Shapley value in the cooperative game theory. The losses
assigned to load k1 is related to the load level of both k1 itself and the other loads, in this case, k2.
Using the Shapley value formulation, the right-hand side of (6) can be expressed as

Lp,ik = cP2
ik = c(P2

load,k1 + Pload,k1Pload,k2) + c(P2
load,k2 + Pload,k1Pload,k2), (8)

where on the right-hand side, the first term is the loss due to serving the active power load of k1,
and the second term corresponds to that of k2. This formulation can be extended to the case with n
loads for node k. For example, the losses assigned to load k–j, j = 1, ..., n, can be calculated using

Lp,kj = cPload,kj

n

∑
m=1

Pload,km. (9)

2.2. Assessing Load-Induced Distribution Losses

Load-induced distribution losses are defined as the power losses caused by serving load in the
distribution network. This subsection derives the formulations to assess the active power loss, but the
reactive power losses can be assessed using a similar approach. For an arbitrary node i that connects
to node k and a set of nodes M, the total active power load on node i consists of (a) the active power
flow Pik through line ik; (b) the active power flow through the set of lines, i–j, j ∈ M; and (c) the local
active power load set L on node n.

Denote the total power losses due to active power transmission occurred in the system as Lp,i,
according to Shapley value theory in Equation (6), the total amount of losses correspond to a total
portion of

( ∑
j∈M

Pij + ∑
l∈L

Pload,il)
2. (10)
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Using Equation (8) the portion of losses associated with the branch flow Pik is

Pik( ∑
j∈M

Pij + ∑
l∈L

Pload,il). (11)

Therefore, using (10) and (11), the amount of losses associated with Pik is given as

Lp,ik = Lload
p,i

Pik

∑j∈M Pij + ∑l∈L Pload,il
, (12)

which is derived by dividing Ploss,j based on the portion of the branch losses in the total portions.
Similar to (12), the share of losses of the load l at node i is given as

Lload
p,il = Lload

p,i
Pload,il

∑j∈M Pij + ∑l∈L Pload,il
, (13)

which indicates that the larger the load, the more losses it bears for the power delivery.
For node k, the total losses can be iteratively computed by summing up the assigned losses from

the connected node set n and the branch losses i–k, i ∈ n. The formulation for the losses assigned to
node k is given as

Lload
p,k = ∑

i∈n
(Lload

p,i
Pik

∑j∈M Pij + ∑l∈L Pload,il
+ Lp,ik). (14)

In Equation (14), the two terms in the summation on the right-hand side are (a) the share by node
k of the total losses on node i; and (b) the branch losses i–k, assuming a power flow direction from i to k.

The same procedure can be applied to derive the portion of the power losses caused by
transmitting reactive power, Lload

q,ik and Lload
q,k , and therefore obtain the total losses Lload

k , k = 1, ..., n. Note
that the total losses calculated here need to be normalized to eliminate the overestimation.

2.3. Assessing DG-Induced Power Distribution Losses

On the other hand, if a node is connected to DG and is supplying power to other nodes, it is
responsible for a portion of the losses at the nodes that receive power from it. The DG-induced power
distribution losses are used to quantify the total losses a DG should be responsible for. Note that the
major difference between the load-induced losses and DG-induced losses is the power flow direction.

For node k with a set of G DGs connected, the active power loss assigned to DG g ∈ G can be
calculated as

Lgen
p,kg = Lgen

p,k
Pgen,kg

∑j∈M Pkj + ∑g∈G Pgen,kg
, (15)

where M is the set of nodes that receive power from node k. Summing up all the losses associated with
supplying the loads that are connected to node k, the total DG-induced loss is expressed as

Lgen
p,k = ∑

i∈n
(Lgen

p,i
Pgen,ig

∑j∈M Pij + ∑g∈G Pgen,ig
+ Lp,ik), (16)

which has the same structure of Equation (14) but differs in the first term, namely, instead of counting
in the share of load-induced losses, the DG-induced losses are considered in (16).

