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Abstract: This paper investigates the effect of biased technical change on total factor carbon emissions
efficiency in China using provincial panel data from 2001–2014. It evaluates each province’s total
factor carbon emissions efficiency by a two-stage super-efficiency Data Envelopment Analysis
(DEA) model, and measures technical change bias in the framework of time-varying elasticity
production function. Then, the impact of technical change’s capital-energy bias on carbon emissions
efficiency is estimated by the fixed-effect panel and dynamic panel model. This study has the
following findings: First, China’s total factor carbon emissions efficiency still has a long way to go.
Carbon emissions efficiency varies a lot across regions. The eastern area boasts the highest carbon
emissions efficiency. Second, China’s current technical change is energy-biased, and the marginal
production growth rate presents energy>capital>labor, but the gap between energy and capital
is diminishing. Third, technical change’s increasing capital bias helps to improve China’s carbon
emissions efficiency substantially. The mechanism behind this is the changing factor substitution
elasticity in the industry upgrade process.
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1. Introduction

Since its economic reform, China’s economy has kept up a formidable pace of growth, whereas
this rapid development has mainly relied on high energy consumption [1]. As China is still in the
middle stage of industrialization and urbanization, its rigid demand for energy determines the fact
that carbon emissions would not substantially decline in a short time.

Contributing about two-thirds of the greenhouse gas, carbon dioxide emissions is one main cause
of global warming. Global warming would potentially cause damage in many respects, such as human
mortality, agricultural activities, sea level rise, dearth of natural resources like forest and water, and so
on [2]. In this sense, it is imperative for developing countries like China to seek an effective solution to
improve carbon emissions efficiency.

Technical change might be one way to achieve this. It is of two types: neutral technical
change, and biased technical change [3]. To be specific, if technical change improves the marginal
production growth rate of factor j greater than factor i, then technical change is defined as being
biased towards factor j [4]. Some studies have found evidence of energy-biased technical change
in the USA [5,6]. Biased technical change and factor substitution are important to decrease energy
intensity [7]. Different proportional changes in the marginal production growth rate between energy
and other factors cause the factor substitution and change the factors’ relative inputs, thus affecting
energy intensity under cost minimization [3].

However, as economic agents may adapt to climate change, rising investment in Research and
Development (R&D) does not necessarily offset the negative impact of climate change [8]. In that sense,
whether biased technical change really improves carbon emissions efficiency and the potential impact’s
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magnitude both remain unknown, and how factor substitution works under technical change’s impact
needs investigation, too.

This paper would like to answer the following questions. First, is the technical change
energy-biased or capital-biased in China? Second, does biased technical change improve China’s
carbon emissions efficiency? Third, if biased technical change works, what is the mechanism behind it?
As far as we know, few researchers have already answered these questions.

This paper makes the following attempts. First, each province’s total factor carbon emissions
efficiency in China during 2001-2014 is measured by the two-stage super-efficiency Data Envelopment
Analysis (DEA) method. Next, technical change bias is estimated in the framework of time-varying
elasticity production function. Then, the fixed effect panel and dynamic panel models are used
to investigate the impact of biased technical change on total factor carbon emissions efficiency.
Last, the interaction term of biased technical change and industry upgrade are added into the
econometric model to quantitatively explore the mechanism.

The rest of this paper is organized as follows. In Section 2, some important literature relevant to
our work is reviewed. Section 3 presents the methodology and model. Section 4 describes the data in
detail. Section 5 explains the empirical results. The last section concludes the paper and puts forward
some practical policy recommendations.

2. Literature Review

The empirical evidence from many studies reveals that climate change produces negative
impacts on economic activities, human health, and so on. One degree Celsius warming would
bring about a world cost of three percentage points of GDP when using global average values [2].
Temperature shock caused a negative impact on the labor productivity [9,10]. Temperature shock also
dampened the economic growth through undermining R&D expenditure [8]. The costs caused by
climate change in terms of mortality [11] and agricultural outcomes [12] are not negligible, either. In the
sense, improving carbon emissions efficiency might help mitigate the welfare costs of climate change.

Before investigating the impact of biased technical change, how to accurately measure carbon
emissions efficiency is an important task. Early work focused on single-factor indicators like energy
intensity [13] or carbon dioxide emissions [14], but this measurement is too rough. Since the pioneering
work of [15], nonparametric methods have been widely used to evaluate the carbon emissions efficiency.
One popular nonparametric approach is the DEA method.

The original DEA method did not take the undesired outputs into account. For this, the directional
distance function was put forward to include both desired outputs’ increase and undesired outputs’
decrease [16]. This radical DEA method evaluated efficiency with undesired outputs, but also caused
measurement error for the potential slacks on the undesired output [17].

