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Abstract

:

(1) Background: Electricity consumption data are often made up of complex, unstable series that have different fluctuation characteristics in different industries. However, electricity demand forecasting is a prerequisite for the control and scheduling of power systems. (2) Methods: As most previous research has focused on prediction accuracy rather than stability, this paper developed a decomposition-based combination forecasting model using dynamic adaptive entropy-based weighting for total electricity demand forecasting at the engineering level. (3) Results: To further illustrate the prediction accuracy and stationarity of the proposed method, a comparison analysis using an analysis of variance and an orthogonal approach to solve the least squares equations was conducted using classical individual models, a combination forecasting model, and a decomposition-based combination forecasting model. The proposed method had a very satisfactory overall performance with good verification and validation compared to autoregressive integrated moving average (ARIMA) and artificial neural-networks (ANN). (4) Conclusion: As the proposed method dynamically combines various forecast models and can decompose and adapt to various characteristic data sets, it was found to have an accurate, stable forecast performance. Therefore, it could be broadly applied to forecasting electricity demand and developing electricity generation plans and related energy policies.
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1. Introduction


As electricity demand forecasting is essential for energy management, maintenance scheduling, and secure modern power management [1], researchers have long been focused on developing optimum forecasting methods.



Depending on the selected time horizon, demand forecasting can be short-term from an hour to a week, medium-term from a week to a year, or long-term for over a year. Medium-term electricity demand forecasting, and especially monthly forecasting, is not only used to balance supply and demand [2] but is also an important index for many associated decisions [3] such as equipment maintenance, fuel trading, and bilateral electricity transactions, which are generally made months in advance.



Many scientific and engineering methods to improve the accuracy of electricity demand forecasting have been proposed in recent years [4,5]. Prediction accuracy and stability are vital for electricity demand forecasting at the engineering level. However, as complex machine learning methods require staff, hardware, and software, local authorities and local electricity regulatory commissions are generally seeking effective, simple, electricity demand forecasting models. The main objective of this paper, therefore, is to propose a dynamic adaptive forecasting model to accurately and effectively forecast total electricity demand at the engineering level that could be broadly applied to electricity demand forecasting.



The remainder of the paper is organized as follows. Section 2 presents the problem and research methods, Section 3 outlines the data handling, error measurement forecasting, entropy, combination forecasting, the decomposition-based combination forecast model and its framework, Section 4 verifies and validates the proposed model through a step by step comparison analysis with six individual models, a combination forecasting model, a decomposition-based combination forecasting model and other models, and Section 5 summarizes the paper and gives guidance on future research directions.




2. Literature Review


Because of rising electricity demand, growing environmental/health concerns, and shrinking resource availability, the need for more accurate electricity demand forecasting models has increased, which has in turn attracted significant research attention [6]. Two main types of forecasting methods have been developed—individual models and hybrid models.



There are two main types of individual models—classical forecasting models that analyze past electricity consumption at the engineering level such as exponential smoothing [7], ARIMA [8], state space models [9], grey models [10] and linear regression [11], and machine learning models such as artificial neural-networks (ANN) [12], support vector regression [13], Gaussian processes [14] and ensemble learning methods [15].



Many studies have shown that a combination of different models can improve forecast performance and, as no one forecasting method has been found to obtain the best results for every circumstance, combination forecasting is probably the best way to improve accuracy [16]. When models are combined, they can include a wider range of electricity consumption features and overcome the defects in the individual models. There are two main types of hybrid electricity load forecasting models: in the first, the electricity demand is first predicted separately by the different models, the weight of each model is then calculated, and the final forecasting value is determined by adding each model’s forecasting value multiplied by its weight [17]; and in the second, the hybrid model decomposes the electricity consumption data into several sub-series, each sub-series is forecast using a suitable model, and the final forecast results are the sum of each of the sub-series’ forecasting results [18]; that is, the first is a combination of models and the second involves data decomposition.



As noted by Wang et al. [19], the more system factors that can be considered, the higher the forecasting precision. Electricity data rules and characteristics can be easily obtained using decomposition or combination [20]; for example, Zhang et al. [21] applied a decomposition approach to forecast short-term electricity demand, in which the data series were split into two new series and two different models trained to forecast these separately, Li et al. [22] proved that a random forest technique based on ensemble empirical mode decomposition was able to improve the forecasting accuracy of daily enterprise electricity consumption, Laouafi et al. [1] developed a combination methodology for electricity demand forecasting, for which six individual models were applied to the real-time load data, and the final load estimation obtained by adding each model’s forecasting value multiplied by its weight, and Chen et al. [23] proposed a generalized model for wind turbine faulty condition detection using a combination prediction approach and information entropy.