The same procedure is applicable to obtain the portion of power losses associated with supplying
reactive power, namely, Lgen

q,kg and Lgen
q,k . By summing up Lgen

p,k and Lgen
q,k , the total losses assigned to node k

for supplying power can be obtained as Lgen
k , where k = 1, ..., n. Similarly, Lgen

k needs to be normalized.
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2.4. Normalization

As previously mentioned, the calculated total power losses associated with load and DG need to
be normalized to avoid overestimation. Based on the assumption that the total actual losses are fully
assigned to all the loads and DGs, the following equations can be used normalize the load-induced
losses and DG-induced losses into the dimension of power:

Lload
i,norm = Ploss,total

Lload
i

∑ Lload
i + ∑ Lgen

k
, (17)

Lgen
k,norm = Ploss,total

Lgen
k

∑ Lload
i + ∑ Lgen

k
. (18)

Equations (17) and (18) provide the final losses associated with the loads on node i and the DGs
on node k.

2.5. Procedure for Calculating Distribution Losses

The overall procedure for calculating active power distribution losses induced by load or DG are
summarized as follows:

1. Initialization: Based on the assumption, set the losses to zeros for the node that connects
the distribution network to the transmission network, alongside the nodes that are purely
power sources (for calculating load-induced losses) or purely power demands (for calculating
DG-induced losses).

2. Recursive calculation: For each of the rest nodes, recursively calculate the losses on the nodes
that send power to (for calculating load-induced losses) or receive power from (for calculating
DG-induced losses) the current node, and then calculate the losses on the current node using (14)
(for load-induced losses) or (16) (for DG-induced losses).

3. Normalize the load-induced and DG-induced losses using the equations in Section 2.4.

3. Latin Hypercube Sampling Approach

The LHS approach consists of two major steps: sampling and combination. The sampling process
involves generating samples from known patterns to represent the probability distribution of the
variables. The combination process involves permuting and combining the samples from the first
step to achieve a higher level of variable independence. The sampling and combination process are
described in following subsections.

3.1. Sampling Process

Before looking into the mathematical details, it is crucial to note that the LHS is essentially
a layered sampling method for each variable in the input variable vector. Assume K inputs for
the problem, and the random variables are x1, x2, ..., xK. For each random variable, a cumulative
probability distribution (CDF) function exist in the general formulation

yk = Ck(xk), k = 1, ..., K (19)

where Ck is the cumulative distribution function, and yk is the value of the CDF at the given point.
Apparently, yk ∈ [0, 1].

To obtain N samples for the k-th variable in the input vector, the steps are given as follows and
shown in Figure 1.

1. Evenly divide the range of [0, 1] into N intervals, each with a probability range of 1/N.
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2. Take one sample randomly from each interval. A total of N cumulative probability values ,
yk1, ..., ykN , are obtained in this step.

3. Calculate the corresponding variable value for each sample by using the inverse CDF function,
namely, xkn = C−1

k (ykn).

Repeat the steps above for all the variables in the input vector to obtain a K× N input matrix S0

where the rows are the independent random variables, and the columns are different samples.

Figure 1. Latin hypercube sampling from a cumulative distribution function.

3.2. Permutation and Combination Processes

The values in the input matrix S0 are ordered for each variable. The purpose of combination
and permutation is to reduce the correlation between the variables through reordering. Existing
permutation methods include random permutation, heuristics based methods, optimization-based methods,
and Cholesky decomposition based methods. Although sophisticated permutation and combination
methods yield better data samples, the computational burden for permutation may be heavy.

In this paper, the random permutation method is chosen as a simple yet effective approach.
The advantages of the random permutation include the simplicity of implementation and the efficiency
of execution. The random permutation is carried out using the following steps:

1. Generate a linear space matrix L having the same shape of S. Each row in the L matrix is a linear
space with an increment of 1, namely, 1, ..., N.