To solve the undesired output problem in DEA, some novel mutants are proposed.
The Slack-based Measure (SBM) approach was put forward [17], and it was extended by [18].
This approach was used to investigate the industrial sector’s environmental efficiency in China’s
30 provinces in 2004, and found that higher per capita Gross Domestic Product was correlated
with higher environmental efficiency [19]. Two undesired-output methods and the DEA window
analysis were combined to estimate the total factor energy efficiency in China [20]. The Non-radial
Directional Distance Function (NDDF) was proposed to realize disproportional adjustments on inputs,
desirable output and undesirable output [21]. After that, the NDDF was used to measure China’s
energy and carbon emissions efficiency, and investigated the marketization effects on them [22].

Those DEA methods are faced with another challenge: they are unable to simultaneously rank
multiple Decision-Making Units (DMUs). This would also cause certain measurement errors. The latest
member of the DEA family, the super-efficiency DEA method, removes the measured DMU from the
unit set, and realizes the simultaneous evaluation on multiple units [23]. Its measurement is more
accurate and robust [24]. Hence, the carbon emissions efficiency evaluation in this paper is based on
the super-efficiency DEA method.
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As for biased technical change, there are also some deficiencies in existing studies on this topic
as follows: (1) some studies took factor substitution into account, but the technical change bias and
its effects were not clearly illustrated [25,26]; (2) some studies used simple measurement for biased
technical change that was not convincing enough [27,28]; (3) some studies in China have analyzed the
impact of biased technical change or factor substitution on energy intensity [3,29], but they does not
discuss on the carbon emissions efficiency. Overall, the empirical work on biased technical change’s
impacts on China’s carbon emissions efficiency is scant.

3. Methodology

3.1. Evaluation of Total Factor Carbon Emissions Efficiency Based on Two-Stage Super-Efficiency DEA Model

DEA is an efficient nonparametric tool to evaluate the relative efficiency of multiple-input and
multiple-output DMUs. It does not a priori determine the specific form of function and parameters,
so the influence of subjective factors can be avoided. It constructs a linear programming model to
generate an efficient frontier. On this frontier, compared with desired outputs, the highest reduction of
both inputs and undesired outputs is thought of as the optimal efficiency [30].

However, as it did not take the undesired outputs into account, the original DEA model ignored
the potential carbon emissions abatement and overestimated the DMUs’ environmental efficiency [31].
For this, a two-stage DEA model achieves the maximum expansion of desired output in the first
stage, and then estimates the potential reduction of undesired output in the second stage to avoid the
overestimation [32].

Assume that there is K DMUs in total in the two-stage DEA model. Each DMU has N inputs,
M desired outputs, and J undesired outputs. Then it is expressed as

CE
(

x, y, u; gy,i,−gu,i
)
= max[η :

(
yi + β∗gy,i, ui − ηgu,i

)
∈ P(xi)]

s.t.



∑K
k=1 λkxkn ≤ xin n = 1, 2, · · · , N

∑K
k=1 λkykm ≥ (1 + β∗)yim m = 1, 2, · · · , M
∑K

k=1 λkukj = (1− η)uij j = 1, 2, · · · , J
λk ≥ 0 k = 1, 2, · · · , K

x ∈ R+
3

,
(1)

where P(xi) is the output set. gy and −gu are slack variables, denoting the expansion of desired
output, and reduction of undesired output. xkn, ykm, and ukj are the nth input, the mth desired output,
and the jth undesired output of the kth DMU. The vector (λ1, λ2, · · · , λK) is each DMU’s weight for
constructing linear output set. β∗ is the maximum expansion coefficient of desired output, and η is the
reduction coefficient of undesired output.

As DEA does not allow for a ranking of the units, the super-efficiency DEA model is applied.
The super-efficiency DEA model eliminates the evaluated DMU itself from the set, so it can rank
multiple units. The model is extended as follows:

→
C
(

x, y, u; gy,i,−gu,i
)
= max[η :

(
yi + β∗gy,i, ui − ηgu,i

)
∈ P(xi)]

s.t.



∑K
k=1,k 6=i λkxkn ≤ xin n = 1, 2, · · · , N

∑K
k=1,k 6=i λkykm ≥ (1 + β∗)yim m = 1, 2, · · · , M
∑K

k=1,k 6=i λkukj = (1− η)uij j = 1, 2, · · · , J
λk ≥ 0 k = 1, 2, · · · , K

x ∈ R+
3

.
(2)
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According to [24], the carbon emissions efficiency evaluation based on two-stage super-efficiency
DEA model is described as

→
C
(

xt
i , GDPt

i , CEt
i ; gt

GDP,i,−gt
CE,i
)
= max[η :

(
GDPt

i + β∗gt
GDP,i, CEt

i − ηgt
CE,i
)
∈ P

(
xt

i
)
]

s.t.



