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Abstract: Fine particulate matter (PM2.5) has been an important environmental issue because it can 
seriously harm human health and can adversely affect the economy. It poses a problem worldwide 
and especially in China. Based on data of PM2.5 concentration and night light data, both collected 
from satellite remote sensing during 1998–2013 in China, we identify the socio-economic 
determinants of PM2.5 pollution by taking into account the spatial flow and diffusion of regional 
pollutants. Our results show PM2.5 pollution displays the remarkable feature of spatial 
agglomeration. High concentrations of PM2.5 are mainly found in Eastern China (including 
Shandong, Jiangsu, and Anhui provinces) and the Jing-Jin-Ji Area region in the north of China 
(including Beijing, Tianjin, and Hebei provinces) as well as in the Henan provinces in central 
China. There is a significant positive spatial spillover effect of PM2.5 pollution, so that an increase in 
PM2.5 concentration in one region contributes to an increase in neighboring regions. Whether using 
per capita GDP or nighttime lighting indicators, there is a significant N-shaped curve that relates 
PM2.5 concentration and economic growth. Population density, industrial structure, and energy 
consumption have distinct impacts on PM2.5 pollution, while urbanization is negative correlated 
with PM2.5 emissions. As a result, policies to strengthen regional joint prevention and control, 
implement cleaner manufacturing techniques, and reduce dependence on fossil fuels should be 
considered by policy makers for mitigating PM2.5 pollution. 
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1. Introduction 

As the acceleration of industrialization and urbanization in recent years, air quality continues 
to deteriorate in China, resulting in increased threats to human health and sustainable economic 
development. Since 2013, several large-scale and long-duration haze incidents have taken place in 
China, and the whole society is now more concerned about air pollution problems, especially PM2.5 
(fine particulate matter that is 2.5 micrometers or less in diameter). PM2.5 is rich in many toxic 
organic components and easily reaches the lungs when inhaled. Exposure to high PM2.5 levels for a 
long time constitutes a significant health risk. Previous research has found that PM2.5 pollution is 
strongly associated with many diseases, including asthma, lung cancer, and heart disease [1–4]. 
Research indicates that the number of premature deaths owing to outdoor air pollution is estimated 
to be between 350,000 and 500,000 annually in China [5]. Premature deaths, loss of working hours, 
and related welfare expenses caused by air pollution have resulted in an estimated GDP loss of 10% 
in China [6]. In addition, PM2.5 pollution poses a great threat to economic growth, traffic safety, 
climate change, and so on [7–11].  
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In response to the frequent occurrence of fog and haze pollution, the administrative 
department has formulated a series of policies to mitigate atmospheric pollution in China [12]. For 
instance, the Chinese Ministry of Environmental Protection released a new Ambient Air Quality 
Standard in 2012, which includes a PM2.5 concentration monitoring index for the first time and takes 
PM2.5 concentration as the main control objective for improving air quality. According to the new 
standard, the upper limit of the average concentration of PM2.5 is 35 μg/m3 in China [13] . Besides, 
an Action Plan for Air Pollution Prevention and Control was issued in 2013, which promises that 
concentration of hazardous particles including PM2.5 will be reduced by about 10% below the 2012 
level. 

PM2.5 pollution correlates not only with chemical and physical factors such as temperature, 
wind speed, and climate, but also with social and economic factors. Many previous studies focused 
on the main chemical mechanism of haze formation in China [14–16]. However, few studies have 
quantitatively measured socioeconomic factors that affect PM2.5 emissions, which remain poorly 
understood in China [17,18]. Therefore, if we are to mitigate pollution, it is crucial to identify the 
key anthropogenic effect factors on PM2.5 emission. The objective of this research was to explore the 
causes of PM2.5 pollution from the perspective of economic and social factors. Specifically, we 
applied a spatial econometric model to explore the influence of economic growth, population 
density, urbanization, industrialization, and energy consumption on PM2.5 concentrations. In 
addition, we investigated the spatiotemporal patterns and spatial correlations of PM2.5 pollution to 
provide a scientific reference for policy makers. 

2. Literature Review 

As is well known, the relationship between economic growth and environmental pollution has 
always been one of the central issues in environmental economics. Many studies have focused on 
this topic, and there have been some empirical tests based on the Environmental Kuznets Curve 
(EKC) hypothesis put forward by Grossman and Krueger [19]. The EKC hypothesis states that there 
is an upside-down U-shaped relationship between pollution emission and growth—that is, at the 
beginning of economic developing, environmental pollution increases as income rises, but beyond a 
certain inflection point, pollution declines with increased income [20]. Although some research 
results support the inverted U hypothesis [21–23], other studies provide inconsistent or even 
opposite evidence [24–26]. Overall, the results suggest that there may exist complicated relationship 
between economic growth and environmental quality.  

Most of the studies on the EKC hypothesis examined the relationship between per capita GDP 
and different pollutants, including mainly CO2, SO2, NOx, CO, water pollution, and solid waste. 
Many studies confirm the existence of a typical upside-down U curve between environmental 
pollution and economic growth. For instance, Fosten et al. [23] investigated the EKC hypothesis by 
using UK data and found that an upside-down U curve exists between CO2 and SO2 emissions and 
income. The empirical results of Apergis and Ozturk [27] confirm the existence of converse-U 
correlativity between economic developing and CO2 emissions for fourteen Asian countries. Lin 
and Liscow [28] provided evidence supporting an inverted-U shaped curve for seven out of 11 
water pollutants in China. However, some studies got different results and challenged the 
inverted-U hypothesis. In these studies, researchers found a variety of relationships between 
economic growth and pollution emission, such as a linear relationship [29,30], a U-shaped 
relationship [31], an N-shaped relationship [32], or even an inverted N-shaped relationship [33]. 
Moreover, a few researchers find no evidence of a significant relationship between pollution 
emissions and economic growth. Since the conclusions depend mainly on the selection of pollutants 
and the choice of econometric technique, the findings provide mixed conclusions about the EKC 
hypothesis [34]. 