2. For each row in L, permute the elements in a random order. Effective implementation is to loop
over the row back and forth, for each element, randomly choose another element and randomly
decide whether to swap.

3. For each row in the S0 matrix, reorder the elements based on the index order in the permutated L
matrix to obtain the permutated sampling matrix S.

The LHS-based sampling method has the following characteristics compared with the
SRS-based method:

1. Using LHS, the number of samples for each variable can be controlled to a manageable size of N,
which can be adjustable based on the distribution characteristics. On the other hand, the number
of samples for the LHS must be determined before running the case studies, but the SRS-based
method allows for building up the cases incrementally.

2. The LHS-based method guarantees (one and only one) sampling coverage for each interval.
The SRS-based on method, however, requires a considerably larger sample size to cover the range.

3. For linear problems, the LHS-based methods can provide an estimation for the output, which is
a linear weighted combination of the inputs.
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4. Stochastic Distribution Network Loss Analysis

4.1. General Formulation and Solution Work Flow

This section discusses the generalities for applying the LHS-family based sampling methods to
the proposed distribution network loss evaluation model. The input-output relationship of a general
distribution network power flow problem is given as

y = g(x) (20)

L = h(y), (21)

where in (20), x contains the inputs vector of the generation power injections, Pg and Qg, and load
power consumption, Pg and Qd, g is the set of power flow equations describing the nodal power
balancing, y is the output vector that contains the voltage magnitude V and voltage phasor θ. In (21),
h is the set of equations to compute the losses based on the loss calculation method presented in
Section 2, yielding losses L for each generation-load pairs.

In stochastic loss analysis methods, the input variable array x is substituted with sampled values
using random sampling or the proposed LHS methods. The input variables are assumed to be
independent. The output variables, y and L, are statistically observed for all the input samples. In our
case, the input array consists of the random DG output power and random load power, while the
output array consists of the nodal voltages and losses.

The workflow of solving the proposed model is given as follows:

1. Load the network data file that includes bus and branch parameters, base generation and load
data, and shunt admittance data.

2. Determine and set sample size N for each input variable.
3. Using the selected sampling method (random or LHS), generate the input data matrix S with the

size of K× N, where K is the number of input variables.
4. For each array of input sample, namely, each column in S, run the network loss evaluation routine

and store the output data accordingly.
5. After all the sample inputs are computed, compute the statistics (mean value and standard

deviation) of the output data for each variable.

Note that in Step 3, the appropriate sampling method, either simple random sampling or LHS-family
based sampling, should be used. Results from the simple random sampling are treated as the benchmark
data for verifying the proposed LHS-based method. The number of samples used in the random
sampling should be at least one order of magnitude higher than that for the LHS-based methods.

4.2. Statistical Metrics for the Stochastic Method

Statistical metrics can provide quantitative assessment of the proposed stochastic approach. In this
paper, the error ratios for the mean and standard deviation are adopted. This metric calculates the
error ratios of the proposed LHS-based method in relative to the simple random sampling method.

εmean = |
µy,SRS − µy,LHS

µy,SRS
| (22)

εstd = |
σy,SRS − σy,LHS

σy,SRS
|, (23)

where, in (22) and (23), µ and σ are the mean value and standard deviation, the subscript SRS corresponds
to the simple random sampling, and y represents the output variables including voltage magnitude,
voltage phase angle, and generator-load losses. Finally, the average error is defined by taking the
arithmetic mean of all errors to quantify the performance of the LHS-based method for all samples.
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5. Discussion and Case Studies

The proposed LHS-based distribution network loss analysis method has been applied to a 36-bus
test system for verification. Case studies are performed in MATLAB R2018b on a PC with Intel i7-4770
and 8 GB of RAM.