30
∑

k=1,k 6=i
λt

kxt
k ≤ xt

i

K
∑

k=1,k 6=i
λt

kGDPt
k ≥ (1 + β∗)GDPt

i

K
∑

k=1,k 6=i
λt

kCEt
k = (1− η)CEt

i

λk ≥ 0 k = 1, 2, · · · , 30
x = (L, K, E) ∈ R+

3

(3)

TFCEt
i = 1/[1 +

→
C(xt

i , GDPt
i , CEt

i ; gt
GDP,i,−gt

CE,i)],

where TFCE is the total factor carbon emissions efficiency. Larger TFCE denotes higher carbon
emissions efficiency in this province. The meaning of the suffix t is that the data of variables correspond
to the year t. Supposing that there is a different technology in each year, the Equation (3) is performed
for each year instead of being used only once for data from all the years. That is, each province’s total
factor carbon emissions efficiency is estimated year by year.

3.2. Estimation of Biased Technical Change Based on Time-Varying Elasticity Production Function

For the estimation of biased technical change, many studies tend to construct evaluation indicators
in the framework of Constant Elasticity of Substitution (CES) production function incorporating
essential production factors [33]. However, CES production function has an important assumption:
the elasticity of substitution is constant. This rigid assumption would inevitably affect the estimation’s
robustness. For this, the time-varying elasticity production function, a more general function, is used
to estimate the biased technical change here.

The time-varying elasticity production function is a three-sector trans-log production function
including capital, labor, and energy. It is illustrated as follows:

lnYit = α0 + α1lnKit + α2lnLit + α3lnEit + α4(lnKit)
2 + α5(lnLit)

2 + α6(lnEit)
2+

α7lnKitlnLit + α8lnKitlnEit + α9lnEitlnLit,
(4)

where Y is output. K, L, and E are capital, labor, and energy input. i denotes region, and t denotes year.
Then, the time-varying coefficients of production factors, A(t) = A0eλt are added into the

trans-log production function to construct the time-varying elasticity production function as follows:

lnYit = α0 + α1ln[AK(t)Kit] + α2ln[AL(t)Lit] + α3ln[AE(t)Eit]+

α4[ln(AK(t)Kit)]
2 + α5[ln(AL(t)Lit)]

2 + α6[ln(AE(t)Eit)]
2+

α7ln(AK(t)Kit)α8ln(AK(t)Kit)ln(AE(t)Eit)+

α9ln(AE(t)Eit)ln(AL(t)Lit).

(5)

After simplification, its general form is presented as in Equation (6):

lnYit = β0 + β1lnKit + β2lnLit + β3lnEit + β4t + β5(lnKit)
2 + β6(lnLit)

2+

β7(lnEit)
2 + β8t2 + β9lnKitlnLit + β10lnKitlnEit + β11lnEitlnLit + β12tlnKit+

β13tlnLit + β14tlnEit.

(6)



Sustainability 2019, 11, 955 5 of 17

εK is capital-output elasticity, εL is labor-output elasticity, and εE is energy-output elasticity.
They are calculated as follows:

εK =
∂lnY
∂lnK

= β1 + 2β5lnK + β9lnL + β10lnE + β12t

εL =
∂lnY
∂lnL

= β2 + 2β6lnL + β9lnK + β11lnE + β13t

εE =
∂lnY
∂lnE

= β3 + 2β7lnE + β10lnK + β11lnL + β14t/

(7)

MPK, MPL, and MPE are the marginal production rate of capital, labor, and energy. They are
calculated as follows:

MPK =
∂Y
∂K

=
Y
K
· ∂lnY

∂lnK
=

Y
K
· εK =

Y
K
· (β1 + 2β5lnK + β9lnL + β10lnE + β12t)

MPL =
∂Y
∂L

=
Y
L
· ∂lnY

∂lnL
=

Y
L
· εL =

Y
L
· (β2 + 2β6lnL + β9lnK + β11lnE + β13t)

MPE =
∂Y
∂E

=
Y
E
· ∂lnY

∂lnE
=

Y
E
· εE =

Y
E
· (β3 + 2β7lnE + β10lnK + β11lnL + β14t)/

(8)

After that, the calculation method of technical change bias proposed by [34] is adopted to estimate
the biased technical change as in Equations (9)-(11):

biasKL =
∂MPK/∂t

MPK
− ∂MPL/∂t

MPL
=

β12

εK
− β13

εL
(9)

biasKE =
∂MPK/∂t

MPK
− ∂MPE/∂t

MPE
=

β12

εK
− β14

εE
(10)

biasEL =
∂MPE/∂t

MPE
− ∂MPL/∂t

MPL
=

β14

εE
− β13

εL
/ (11)

Diamond biased technical change measures the relative marginal production growth rate
of factors induced by technical change. If biasij = 0, then the technical change is neutral.
Otherwise, biasij < 0 represents factor i ’s marginal production growth rate is lower than factor
j ’s, i.e., technical change is biased to factor j, and the production tends to save factor i, and biasij > 0
represents technical change is biased to factor i, and the production tends to save factor j.