However, there have been few studies that have used both decomposition and a combination forecasting model, and most studies have sought to prove method effectiveness by comparing the error means rather than the statistical significance. To simultaneously achieve adaptive, controllable processes, this paper proposes a decomposition-based combination forecast method that can dynamically adapt to various forecast models using combination, and dynamically adapt to the various characteristics of the different data sets through decomposition. Previous research has tended to determine the combined weights for the combination model using only one measurement such as MAE [24] or absolute percentage error [1]; however, this paper applies five entropy-based error measurements to dynamically weight the individual model, and introduces the analysis of variance and an orthogonal approach to solve the least squares equations to analyze the effectiveness of the statistical significance of the proposed method.




3. Materials and Methods


3.1. Data Handling


This study was based on electricity consumption data from January 2007 to October 2009 in Sichuan Province, China. The data sets were generated from the Electricity Saving Association, which is the major source of power data in the province and covers almost all sectors of the economy. While some of the observations were suspect (for example, almost all data from September 2009), all data were used for comparison purposes.



To better validate the proposed method, total electricity demand and all components were forecast. The national economy electricity consumption classifications divides total electricity demand into four levels, which respectively cover 2, 5, 8, and 23 types of industries for the decomposition. Table 1 lists the industries and their codes, and Figure 1 shows the decomposition details.



yij1,yij2,⋯,yij34 denote the monthly electricity data for industry sij, where i represents i level at which total electricity demand is divided and j represents jth types of industry at level i. To better elaborate the process, the data were divided into training data and test data. The procedures for each industry were as follows: first, time series sij1={yij1,yij2,⋯,yij24} were used as the training data set with a corresponding forecast value of {y^ij25}. Then, sij2={yij1,yij2,⋯,yij25} were used as the training data set to forecast {y^ij26}. Similarly, sij10={yij1,yij2,⋯,yij33} were used to forecast {y^ij34}, as shown in Table 2.




3.2. Forecast Error Measurement


The Mean Absolute Deviation (MAD), Mean Squared Error (MSE), Cumulative Sum of Forecast Errors (CFE), Mean Absolute Percentage Error (MAPE), and Tracking Signal and Absolute Relative Error (ARE) were all applied to assess the forecasting capability, the definitions for which are as follows:


MAD=∑t=1n|At−Ft|n,MSE=∑t=1n(At−Ft)2n,CFE=∑t=1n(At−Ft)n,MAPE=100%∗∑t=1n(|At−FtAt|)n,Trk.Signal=∑t=1n(At−Ft)MAD,ARE=At−FtAt,








where At is the actual value in period t, Ft is the forecast value in period t, and n is the total number of forecast periods..



The MAD, MSE, CFE, MAPE, and Trk.Signal were calculated for each training set, and the combination models selected by considering all five measurements, which were weighted using the entropy-based method outlined in Section 3.3 and Section 3.4. ARE statistical analyses were used on each test set to assess the models and derive additional information, as detailed in Section 4.




3.3. Entropy


To weight the five measurements, the entropy [25] was revised as outlined in the following steps.



Step 1: The error matrix D=[xab]mn was calculated for every time series sijl, where xab was the ath index value (ath individual forecast method) for the bth index attribute (bth forecast error measurement), and m and n were the number of individual forecast methods and the number of forecast error measurements.



Step 2: Proportion pab, which was the ath model for the proportion of the feature or the contribution of the feature under the terms of the bth index, was calculated. To capture more information from the data, the proximity index rab=xb∗/xab was applied, where xb∗=minxab was the ideal value for the jth index attribute; then, pab=rab/∑a=1mrab.



Step 3: The entropy for the b-term indicator Eb was defined to represent the total entropy contribution of all models to the bth indicators, and Eb=−d∑a=1mpablnpab, where the constant d=1/lnm.



Step 4: The index difference coefficients gb; gb=1−Eb were calculated, in which the difference coefficient gb indicated the extent of the inconsistent index contributions under the bth index attribute determined by Eb.



Step 5: The weighting coefficients were determined. After weighting the coefficient, Pb=gb/∑b=1ngb was the normalized weight for the weight coefficient.




3.4. Combination Forecasting Model


As is well known, the classical forecasting methods—moving average (MA), the moving average with linear trend (MAT), single exponential smoothing with linear trends (SEST), double exponential smoothing with linear trends (DEST), the Holt-Winters additive algorithm (HWA), and the Holt-Winters multiplicative algorithm (HWM)—each have a different ability to deal with trends and seasonality [26,27,28,29].



However, compared with other complex methods and especially with modern intelligent forecasting models, these classical models are unable to completely adapt to different features in different data series. Therefore, to prove the effectiveness of the proposed method, these simpler methods were applied as individual methods in this paper rather than the modern intelligent forecasting models.



MA and exponential smoothing models are simple to use and do not require an in-depth knowledge of forecasting methods. HWM is the most complex model of the six models, so the overall computation efficiency of the proposed method would be restricted by HWM if the six models were employed in a parallel computation environment. However, the main advantages of HWM are its ease of application, speed, and reduced computational burden [30]; therefore, because its forecasting accuracy is similar to more complex methods, this method could be more easily applied by decision makers.