The 36-Bus Radial System

The 36-bus distribution network data is available at [20], and its single-line diagram is shown in
Figure 2. The test system consists of 35 branches and three DGs, located on buses 34, 35, and 36,
still importing power from other buses. The outputs of the three DGs are 240 kW + 96 kVar,
400 kW + 160 kVar, and 400 kW + 160 kvar, respectively. A total of six active power and reactive
power variables considered as random for the loss analysis problem. The DG outputs are sampled
between 0.5 to 1.5 pu for all cases. The power flow calculation results of the base case is shown in
Table 1, and the initial loss analysis results are given in Table 2.

1

2

3

4

5

6

7

8
9

10 11 12 13 14

 15

16  

17

18

 35

19 20 21

23 24 25

26

27

28

30

29

31

32

33

36

G

G

G

22

34

Figure 2. Single-line diagram of the 36-bus radial test system.

Table 1. Initial power flow solutions of the 36-bus radial test system in the base distributed generation
(DG) scenario.

Bus Pl (kW) Ql (kW) Qsh (kVar) Pg (kW) Qg (kVar) V (pu) θ (deg)

1 0 0 0 2765.022 1856.322 1 0
2 100 60 0 0 0 0.998 0.015
3 90 40 0 0 0 0.988 0.097
4 120 80 0 0 0 0.984 0.163
5 60 30 0 0 0 0.980 0.230
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Table 1. Cont.

Bus Pl (kW) Ql (kW) Qsh (kVar) Pg (kW) Qg (kVar) V (pu) θ (deg)

6 60 20 0 0 0 0.970 0.260
7 200 100 0 0 0 0.968 0.176
8 200 100 0 0 0 0.967 0.203
9 60 20 0 0 0 0.964 0.192
10 60 20 0 0 0 0.962 0.191
11 45 30 0 0 0 0.962 0.197
12 60 35 0 0 0 0.961 0.206
13 60 35 0 0 0 0.960 0.220
14 120 80 0 0 0 0.960 0.229
15 60 10 0 0 0 0.961 0.243
16 60 20 0 0 0 0.962 0.266
17 60 20 0 0 0 0.965 0.390
18 90 40 0 0 0 0.967 0.429
19 90 40 0 0 0 0.997 0.004
20 90 40 0 0 0 0.994 −0.063
21 90 40 0 0 0 0.993 −0.082
22 90 40 0 0 0 0.992 −0.103
23 90 50 0 0 0 0.985 0.067
24 420 200 0 0 0 0.978 −0.021
25 420 200 0 0 0 0.975 −0.064
26 60 25 0 0 0 0.969 0.292
27 60 25 0 0 0 0.967 0.338
28 60 20 0 0 0 0.961 0.451
29 120 70 0 0 0 0.956 0.549
30 200 600 0 0 0 0.954 0.635
31 150 70 0 0 0 0.955 0.604
32 210 100 0 0 0 0.955 0.606
33 60 40 0 0 0 0.957 0.645
34 0 0 0 240 96 0.972 0.914
35 0 0 0 400 160 0.994 3.005
36 0 0 0 400 294.341 1 3.04

Total 3715 2300 0 3805.022 2406.663 - -

Table 2. Active power and reactive power losses associated with the loads and DGs.

Active Power Losses (kW) Reactive Power Losses (kVar)

Bus/Gen 1 34 35 36 1 34 35 36

2 0.229 0 0 0 0.103 0 0 0
3 1.141 0 0 0 0.322 0 0 0
4 2.179 0 0 0 0.951 0 0 0
5 1.343 0 0 0 0.365 0 0 0
6 1.946 0 0 0 0.337 0 0 0
7 6.846 0 0 0 2.631 0 0 0
8 3.673 0.087 0 0 1.893 1.413 0 0
9 1.163 0.151 0 0 0.386 0.433 0 0

10 1.235 0.22 0 0 0.418 0.45 0 0
11 0.969 0.108 0 0 0.709 0.39 0 0
12 1.297 0.179 0 0 0.818 0.502 0 0
13 1.253 0.191 0.137 0 0.844 0.483 0.203 0
14 0.089 −0.137 1.778 0 0.92 0.136 7.62 0
15 0 0 1.515 0 0 0 3.328 0
16 0 0 0.956 0 0 0 3.612 0
17 0 0 0.824 0 0 0 3.41 0
18 0 0 0.627 0 0 0 5.261 0
19 0.243 0 0 0 0.101 0 0 0
20 0.521 0 0 0 0.351 0 0 0
21 0.571 0 0 0 0.41 0 0 0
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Table 2. Cont.