Moreover, according to [35], the Morishima Elasticity of Substitution (MES) is calculated as in
Equations (12)-(14).

σKL =
d(K/L)

K/L
/

d(MPL/MPK)
MPL/MPK

=

{
1 +

[
2β9 −

εL
εK

(2β5)−
εK
εL

(2β6)

]
(εK + εL)

−1
}−1

(12)

σKE =
d(K/E)

K/E
/

d(MPE/MPK)
MPE/MPK

=

{
1 +

[
2β10 −

εE
εK

(2β5)−
εK
εE

(2β7)

]
(εK + εE)

−1
}−1

(13)

σEL =
d(E/L)

E/L
/

d(MPL/MPE)
MPL/MPE

=

{
1 +

[
2β11 −

εL
εE

(2β7)−
εE
εL

(2β6)

]
(εE + εL)

−1
}−1

. (14)

MES is a relative substitution rate. The larger MES substitution elasticity represents stronger
substitution between factors.
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3.3. Panel Analysis on the Effect of Biased Technical Change on Carbon Emissions Efficiency

To analyze the effect of biased technical change on total factor carbon emissions efficiency,
the following empirical panel model is used:

TFCEit = c + α1biasKE, it + Xit
′β + εit, (15)

where TFCEit and biasKE,it are the total factor carbon emissions efficiency and capital-energy bias of
province i in year t. c is the constant term. Xit is the control variables. εit is the random error term.
The coefficient α1 is our focus.

Six control variables are included. They are industrial structural transformation (ois), energy price
(price), higher education popularization (edu), R&D stock (rd), Foreign Direct Investment (FDI) stock
(fdi), and value added of industry (ivalue). The structural change in manufacturing sector can drive
energy-consuming sectors towards higher efficiency, thus improving the region’s carbon emissions
efficiency [36]. As a self-regulation mechanism in the energy market, energy price is found to have
a great impact on energy use and CO2 emissions. However, the price distortion may weaken this
regulation, and even produces a negative effect [37]. Therefore, the effect of energy price on carbon
emissions efficiency is complicated. Education also affects the promotion of energy-saving and
emission-abatement approaches [38]. Here, a household is taken as an example. The house owners
with lower education prefer not to invest on the energy-saving and emissions-reduction facilities in
their houses [39]. R&D improves the green innovation, which is beneficial to emission abatement [40].
The contribution of FDI on carbon emissions is also important [41]. The growth of industrial value
added is correlated with the carbon emissions, too [42].

Following attempts are made to overcome the potential endogeneity. First, the fixed effect panel
model is used to control province and year fixed effect. This solves the endogeneity from unobserved
heterogeneity. Then, the following dynamic panel model is used to solve the problem of reverse
causality and measurement error:

TFCEit = c + γTFCEi,t−1 + α1biasKE,it + Xit
′β + εit. (16)

4. Data

4.1. Variables

Following previous studies [43,44], labor (L), capital stock (K) and energy consumption (E) are
chosen as the basic input variables, real gross domestic product (GDP) and carbon dioxide emissions
(CE) as desirable and undesirable output variables. The variables are illustrated in detail as follows.

(1) Labor (L). Here, labor is one of the inputs in the production, so unemployment is not included in
labor. Labor is measured as each province’s employment. Its unit is millions of workers. The data
are from China Labor Statistical Yearbook.

(2) Capital stock (K). Capital stock (constant 2001 price) in China’s 30 provinces is estimated by
applying the perpetual inventory method [45]. 2001 is set as the base year. Gross fixed capital
formation is converted into constant 2001 price by each province’s fixed assets investment price
index. Then, capital stocks from 2001 to 2014 are calculated by the specific depreciation rates and
base-year stocks in different provinces. The depreciation rates are obtained by using the method
of [46]. The calculation of capital stock is expressed as

Kit = Iit + (1− δi)Ki,t−1, (17)

where Kit and Iit are capital stock and gross fixed capital formation in constant 2001 price. δi is
the depreciation rate.
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(3) Energy consumption (E). Energy consumption is a comprehensive indicator to show the total
consumption of various kinds of energy. It includes coal, crude oil, natural gas, and electricity.
Its unit is million tons of coal equivalent. The data are collected from the China Energy
Statistical Yearbook.

(4) Real gross domestic product (GDP). It is measured by RMB billion in constant 2001 price. In this
paper, billion refers to one thousand million.