The combination forecast model (CF) was used to forecast the subsequent month’s electricity demand for all the time series (sijl) in the training set. As suggested by Laouafi et al. [1], combined forecasting can improve forecast accuracy and can be employed to combine the forecasts from the primary individual models.


F(f1(y),f2(y),⋯,f6(y))=w1f1(y)+w2f2(y)+⋯+w6f6(y),



(1)




where fi is related to the individual forecasting methods that transform the real electricity consumption y of the previous months to its forecasting y^, and wi represents the weight of the ith individual forecasting method calculated from real electricity consumption y in the preceding months.



For each time series sijl, there was a weight vector w, which was calculated as follows:



Step 1: wab was first calculated, which was the weight of the ath individual forecasting method judged by the bth forecasting error measurement. The inverse error weights ensured that the models with smaller errors were assigned a greater weight:


wab=eab−1∑i=1neab−1(∀a=1,2,⋯,6,∀b=1,2,⋯,5),








where eab is the error of the ath forecasting model judged by the bth forecasting error measurement.



Step 2: The entropy of pb was calculated as described in Section 3.3, where pb was aligned to the weight of the bth forecasting error measurement and ∑pb=1.



Step 3: The combined weight wa was calculated


wa=∑j=amwabpb(∀a=1,2,⋯,6∀b=1,2,⋯,5).












3.5. Decomposition-Based Combination Forecasting


A decomposition-based combination forecasting model is proposed, in which Giju denotes the electricity demand forecasting for industry sij using decomposition-based combination forecasting at level u (DCFu).


Giju=∑vFuv,i=0,1,2,3,u=i,…,4,



(2)




where Fuv is the forecast value using the combination forecasting model for industry suv, and v represents the vth types of industry at level u.



For example, based on Equation (2), the total electricity demand can be forecast using the decomposition-based combination method, as follows:


G001=F11+F12(DCF1),G002=∑v=15F2v(DCF2),G003=∑v=18F3v(DCF3),G004=∑v=123F4v(DCF4).











To explain the proposed method more clearly, a flow chart was developed, as shown in Figure 2 (decomposition-based CF at level four).



The analysis framework for the work was as follows:



Step 1: The total electricity demand (s00) in the target society was decomposed into four industry levels (Figure 1), coded at level one to four: s1j, s2j, s3j, s4j respectively (Table 1).



Step 2: For sij, ten time series groups were determined for each industry; sij1∼sij10 (see the details in Section 3.1).



Step 3: For s4jl, the future electricity demand was forecast using the six individual models and CF. For s3jl, the future demand was forecast using the six individual models and CF and DCF4. For s2jl, the future demand was forecast using the six individual models and CF, DCF3, and DCF4. For s1jl, the future demand was forecast using the six individual models and CF, DCF2, DCF3, and DCF4. For s00l, the future demand was forecast using the six individual models and CF, DCF1, DCF2, DCF3, and DCF4.



Step 4: To compare and analyze the six individual models and the combination model for sij, an ANOVA and an orthogonal approach to solve the least squares equations were applied for which the AREs were regarded as the observation variables; therefore, there were 10 observations with 7 classification variables. For details, see Section 4.1 and Section 4.2).



Step 5: The decomposition-based CF models were compared and analyzed. For s3j, an ANOVA and an orthogonal approach were applied for which the AREs were regarded as the observation variables; therefore, there were 10 observations and 8 independent variables, as shown in Section 4.3.1. For s2j, an analysis of variance was applied for which there were 9 independent variables, as shown in Section 4.3.2. For s1j, an analysis of variance was applied for which there were 10 independent variables, as shown in Section 4.3.3. For s00, an analysis of variance was applied for which there were 11 independent variables, as shown in Section 4.3.4.



Step 6: To further substantiate the forecasting results for DCF4, a comparison analysis with other forecasting methods such as ARIMA and ANN was conducted, as shown in Section 4.4.





4. Results and Discussion


This section gives step-by-step comparison analyses for the individual models, the combination forecasting model, and the decomposition-based combination forecasting method.



4.1. Analysis of the Individual Methods


As both MAPE and MSE are average values, the outliers are also averaged, and therefore it is often difficult to detect the worst prediction and the forecasting stability. Therefore, to compare the impact and significance of the forecasting accuracy for each forecast method, in this section, an ANOVA was conducted with the comparison tests on ARE.



The forecasting error distribution (shown in Figure 3) was represented using schematic box-and-whisker plots, each of which contained forecast errors from the individual and the CF methods.



With the mean, median, Q1 (first quartile), Q3 (third quartile), and the outliers (more above Q3+1.5∗IQR, where IQR=Q3−Q1) as the comparison indicators, the adaptability of the individual methods was estimated, with the Q1, Median, and Q3 columns respectively providing the lower quantile, median, and upper quantile. The best, the second best, the worst, and the second worst individual methods for each industry are shown in Table 3.