Active Power Losses (kW) Reactive Power Losses (kVar)

Bus/Gen 1 34 35 36 1 34 35 36

22 0.615 0 0 0 0.468 0 0 0
23 1.462 0 0 0 0.673 0 0 0
24 9.363 0 0 0 4.653 0 0 0
25 10.665 0 0 0 5.672 0 0 0
26 2.058 0 0 0 0.487 0 0 0
27 2.174 0 0 0 0.476 0 0 0
28 2.617 0 0 0 0.326 0 0 0
29 6.212 0 0 0 2.012 0 0 0
30 15.902 0 0 −2.445 23.693 0 0 2.549
31 1.229 0 0 2.691 −0.272 0 0 8.786
32 0 0 0 5.227 0 0 0 13.945
33 0 0 0 0.919 0 0 0 4.398
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0

First, the bus voltage and power loss results of the stochastic loss analysis are presented. As
a benchmark, the simple randomly sampled input consisted of 50,000 samples, while the LHS-family
based method contained 300 samples. Figure 3 shows the bus voltage magnitude and voltage phasor
curves, including both LHS-based sampling data (shown in grey) and the average results of 50,000
uniformly sampled data (shown in red). Figures 4 and 5 shows the active power and reactive power
losses assigned to buses 1, 34, 35 and 36 due to serving loads on other buses. It can be observed that

1. The losses associated with the DG on bus 1 and the loads on buses with DGs were zero.
2. Losses due to active power and reactive power for the buses with DGs that were exporting power

were not affected by the stochastic inputs. Buses that were farther from the DGs and the substation
(bus 1) were subject to higher loss variation under uncertain DG outputs.

3. The voltages on the buses close to the substation (bus 1) had comparatively small variations. This
applies to buses 2, 3, 19, 20, 21 and 22.

4. The difference of the 85% and the 95% confidence intervals for voltages from the SRS and LHS,
shown in Figure 3, are within 10−3 per unit.

(a) Bus voltage magnitude curves (b) Bus voltage phase angle curves

Figure 3. Bus voltage phasors: comparison of the results of the LHS-based samples and the average
results of the random samples. The grey curves are solutions of the LHS-based samples, and the red
curve is the average of 50,000 randomly sampled data. The black dash curves correspond to the 95%
confidence interval; and the blue dot-dash curves are the bounds of the 85% confidence interval.
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Figure 4. Active power losses for the buses connected to substation and DGs.

Figure 5. Reactive power losses for the buses connected to substation and DGs.

The calculation listed in Table 3 also shows that the differences between the average voltage
magnitude from the SRS and LHS are within 10−4 per unit, which is a small value to prove the validity
of using LHS to reduce the sampling size while obtaining similar results.
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Table 3. Voltage magnitude and angle differences between the averages from Latin hypercube sampling
(LHS) and simple random sampling (SRS).