(5) Carbon dioxide emissions (CE). For lack of official statistical data of China’s carbon dioxide
emissions, it is calculated by applying the method introduced by Intergovernmental Panel on
Climate Change (IPCC) in 2006 [47] as

CE =
7

∑
i=1

FCEi + CC =
7

∑
i=1

ECi × Ei + Q× F, (18)

where FCEi is carbon dioxide emissions from fossil fuel i. CC is carbon dioxide emissions from
cement production. ECi is consumption of fossil fuel i, and Ei is carbon dioxide emissions
coefficient of fossil fuel i. Q is the cement production, and F is carbon dioxide emissions
coefficient of cement production. The data are collected from the China Energy Statistical Yearbook.
Carbon dioxide emissions coefficients are shown in Table 1.

Table 1. Carbon dioxide emissions coefficients.

Sources Coal Coke Gasoline Kerosene Crude oil Fuel oil Gas Cement

coefficients 1.647 2.848 3.045 3.174 3.150 3.064 21.670 0.527

Source: [47].

In the panel model, the dependent variable TFCE is obtained from the estimation result of Equation (3),
and the independent variable biasKE is calculated by Equation (10). Control variables are defined
as follows.

(1) R&D stock (rd). R&D stock is measured by the perpetual inventory method as

rdit = (1− δ)rdi,t−1 + Zit, (19)

where rdit denotes R&D stock, and Zit denotes R&D expenditure. δ is the depreciation
rate. The calculation is as follows. Firstly, according to [48], Chinese R&D expenditure
price index = 0.55 × consumer price index + 0.45 × fixed assets investment price index.
Then, R&D expenditure price index is used to deflate R&D expenditure into constant
2001 price. Finally, R&D stock is estimated by specific depreciation rate and base-year R&D stock.
According to the existing studies [49], the depreciation rate is set to 15%. The base-year R&D
stock is calculated as

rdi0 = Zi0(1 + g)/(g + δ), (20)

where g is the average growth rate of R&D expenditure before the observation period. Here, g is
set to 5%, according to [50]. The data on R&D expenditure are from China Science and Technology
Statistical Yearbook.

(2) FDI stock (fdi). The calculation method of FDI stock is the same to R&D stock. FDI is converted
into constant 2001 price by fixed assets investment price index. The average growth rate of FDI is
set as 15%, and the depreciation rate of FDI stock is set to 5% here.
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(3) Industrial structure transformation (ois). The structural transformation in manufacturing sector is
calculated by [51] as

oisit = arccos

 3

∑
j=1

WijtWij0/

√√√√ 3

∑
j=1

Wijt
2 ·

√√√√ 3

∑
j=1

Wij0
2

, (21)

where Wijt represents the share of the jth industry’s output for province i in year t (j = 1,2,3).
2001 is the initial year, i.e., t = 0.

(4) Value added of industry (ivalue). The statistical scope of industrial value-added includes all the
industrial enterprises above designated size. It is calculated by the National Bureau of Statistics
in the production approach.

Besides, energy price (price) and higher education popularization (edu) are denoted by the fuel retail
price index and the percentage of higher education graduates on the total population. The data without
special illustration is all collected from the CEIC China Economic Database.

4.2. Descriptive Statistics

The sample used in this paper is the panel data on China’s 30 provinces from 2001 to 2014. due to
a lack of data, the Tibet Autonomous Region, Hong Kong and Macao special administrative regions,
and Taiwan Province are not included in the sample here. The missing data in the panel is added
by the linear interpolation, so the final sample is a balanced panel. Table 2 presents the descriptive
statistics of variables.

Table 2. Descriptive statistics.

Variables Units Mean Std. Dev. Min Max

Labor (L) Million workers 24.42 16.38 2.78 66.15

Capital stock (K) RMB billion (Constant
2001 price) 790.27 754.07 19.58 4431.17

Energy consumption (E) Million tons of coal
equivalent 105.94 74.66 5.20 388.99

Real gross domestic
product (GDP)

RMB billion (Constant
2001 price) 933.96 895.13 30.01 5089.54

CO2 emissions (CE) Million tons 299.82 220.45 18.88 1099.69
Industrial structural
transformation (ois) \ 0.1198 0.0876 0 0.3566

Energy price (price) base = 100 174.41 52.90 97.1 301.64
Popularization of higher

education (edu) % 0.33 0.19 0.04 0.87

R&D stock (rd) RMB billion (Constant
2001 price) 53.78 76.38 0.44 434.82

FDI stock (fdi) RMB billion (Constant
2001 price) 117.53 159.53 0.73 780.25

Value added of industry
(ivalue)

RMB billion (Constant
2001 price) 234.7 296.6 6.53 1671.9

5. Results

5.1. China’s Regional Carbon Emissions Efficiency

As illustrated above, the two-stage super-efficiency DEA is applied to estimate the total
factor carbon emissions efficiency of China’s 30 provinces from 2001 to 2014. Different regions
in China differ a lot in socioeconomic development, geographical features, natural resources, and so
on. Hence, 30 provinces are divided into four economic areas, i.e., eastern, central, western,
and northeastern, according to the economic area division method introduced by the National Bureau
of Statistics in 2011. The Eastern area includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Guangdong, and Hainan; the Central area includes Shanxi, Anhui, Jiangxi, Henan,
Hubei, and Hunan; the Western area includes Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou,
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Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang; and the Northeastern area includes
Liaoning, Jilin, and Heilongjiang. (Note: This economic area division method does not include
Hong Kong, Macao special administrative regions, and Taiwan Province.)