As can be seen in Figure 3, as the null hypothesis (same average estimates) was not able to be rejected at a 0.05 significance level, there were no major differences between the seven methods, which indicated that these classical time series forecasting methods could also be useful for forecasting electricity demand, which was consistent with the results in many previous studies. However, Figure 3 also indicates that MA also had good model fitness in some industries, and as the Q3 was lower than 10% and there were no outliers for s11, s22, s32, s34 and s410, it also had a good forecasting performance. More importantly, an ARE lower than 10% is generally considered very satisfactory in engineering. Table 3 also shows that the MA had the best performance for s31, s46, s417 and s423 compared with the other individual methods. Unfortunately, MA also performed poorly; for s41, s413, s414 and s416 MA had the second worst performance compared with the other individual methods.



Karim and Alwi [31] concluded that the exponential smoothing technique had a better performance than the MA. Similarly, Figure 3 shows the effectiveness of SEST in some industries as the Q3 was lower than 0.1 and the ARE means were lower than 0.05 for s00, s11, s22, s32, s48 and s410. As shown in the first column of Table 3, SEST was the best individual method 11 times (28.2%) and MA was the best individual method five times (12.8%).



Figure 3 also shows that DEST was also an effective method and was able to perform well in some industries; the ARE means were lower than 0.05 for s00, s11, s34, s49 and s410 and the Q3 was lower than 0.1 for s00, s11, s22, s32, s34, s410 and s421. In addition, DEST had the best performance for s33, s41, s42 and s421 compared to the other individual methods.



Hussain et al. [5] proved that the Holt-Winters forecasting model could have robust results, and as shown in Table 3, this model outperformed some other methods in some industries. The MA, MAT, SEST, DEST, HWA and HWM models were respectively identified as the best individual methods five times (12.8%), zero times(0%), 11 times (28.2%), four times (10.3%), 14 times (35.9%) and five times (12.8%), with the HWA, and HWM together accounting for 49.2%. The MA, MAT, SEST, DEST, HWA, and HWM were respectively identified as the second best individual methods six times(15.4%), one time (2.6%), six times (15.4%), six times (15.4%), five times (12.8%) and 15 times (38.5%), the HWA and HWM together accounting for 51.3%. These results demonstrated that the Holt-Winters forecasting method outperformed the other individual methods in most cases.



However, it is somewhat difficult to explore the effectiveness and superiority of the Holt-Winters forecasting method as special attention needs to be paid to accuracy. In some cases, none of the methods was found to be suitable. As shown in Figure 3 and Table 3, however, for most of the rest, the Holt–Winters forecasting method produced accurate results, with the Q3 being lower than 0.1 and the median and means being lower than 0.05.



However, a further analysis of Figure 3 and Table 3 indicated that HWA and HWM were the worst individual methods eight times (20.5%) and one time (2.6%), and the second worst individual methods four times (10.25%) and nine times (23.1%). Therefore, as the Holt-Winters forecasting method was not available for all the time series data, it could be unhelpful for electricity demand forecasting in some industries.



From these analyses, it was concluded that as there was no one technique that was able to always obtain better forecasting results, different time series data sets require different individual methods. Therefore, there is no best forecasting model for the electricity data sets from different industries.




4.2. Analysis of the Combination Forecasting Model


In the combination forecasting model proposed in this paper, inverse error weights were used so that the individual methods with less errors received an increased weight; that is, the advantages of each individual method were combined to improve the forecasting accuracy. Figure 3 shows that the CF had excellent forecasting performance as the Q3 was lower than 0.1 for s00, s11, s12, s22, s410 and the median was lower than 0.05 for s00, s34 and s410.



Column 6 in Table 3 shows the CF Rank for the combination forecasting model compared to the other seven forecasting methods for each different industry. The CF model was respectively ranked from one to eight, 8, 7, 10, 9, 2, 3, and 0 times; that is, the combination forecasting method ranked in the top three 74.9% of the time, indicating its overall effectiveness. These results clearly indicated that forecasting combinations can yield unbiased forecasts even if the individual forecasts are biased. However, a more in-depth analysis of Figure 3 indicated that there were some industries in which none of the methods (including the combination model) were useful; s31, s45, s417, s419, s422.



To determine the reason for this, the original electricity data from each industry were reanalyzed, from which it was found that there was a large gap between September 2009 and the other months in most industries. Therefore, it was concluded that a combination approach was not suitable when the data were highly volatile.




4.3. Comparison Analysis of the Decomposition Experiments


To demonstrate the decomposition-based CF method, in this section, an ANOVA was used to analyze the electricity demand forecasting at the sub-subsector levels, the sub-sector levels, the sector levels, and the total aggregate level.