Bus 1 2 3 4 5 6 7 8 9

V (×10−4 pu) 0 0.001 0.007 0.011 0.015 0.022 0.020 0.018 0.023
θ (×10−4 deg ) 0 0.017 0.011 0.018 0.025 0.045 0.044 0.044 0.046

Bus 10 11 12 13 14 15 16 17 18

V (×10−4 pu) 0.029 0.030 0.032 0.039 0.043 0.046 0.049 0.057 0.061
θ (×10−4 deg ) 0.049 0.049 0.049 0.053 0.055 0.057 0.058 0.064 0.066

Bus 19 20 21 22 23 24 25 26 27

V (×10−4 pu) 0.001 0.001 0.001 0.001 0.007 0.007 0.007 0.025 0.029
θ (×10−4 deg ) 0.002 0.002 0.002 0.002 0.002 0.011 0.011 0.049 0.054

Bus 28 29 30 31 32 33 34 35 36

V (×10−4 pu) 0.041 0.051 0.059 0.069 0.072 0.074 −0.004 0.102 0
θ (×10−4 deg ) 0.082 0.104 0.113 0.142 0.152 0.166 −0.014 0.131 0.562

Next, the mean and standard deviation error metrics were compared to assess the performance of
random sampling and the LHS-based sampling using Equations (22) and (23). Figures 6 and 7 shows
the error metrics of the mean value and the standard deviation of the bus voltages. Note that the
horizontal axis is the total number of samples that are used to calculate the metrics. For example, if the
sample size N = 200, the results calculated using the first 200 samples are utilized to compute the
metrics and yield one point in each curve.

(a) The error of mean voltage magnitude (b) The error of the standard deviation of voltage
magnitude

Figure 6. In the simple random sampling, the error metrics of the mean values and standard deviations
of the bus voltages as the number of samples increase. Only the first 300 samples out of 50,000 are shown.

(a) The error of mean voltage magnitude (b) The error of the standard deviation of voltage
magnitude

Figure 7. In the Latin hypercube sampling (LHS)-based approach, the error metrics of the mean values
and standard deviations of the bus voltages as the number of samples increase.
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From the error curves of the voltage mean and standard deviation, the following were observed
for this test case:

1. The mean values from both random sampling and LHS-based sampling approached the SRS
results after about 150 samples.

2. The standard deviations started at a high level and fluctuated with a downward trend as the
number of samples increased.

The error curves of the active power loss mean and standard deviations were also compared.
The two curves in each subfigure of Figures 8 and 9 correspond to the losses caused by supplying
power from the DG on bus 1 to the loads on Bus 31 and 32, respectively. Comparing Figures 8 and 9,
the following observations made:

1. The results of the random sampling had higher fluctuations in the error metrics compared with
the results of the LHS-based methods.

2. The LHS-based method converged to the benchmark value faster, as seen in the error of the mean
value plots in Figure 9a.

3. Due to the completely random feature, the errors of the standard deviation did not show
a consistent decrease as the number of samples increased, as seen in Figure 8b. The decreasing
trend was more consistent using the LHS-based sample inputs.

(a) The error of the mean value of active power loss (b) The error of the standard deviation of active power loss

Figure 8. In the random sampling method, the error metrics of the mean values and standard deviations
of the active power losses as the number of samples increase.

(a) The error of the mean value of active power loss (b) The error of the standard deviation of active power loss

Figure 9. In the LHS-based sampling sampling, the error metrics of the mean values and standard
deviations of the active power losses as the number of samples increase.
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6. Conclusions

This paper presents a novel stochastic loss analysis approach for distribution systems based
on Latin hypercube sampling. The presented loss analysis approach calculates the losses for the
distribution nodes recursively, based on the connected load and the power flow on the connected lines.
The LHS-based approach generates samples for the stochastic DG output more efficiently by using
layered sampling and permutation techniques, compared with the SRS-based method. The following
conclusions are drawn for the proposed LHS-based stochastic distribution loss analysis method:

1. The distribution loss analysis method can account for the network topology and the amount of
load and can assign losses for both loads and DGs.

2. The stochastic analysis verifies that, for the same amount of load, the more losses it occurs,
the farther it is from the substation bus.

3. The LHS can achieve the same level of errors in the mean value and standard deviation with
significantly fewer samples, compared with the SRS-based sampling method.

Future work on the stochastic distribution network losses includes minimizing the voltage profile
deviation caused by the stochastic nature of DGs and considering the correlations between the DGs.
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