Figure 1 presents China’s regional total factor carbon emissions efficiency during 2001–2014.
The nationwide average was between 0.65 and 0.75 during this time, which still leaves much room for
improvement. Of the four economic areas, the Eastern area had the highest emissions efficiency, with an
average of over 0.8, while the Central and Western areas did not perform so well. From the variations,
the overall carbon emissions efficiency rose steadily during 2001–2007 and 2009–2014, but reversed
slightly during 2007–2009, reaching the bottom in 2009. This is probably due to the 2008 financial crisis.
The Crisis slowed down the economic transition, and hampered the improvement of carbon emissions
efficiency. At the regional level, the Eastern area’s efficiency increased quite steadily. The Northeastern
area’s efficiency fluctuated most greatly, which presented a clear downward trend during 2001–2009,
and even dropped below the nationwide average in 2004. One of the possible reasons is that the
Northeastern area has acted as the most important heavy industry base in China and consumed large
amounts of energy for a long time. Since 2011, benefiting from the Chinese government’s green growth
and sustainable development goals, the rate of energy consumption and CO2 emissions in China has
clearly declined, and regional carbon emissions efficiency has also gradually increased.Sustainability 2017, 9, x FOR PEER REVIEW  9 of 17 
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Figure 1. China’s regional total factor carbon emissions efficiency during 2001–2014.

5.2. China’s Biased Technical Change

According to the methodology in Section 3.2, the panel data of labor, capital stock, and real
gross domestic product in constant 2001 price in China’s 30 provinces during 2001-2014 are used to
estimate the time-varying elasticity production function. To obtain a more credible result of China’s
regional technical change bias, both the full sample and subsamples are used to estimate the function.
The division method for subsamples is consistent with the economic area division method mentioned
above, i.e., it divides the full sample into four subsamples. Then, full sample and subsample estimations
are used to calculate the biased technical change for the whole country and each province, respectively.

Figure 2 uses the double coordinate system to present China’s biased technical change during
2001–2014. Technical change’s capital-labor bias and energy-labor bias were both greater than 0,
and decreased slightly, while the capital-energy bias was smaller than 0, but has risen since 2007.
It indicates that the technical change in China is energy-biased, but the gap between capital and energy
narrows down.
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It is noteworthy that technical change’s capital-energy bias declined again in 2009–2011.
This period is consistent with the execution of the famous Four Trillion Government Investment Plan
in China. In order to promote the economy’s recovery after the 2008 Financial Crisis, China’s central
government launched an investment plan with total investment of four trillion RMB in 2009–2010.
During this period, a lot of infrastructure programs have been approved, and energy-intensive
industries like steel, petroleum, metallurgy, and cement, recover again. The structural transformation
was once stagnant. It might hinder China’s technical change to transfer from energy-biased
to capital-biased.

5.3. The Effects of Biased Technical Change on Carbon Emissions Efficiency

Table 3 reports the estimates for effect of biased technical change on carbon emissions efficiency.
Here Feasible Generalized Least Squares (FGLS) is applied to overcome heteroscedasticity on the
cross section. Robust standard errors clustered at the province level are obtained by the bootstrapped
method based on 50 replications in order to account for measurement errors, or at least partially.
The benchmark model says that technical change’s capital-energy bias produces a positive effect on
the total factor carbon emissions (Row 1, Column 1; Table 3). Then, the multivariate analysis also finds
that the positive impact is significant at the 1% level (Row 1, Column 2; Table 3).
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Table 3. Estimates for effect of biased technical change on carbon emissions efficiency.

TFCE (1) FGLS (2) FGLS (3) FGLS (4) FGLS (5) Diff-GMM

biasKE
6.3817 ***

(1.6728)
4.5690 ***

(0.4982)
3.9246 ***

(0.9901)
4.1922 ***

(0.9380)
2.8219 ***

(0.7258)

ois 0.4788 ***

(0.1519)
0.3521 ***

(0.1210)
0.3274 ***

(0.1141)
0.3057 ***

(0.0626)

price −0.0040 ***

(0.0005)
−0.0007 ***

(0.0002)
−0.0002
(0.0003)