In the ANOVA, the ‘B’ following the parameter estimates indicated that the estimates were biased and did not represent a unique solution to the normal equations (Figure 4a). However, when using the orthogonal approach (ORTHOREG) to solve the least squares equations, more accurate estimates were produced compared to the other regression procedures. Figure 4b shows that the ORTHOREG fit achieved the same root mean square error (RMSE) as shown in the ANOVA table but avoided the spurious singularities; therefore, the following analyses only considered the ANOVA. Furthermore, while there were no significant differences between DCF4 and the other methods when the other methods were superior to DCF4 in all situations, there were significant differences between DCF4 and other methods when DCF4 was superior to other methods in some situations. Figure 5a,b shows that the differences between DCF4 and the MAT groups (for s23) were marginal (p = 0.0959), and that the differences between DCF4 and the MAT (for s35) were marginally significant (p = 0.0402), which indicated that DCF4 may be more effective. A detailed analysis was then conducted, as outlined in the following.



4.3.1. Forecasting for the Sub-Subsector Electricity Demand


Based on Equation (2), the sub-subsector electricity demand was forecast using a decomposition-based CF at level 4.


G3j4=∑vF4v,j=1,⋯,8,








where G3j4 was the forecast for industry s3j using the decomposition-based CF at level 4 and F4v was the forecast for industry s4v using the combination forecasting model. For example, the forecast using DCF4 for industry s31 was G314=F41+F42+F43+F44+F45.



The ARE outputs using the eight methods at the sub-subsector level were compared using ANOVA, and the forecasting error distribution is shown in Figure 6. Figure 1 shows that there was no branch industry for s33, indicating that no DCF4 existed for s33-plus. The distribution of the forecast errors in Figure 6 shows the data discrepancy and biases as well as the outliers. For s32-plus, DCF4 achieved the lowest ARE means compared to all other methods except SEST; however, SEST had two outliers. DCF4 also achieved the lowest median except for SEST and MA, but MA had an internal cap that was far greater than for the DCF4. More importantly, 75% of the DCF4 AREs were lower than 10%, which was considered satisfactory.



For s38-plus, DCF4 had the best forecasting performance as it achieved the lowest ARE means, Q1 and Q3, and had no outliers. For s34-plus, the DCF4 had the third best performance after MA and DEST, as it achieved the lowest Q1 and means, and there were no outliers.



Even though all methods appeared to be unhelpful for industry s35, DCF4 achieved the lowest means. However, no methods were suitable for the data associated with s31-plus, s35-plus, s36-plus and s37-plus. An analysis of the original electricity data indicated that there was a big gap between September 2009 and the other months in most industries.



From the above, it can be concluded that the forecasting effect tends to be better after adopting decomposition; however, a DCF with only one decomposition level is sometimes not suitable when the data are highly volatile




4.3.2. Forecasting for the Sub-Sector Electricity Demand


Based on Equation (2), the sub-sector electricity demand was forecast using the decomposition–based CF at levels 4 and 3 using the following formula;


G2j4=∑vF4v,j=1,⋯,5,G2j3=∑vF3v,j=1,⋯,5,








where G2j4 and G2j3 were respectively the forecasts for industry s2j using the decomposition-based CF at levels 4 and 3, and F4v and F3v were the forecasts for industry s4v and s3v using the combination forecasting model.



Figure 7 compares the differences in the ARE output distributions for the nine sub-sector methods. From Figure 7, it can be seen that DCF4 achieved the lowest ARE means (approximately 0.05) compared to all other methods except for SEST, which had outliers in s22-plus, 75% of the ARE outputs from DCF4 were lower than 10%, and DCF4 also had the lowest median, means and Q3 and no outliers compared to all other methods except for HWA and HWM, both of which have an outlier in s23-plus. No methods, however, were found to be suitable for s21. These results demonstrated that electricity demand forecasting uncertainties can be reduced using decomposition.




4.3.3. Forecasting for Sector Demand


Based on Equation (2), the sector electricity demand was forecast using a decomposition-based CF at levels 4, 3 and 2:


G1j4=∑vF4v,j=1,2,G1j3=∑vF3v,j=1,2,G1j2=∑vF2v,j=1,2,








where G2j4, G2j3 and G2j1 were the respective forecasts for industry s1j using DCF4, DCF3, and DCF2 respectively, and F4v, F3v and F2v were the forecasts for industry s4v, s3v and s2v using the combination forecasting model.



The ARE outputs for sector demand for the ten methods were compared using ANOVA, and the forecasting error distributions together with the schematic box-and-whisker plot representations are shown in Figure 8. s12 was residential electricity and was only decomposed from level 2 without DCF3 and DCF4, and s11 was decomposed from level 2 through to level 4.



A comparison in Figure 9 clearly shows that the decomposition-based CF model had the best forecasting performance for s11, which was decomposed from three levels; however, the decomposition-based combination forecasting model had no advantages when forecasting s12 as there was only one decomposition level. DCF4 had the smallest maximum error when forecasting s11, and DCF2 had a similar inner fence to the other methods. These results demonstrated that decomposition can adapt to the various characteristics of different data series.



Although Figure 8 indicates that HWA had the best performance for s12-plus (which was consistent with the forecasting results in Hussain et al. [5]), for s11-plus, both HWA and HWM had outliers, indicating that these methods were not suitable for the data set. In this case, for s11-plus, DCF4 achieved the best performance because it had the lowest Q3 and means, the narrowest inner fence, and no high Q1 compared with all other methods except for SEST. Figure 9 also shows that DCF4 had smaller volatility than SEST.