−0.0003
(0.0008)

edu 0.2629 ***

(0.0714)
0.2975 ***

(0.0656)
0.2391 **

(0.0525)
0.2869 ***

(0.0502)

rd 0.0012 ***

(0.0004)
0.0009 ***

(0.0003)
0.0008 ***

(0.0002)
0.0009 ***

(0.0003)

fdi 0.0006 ***

(0.0002)
0.0004 **

(0.0002)
0.0004 **

(0.0002)
0.0003 **

(0.0001)

ivalue −0.0005 **

(0.0002)
−0.0004 **

(0.0002)
−0.0004 **

(0.0002)
−0.0003 *

(0.0002)
province fixed effect No No Yes Yes

year fixed effect No No No Yes

Lag.TFCE 0.5833 **

(0.2663)

Constant 0.4625 ***

(0.0280)
0.2553 ***

(0.0511)
0.3020 ***

(0.0592)
0.3029 ***

(0.0616)
R2 0.0494 0.5312 0.8911 0.8961

AR (1) test 0.1626
[0.0021]

AR (2) test 0.0480
[0.3371]

Sargan test 25.1189
[0.2420]

Sample 420 420 420 420 360

Note: Robust standard errors clustered at the province level are obtained by the bootstrapped method based
on 50 replications, and they are presented in parentheses. p-values of test statistics are in square brackets.
* Statistical significance at the 10% level. ** Statistical significance at the 5% level. *** Statistical significance
at the 1% level.

After that, the fixed effect model is used to control the influence of omitted variables. The results
show that, even after the unobserved heterogeneity at the province and year level is controlled,
the estimate for biased technical change’s effect is still robust (Row 1, Column 3, 4; Table 3).

In order to eliminate the endogeneity induced by reverse causality and measurement error,
the Difference GMM (Diff-GMM) is used to estimate the dynamic panel. The coefficient of Lag. TFCE is
significant at 1% level. The estimation for dynamic panel is necessary. The core coefficient is still
positive and statistically significant at 1% level (Row 1, Column 5; Table 3). The AR (1) test indicates
that there is first-order serial correlation. The AR (2) test shows that the second-order serial correlation
does not exist. It indicates that Diff-GMM estimates are reliable. The second-order lag term of TFCE is
chosen as the instrument, and the Sargan test verifies its effectiveness. Overall, the increasement of
capital-energy bias really helps to improve the carbon emissions efficiency in China.

In the control variables, industrial structure transformation, popularization of higher education,
R&D stock, and FDI stock all produce positive and statistically significant impact on total factor carbon
emissions efficiency, while value added of industry is negatively correlated with carbon emissions
efficiency. These provide Chinese evidence consistent with previous work mentioned above. The effect
of energy price on carbon emissions efficiency is significantly negative without controlling the year
fixed effect. However, when the year fixed effect is controlled, it becomes negligible. It is probably due
to the fact of unified pricing in China. The price has been distorted in the national energy market for
a long time. As a result, the energy price is strongly correlated to year heterogeneity rather than the
region heterogeneity.
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5.4. Mechanism

The improvement of technical change’s capital-energy bias on carbon emissions efficiency can be
explained from the factor substitution in the process of industry upgrade.

Diamond technical change bias essentially measures production factors’ relative marginal
production growth rate, or difference between marginal production growth rate of production factors.
As discussed above, China’s technical change bias is energy>capital>labor, which indicates that
energy’s marginal production growth rate is highest under the impact of technical change. This is also
an important periodic feature when a country or region develops from the agricultural economy to the
industrial economy.

From its economic reform in 1978 to the first 10 years of this century, China has gradually
transited from the dual economy to the unified economy with the deepening industrialization
and urbanization. Technical change caused energy’s marginal production growth rate to exceed
capital’s and labor’s, which is the main reason for energy overconsumption in China. As a result,
the share of energy-intensive industry began to increase. Although the rapid development of
energy-intensive industry plays a certain role in economic growth, the extensive development pattern,
relying on excessive energy input to maintain economic growth, undeniably decreases energy efficiency,
and increases carbon emissions. It naturally restricts the improvement of carbon emissions efficiency.

But then, with the exceed consumption of energy, its relative marginal production growth rate
inevitably decreases. Since 2011, China’s capital-energy bias in technical change has kept a steady
increase (Figure 2). The increase of capital-energy bias can be interpreted from the rising slope
of capital-energy substitution elasticity (see Figure 3). Obviously, a rational economy tends to the
energy-saving production, when it needs to invest more and more energy to offset the rising relative
price of capital.Sustainability 2017, 9, x FOR PEER REVIEW  13 of 17 
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Figure 3. China’s factor substitution elasticity in 2001-2014. Note: Energy-labor substitution elasticity
(E-L) is measured by the left-side coordinate system, while capital-labor substitution elasticity (K-L),
and capital-energy substitution elasticity (K-E) are measured by the right-side coordinate system.

In Figure 3, the energy-labor substitution elasticity also decreases gradually in 2001-2014. That is,
the energy-labor substitutability becomes weaker, too. The synchronous increasing relative importance
of labor and capital on energy in the production is a strong signal for the new-round industry
upgrade in China. It indicates that the dominant sector is transiting from energy-intensive industry
to knowledge-intensive and technology-intensive industry. As a matter of fact, only when the
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knowledge-intensive and technology-intensive industry become the core sectors in this country,
can capital’s marginal production growth rate be higher than energy’s, i.e., technical change’s
capital-energy bias is numerically positive.