4.3.4. Forecasting for Total Electricity Demand


Governments are most interested in total electricity demand forecasting as this allows them to make future plans. Based on Equation (2), the electricity demand was forecast using the decomposition–based combination method described in Section 3.5.



Figure 10 shows that when only considering the means, the CF and SEST methods achieved better performance and the MAT and DCF3 methods had the worst performance. When considering the outliers, the CF, DCF4 and SEST methods achieved better performance, and the HWA, HWM, and MA methods contained outliers. For the degree of dispersion, the DCF4 achieved a lower Q1−1.5∗IQR and a lower Q3+1.5∗IQR, followed by SEST, CF, DCF1, DCF2. These results further supported the conclusion that decomposition-based combination forecasting at level 4 is better at forecasting total electricity demand.



At any time, actual power generation must be able to accommodate at least a 15% increase in demand [32]. Figure 11a shows that even though the data are complex and uncertain, DCF4 performed excellently as all the AREs were lower than 10%. Figure 11b also shows that with an increase in the learning period, the decomposition-based combination forecasting model errors tended to decrease, and the DCF4 remained more stable under volatility compared with the other methods. Furthermore, as can be seen from the ARE outputs for all methods for s00 in Table 4, there were more minimum AREs for the DCF4 model than for the other models. Even though they had fewer errors sometimes, the individual methods tended to display some instability, with errors ranging from very small to high; for example, the HWA had forecasting errors for s00 that were close to zero but as high as 20%. By default, compared to “accuracy”, stability is particularly important for engineering practice.





4.4. Comparison Analysis with Benchmark Methods


To further substantiate the forecasting results for DCF4, a comparison analysis was conducted with the benchmark methods ARIMA and ANN, both of which have been proven to be effective and highly precise [1,33]. For the comparison, the total electricity demand (s00) forecasting was executed by ARIMA and ANN.



The basic steps for ARIMA were as follows. First, the nonstationary series were transformed to stationary series using differencing, after which p (the order of the autoregressive part) and q (the order of the moving-average process) were determined using ACF and PACF and the optimal model determined from the check of the white noise residuals.



Three months’ worth of electricity consumption data before the month to be predicted were taken as the input data for the ANN model, which had three input neurons. The number of hidden neurons were arranged to take values between 2 and 10, with the one output neuron being the consumption forecast for the subsequent month, and the leave-one-out cross-validation method used to evaluate the model. In addition, a rectified linear unit activation function was used as the hidden layer activation function, a linear function was used in the output layer, and an adaptive moment estimation was employed as the learning algorithm.



The analysis of variance results in Figure 12 indicated that there were no significant differences between the ANN, ARIMA, and DCF4 (p = 0.7544). However, both Table 5 and Figure 13 show that the DCF4, ARIMA, and ANN forecasting results agreed. The ARE outputs for the ANN, ARIMA, and DCF4 in Table 5 indicated that there were more minimum AREs for the DCF4 model than for either the ARIMA or ANN models, and that all the DCF4 errors were lower than 0.01 and tended to decrease with an increase in the learning period, as shown in Figure 13, all of which illustrated that the DCF4 was more stable, even when there was not enough data.





5. Conclusions


With a focus on both prediction accuracy and stability, this paper developed a method for total electricity demand forecasting for nonlinear, nonstationary series. Using dynamic adaptive entropy-based weighting, a dynamic adaptive model was developed for total electricity demand forecasting that could be dynamically adapted to various forecast models through combination and to the various data characteristics through decomposition.



In this work, the total electricity demand in the target society was first decomposed based on industry categories, after which each component was forecast using a combination model that was developed using the entropy method, from which it was found that decomposition together with combination forecasting was able to improve forecasting accuracy.



The analyses of the individual methods in specific environments found that HWA was suitable for most data sets due to its varied applications; however, no significant differences were found between the forecast models based on the ANOVA. DCF4 was found to perform better than either the ARIMA or the ANN, especially when there was only small data and no need to handle outliers. From the schematic box-and-whisker plots and with the means, median, Q1, Q3, and outliers as the comparison indicators, it was found that the dynamic adaptive forecasting model performed the best, was highly accurate, had formidable forecasting ability, and would therefore be the best choice for complex, variable data. It was also concluded that if the raw data outliers were omitted, all methods analyzed here would perform better. It was also found that the large gap between September 2009 and the other months for most industries significantly affected the forecasting.



Although this paper was focused on the forecasting of monthly series data sets, the methods shown here could also be applied to quarterly data. As the proposed model performed well in forecasting one period, it could be used to develop electricity generation plans and associated energy policies. To further improve the methods, the forecast periods could be extended, and classical forecasting models and modern intelligent forecasting models combined to develop combination models for every industry; therefore, more work is necessary to fully refine the methodology.
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Figure 1. Electricity decomposition. 
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Figure 2. The Flow chart for the dynamic adaptive forecasting process. 
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Figure 3. ARE distribution by ANOVA for every industry electricity demand. 