One direct result of this transition is that the share of energy-intensive sector slows down its
growth, and declines later, while the share of knowledge- and technology-intensive sector increases
gradually. And that is really happening in China now. It will lead to carbon emissions abatement,
which is beneficial to the enhancement of carbon emissions efficiency. Biased technical change
influences the carbon emissions efficiency via factor substitution in industry upgrade process is
described in Figure 4.
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To further verify this mechanism, the interaction term of technical change’s capital-energy bias
(biasKE) and industrial structural transformation (ois) is added into the panel model. The estimation
result is presented in Table 4. The interaction term is positive, substantial, and statistically significant
both in the fixed effect panel and the dynamic panel model (Row 3; Table 4). Industrial upgrade
indeed helps to enhance the biased technical change’s improvement on the carbon emissions efficiency.
All these indicate that the factor substitution in industry upgrade process is an important channel for
biased technical change to produce a positive impact on China’s carbon emissions efficiency.

Table 4. Estimates for interaction impact of biased technical change and industrial structural
transformation on carbon emissions efficiency.

TFCE (1) FGLS (2) FGLS (3) FGLS (4) FGLS (5) Diff-GMM

biasKE
5.0261 ***

(1.8573)
4.1249 ***

(0.9555)
3.6657 ***

(0.9928)
3.8263 ***

(0.9528)
2.7293 ***

(0.7046)

ois 0.3163 ***

(0.1162)
0.4032 **

(0.2006)
0.3556 **

(0.1489)
0.3760 **

(0.1634)
0.3090 **

(0.1232)

biasKE × ois 1.8792 ***

(0.2411)
1.2243 ***

(0.3801)
1.5282 ***

(0.5305)
1.5136 ***

(0.5121)
1.4729 ***

(0.4646)
other control variables No Yes Yes Yes Yes
province fixed effect No No Yes Yes

year fixed effect No No No Yes

Lag.TFCE 0.4906 **

(0.2106)
Sample 420 420 420 420 360

Note: Robust standard errors clustered at the province level are obtained by the bootstrapped method based on
50 replications, and they are presented in parentheses. p-values of test statistics are in square brackets. * Statistical
significance at the 10% level. ** Statistical significance at the 5% level. *** Statistical significance at the 1% level.

5.5. Robustness of Biased Technical Change’s Measurement

Technical change’s capital-energy bias (biasKE) is the primary independent variable in the panel
model. Its measurement is important to the estimation. The proxy for energy (E) employed above is
the total energy consumption.
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To check its robustness, four other proxies are used for the energy: coal consumption, crude oil
consumption, natural gas consumption, and electricity consumption, and the technical change’s
capital-energy bias is re-estimated. Figure 5 reports the estimation results using different proxies
for energy. Technical change’s capital-energy bias was smaller than 0 during the observation period,
and has increased substantially. That is, technical change in China is indeed energy-biased, and the
gap between capital and energy has gradually diminished since 2007. Different estimations are quite
close to each other in both magnitude and tendency. Using different proxies for energy would not
affect the estimation on technical change’s capital-energy bias. The estimation result using the total
energy consumption is robust.
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6. Conclusions and Policy Implications

According to this paper’s findings, China’s total factor carbon emissions efficiency still has a large
room for improvement. Carbon emissions efficiency varies a lot across regions. Eastern area boasts
the highest efficiency, while other areas do not perform well during the observation period. For an
active government, more attempts need to be made to help the nation to get out of the current carbon
emissions dilemma in the context of global climate change.

Technical change’s increasing capital-energy bias substantially improves China’s carbon emissions
efficiency. After eliminating the endogeneity, the estimates are still robust. The mechanism behind is the
changing factor substitution elasticity in the industry upgrade process. The structural transformation
of manufacturing sector, popularization of higher education, R&D and foreign direct investment all
positively affect carbon emissions efficiency. These are of significant value to policy makers who are
seeking the solutions for improving carbon emissions efficiency.

Based on the findings, this paper puts forward the following policy recommendations. On the
one hand, the economic growth goal should be adjusted actively to promote the economy to transit
from an investment-driven pattern (extensive development) to an innovation-driven pattern (intensive
development). Greater emphasis ought to be laid on achieving a balance between the economy and
the environment, which is vital to realize sustainable development and green growth, characterized by
high efficiency and low emissions. On the other hand, more policies could be implemented to enhance
the upgrade of the industrial structure. The knowledge- and technology-intensive industry ought to
be encouraged to increase capital’s marginal production growth rate, thus promoting the economy to
transition to an energy-saving one.
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