Figure 3. ARE distribution by ANOVA for every industry electricity demand.



[image: Sustainability 11 01272 g003a][image: Sustainability 11 01272 g003b][image: Sustainability 11 01272 g003c][image: Sustainability 11 01272 g003d]







[image: Sustainability 11 01272 g004 550]





Figure 4. The GLM procedure and the ORTHOREG procedure for s00. 
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Figure 5. Parameter Estimate. 
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Figure 6. ARE distribution by ANOVA for sub-sector electricity demand. 
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Figure 7. ARE distribution by ANOVA for sector. 
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Figure 8. ARE distribution by ANOVA for the sectors electricity demand. 
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Figure 9. Sorted Data with Contrast Colors and Line Patterns Specified for s11 and s12. 






Figure 9. Sorted Data with Contrast Colors and Line Patterns Specified for s11 and s12.



[image: Sustainability 11 01272 g009]







[image: Sustainability 11 01272 g010 550]





Figure 10. ARE distribution of by ANOVA for total electricity demand. 
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Figure 11. Sorted Data with Contrast Colors and Line Patterns Specified for s00. 
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Figure 12. Analysis of variance of ANN, ARIMA, and DCF4. 
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Figure 13. Sorted Data with Contrast Colors Specified for AREs by ANN, ARIMA, and DCF4. 
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Table 1. Power consumption by industry sector.
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	Code
	Power Industry
	Code
	Power Industry





	s00
	Total power consumption
	s45
	Fishery power consumption



	s11
	Nonresidential power consumption
	s46
	Coal mining power consumption



	s12
	Residential power consumption
	s47
	Production and supply of electricity, gas and water power consumption



	s21
	Total Primary industry power consumption
	s48
	Manufacturing power consumption



	s22
	Total Second industry power consumption
	s49
	Warehousing industrial power consumption



	s23
	Total Tertiary industry power consumption
	s410
	Transportation power consumption



	s24
	Urban residential power consumption
	s411
	Postal service power consumption



	s25
	Rural residential power consumption
	s412
	Real estate power consumption



	s32
	Industry power consumption
	s413
	Financial industrial power consumption



	s31
	Agriculture, forestry, animal husbandry and fishery power consumption
	s414
	Leasing, business services, resident services and other services power consumption



	s33
	Construction industry power consumption
	s415
	Catering and accommodation power consumption



	s34
	Information transfer, computer services and software power consumption
	s416
	Wholesale and retail power consumption



	s35
	Business, catering and accommodation power consumption
	s417
	Computer services and software power consumption



	s36
	Financial, real estate and residential property services power consumption
	s418
	Information transfer power consumption



	s37
	Public utilities and management organizations power consumption
	s419
	Public management, social organization, and management organization



	s38
	Transportation, warehousing and postal power consumption
	s420
	Health, social security and social welfare power consumption



	s41
	Forestry power consumption
	s421
	Education power consumption



	s42
	Services power consumption for agriculture, forestry, animal husbandry and fishery
	s422
	Scientific research, technical services, and geological prospecting power consumption



	s43
	Agriculture power consumption
	s423
	Water environment and public facilities management power consumption



	s44
	Animal husbandry power consumption
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Table 2. Data division for each industry.
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	Training Set
	Test Set





	sij1={yij1,yij2,⋯,yij24}
	{yij25}



	sij2={yij1,yij2,⋯,yij25}
	{yij26}



	sij3={yij1,yij2,⋯,yij26}
	{yij27}



	sij4={yij1,yij2,⋯,yij27}
	{yij28}



	sij5={yij1,yij2,⋯,yij28}
	{yij29}



	sij6={yij1,yij2,⋯,yij29}
	{yij30}



	sij7={yij1,yij2,⋯,yij30}
	{yij31}



	sij8={yij1,yij2,⋯,yij31}
	{yij32}



	sij9={yij1,yij2,⋯,yij32}
	{yij33}



	sij10={yij1,yij2,⋯,yij33}
	{yij34}
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Table 3. Method adaptability for each industry.
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	Data
	The Best
	The Second Best
	The Worst
	The Second Worst
	CF Rank
	Unsuitable for the Data





	s00
	SEST
	DEST
	HWA
	HWM
	2
	



	s11
	SEST
	DEST
	HWA
	HWM
	4
	



	s12
	HWA
	HWM
	WAT
	SEST
	3
	



	s21
	HWA
	HWM
	MAT
	DEST
	3
	



	s22
	SEST
	DEST
	HWA
	HWM
	5
	



	s23
	HWA
	HWM
	MAT
	DEST
	3
	



	s24
	HWA
	HWM
	MAT
	DEST
	4
	



	s25
	HWA
	HWM
	MAT
	DEST
	4
	



	s31
	MA
	HWM
	DEST
	MAT
	2
	unsuitable



	s32
	SEST
	DEST
	HWA
	HWM
	3
	



	s33
	DEST
	SEST
	MAT
	HWA
	4
	



	s34
	HWA
	HWM
	MAT
	HWA
	4
	



	s35
	HWA
	HWM
	MAT
	SEST
	3
	



	s36
	HWM
	HWA
	MAT
	DEST
	5
	



	s37
	SEST
	MA
	MAT
	DEST
	3
	



	s38
	SEST
	MA
	MAT
	DEST
	2
	



	s41
	DEST
	SEST
	HWA
	HWM
	1
	



	s42
	DEST
	MAT
	HWA
	HWM
	1
	unsuitable



	s43
	SEST
	SEST
	MAT
	HWM
	1
	



	s44
	HWA
	HWM
	MAT
	DEST
	1
	



	s45
	SEST
	HWM
	MAT
	DEST
	2
	unsuitable



	s46
	MA
	SEST
	HWM
	HWA
	3
	



	s47
	MA
	SEST
	MAT
	DEST
	6
	



	s48
	SEST
	MA
	HWA
	HWM
	4
	



	s49
	SEST
	MA
	MAT
	DEST
	3
	



	s410
	HWM
	HWA
	MAT
	SEST
	4
	



	s411
	SEST
	MA
	MAT
	DEST
	2
	



	s412
	HWA
	HWM
	MAT
	DEST
	2
	



	s413
	HWA
	HWM
	MAT
	MA
	1
	



	s414
	HWA
	HWM
	MAT
	MA
	3
	



	s415
	HWM
	HWA
	DEST
	MAT
	4
	



	s416
	HWM
	HWA
	MAT
	MA
	6
	



	s417
	MA
	SEST
	MAT
	DEST
	1
	unsuitable



	s418
	SEST
	MA
	MAT
	DEST
	2
	



	s419
	HWA
	HWM
	MAT
	MA
	3
	unsuitable



	s420
	HWM
	HWA
	MAT
	DEST
	1
	



	s421
	DEST
	SEST
	HWA
	HWM
	4
	



	s422
	HWA
	HWM
	MAT
	DEST
	5
	



	s423
	MA
	DEST
	MAT
	HWA
	1
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Table 4. The AREs of all the methods for s00.
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	Month
	MA
	MAT
	SEST
	DEST
	HWA
	HWM
	CF
	DCF1
	DCF2
	DCF3
	DCF4





	25
	0.0367
	0.1323
	0.0774
	0.1246
	0.2266
	0.2084
	0.1276
	0.1255
	0.1258
	0.1312
	0.1036



	26
	0.0214
	0.0306
	0.0223
	0.0004
	0.0727
	0.0665
	0.0124
	0.0870
	0.1027
	0.1018
	0.0837



	27
	0.0218
	0.0805
	0.0337
	0.0322
	0.0098
	0.0067
	0.0321
	0.0454
	0.0313
	0.0343
	0.0301



	28
	0.0697
	0.1209
	0.0969
	0.1033
	0.0370
	0.0297
	0.0957
	0.0932
	0.0926
	0.0995
	0.0927



	29
	0.0611
	0.0048
	0.0071
	0.0001
	0.0088
	0.0091
	0.0091
	0.0075
	0.0113
	0.0143
	0.0275



	30
	0.1442
	0.0525
	0.1115
	0.0898
	0.0243
	0.0049
	0.0672
	0.0581
	0.0590
	0.0623
	0.0595



	31
	0.0652
	0.0540
	0.0122
	0.0505
	0.0249
	0.0323
	0.0267
	0.0398
	0.0403
	0.0371
	0.0191



	32
	0.0383
	0.0616
	0.0090
	0.0351
	0.0629
	0.0775
	0.0480
	0.0654
	0.0556
	0.0570
	0.0578



	33
	0.0209
	0.0239
	0.0190
	0.0098
	0.0022
	0.0010
	0.0038
	0.0253
	0.0278
	0.0299
	0.0025



	34
	0.0109
	0.0394
	0.0269
	0.0487
	0.0409
	0.0456
	0.0193
	0.0013
	0.0086
	0.0113
	0.0203
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Table 5. The AREs of the ANN, ARIMA, and DCF4 for s00.
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	Month
	ANN
	ARIMA
	DCF4





	25
	0.029848707
	0.084465171
	0.103625946



	26
	0.015499663
	0.036508881
	0.083654997



	27
	0.124882225
	0.031200544
	0.030069406



	28
	0.055943052
	0.101710947
	0.092687115



	29
	0.010492949
	0.004772692
	0.027535572



	30
	0.086425693
	0.108288557
	0.059520543



	31
	0.052094060
	0.028256914
	0.019058591



	32
	0.105269199
	0.00370881
	0.057769253



	33
	0.043279300
	0.01268148
	0.002516652



	34
	0.047201343
	0.034264153
	0.020293710
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