To better explain the environmental impacts, subsequent empirical study on the relationship 
between air pollution and economic development often incorporated other socioeconomic factors 
than per capita income that may affect air quality. These factors, including but not limited to 
urbanization, energy consumption, population density, and industrial structure, have also been 
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introduced into EKC studies. Energy consumption is often taken as an important determinant of 
pollution emissions. Many empirical studies confirm that higher energy consumption produces 
more pollution emissions [35,36]. Moreover, some researchers stress that rapid industrialization 
requires a great deal of energy consumption and, correspondingly, more pollution emissions 
[37,38]. For example, Li et al. [39] have confirmed that the expansion of secondary industries has 
notable positive influence on seven pollutant emissions. Moreover, population density and 
urbanization are also often seen as factors affecting air quality[38,40]. By using the Geographical 
Weighted Regression (GWR) model, Fang [41] found that population and urbanization have 
remarkable influence on air quality. Ma et al. [42] also found that higher population density and 
rate of urbanization lead to more resource consumption and more pollution emissions, which affect 
environmental quality. However, the results of Luo et al. [37] show that although urbanization is a 
decisive factor in pollution emission, the impact varies across regions, while population density 
plays a weak role. Thus, the empirical results indicate that urbanization and population density 
have ambiguous effects on air quality and need further research [37]. 

Although there is a growing literature dealing with the EKC hypothesis for different 
pollutants, such as CO2, SO2, and NOx, researchers have paid little attention to the relationship 
between economic growth and PM2.5 emission [37,43]. For a developing country such as China, the 
lack of stable and reliable long-term detection data is a major obstacle for PM2.5 pollution research. 
Only in recent years has PM2.5 concentration been monitored in China. With advances in 
technology, the total-column aerosol optical depth (AOD) observed by satellites can provide 
spatially continuous information of PM2.5 concentrations. Moreover, existing reports seldom 
consider the spatial correlation and spatial spillover effects when analyzing the factors affecting air 
pollution [44,45]. In fact, haze pollution has significant spatial diffusion [42]. Air pollution is not a 
simple local environmental issue but to a large extent a broader regional problem because it will 
spread or transfer to adjacent regions through natural factors such as atmospheric circulation, 
atmospheric chemical action, and economic mechanisms such as pollution leakage, industrial 
transfer, industrial agglomeration, and traffic flow. Therefore, the results found using some 
traditional econometric methods such as ordinary least square (OLS) and generalized least squares 
(GLS) may be invalid or biased when applied to factors affecting haze pollution. In order to 
effectively avoid estimation bias caused by ignoring spatial correlation, this research chooses the 
proper spatial panel model to study the influencing factors in the spatial spillover effect of PM2.5 
pollution. 

It is also important to emphasize that China's GDP statistical systems and accounting methods 
are relatively backward [46], with some suspicion about whether official statistics are entirely 
reliable [47]. Recent studies have begun to use the nighttime satellite lighting data published by the 
US National Oceanic and Atmospheric Administration (NOAA) to measure economic growth [48–
50]. Different from the traditional use of GDP to measure the level of economic development, 
satellite lighting data is not affected by regional price factors. Besides, it includes not only market 
economy goods and services measured by GDP but also non-market factors [51]. Recognizing that 
there is some question about the authenticity of China's statistics, this paper carries out a more 
robust empirical test of PM2.5 pollution and the EKC hypothesis by using satellite lighting data as an 
alternative to GDP. 

This study fills gaps in previous studies in the following ways. First, taking into account the 
spatial dependence effect of PM2.5 emission, we use the spatial panel model to investigate factors 
that influence PM2.5 pollution. We selected the most appropriate spatial econometric model from the 
three kinds of common spatial regression models. We then effectively avoid estimation error caused 
by ignoring spatial autocorrelation of space units. Second, in view of the doubts about the 
authenticity of China’s economic statistics, this paper uses nighttime lighting data of satellite 
monitoring as a proxy variable for economic growth, allowing for a more robust empirical test of 
the EKC hypothesis of PM2.5 pollution. 

The balance of this article is arranged as below：Data collection and model methods are 
introduced in Section 3. Results of socio-economic factors affecting haze concentration are 
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presented in Section 4. In a final Section 5, we summarize our research findings and make some 
policy recommendations. 

3. Research Methods and Data 

3.1. Exploratory Spatial Data Analysis 

Before using a spatial econometric technique, one must establish a spatial dependence. In this 
study, we apply Global Moran's I index to analyze the overall spatial autocorrelation of provincial 
PM2.5 emission. The Global Moran's I can be presented as   I = ∑ ∑ 𝑤 𝐴 �̅�𝐴 �̅�𝑆 ∑ ∑ 𝑤  (1)

𝑆 = 1𝑛 𝐴 �̅� , �̅� = 𝐴  , 1 𝐼 1 (2)

I indicates the overall correlation degree of inter-regional PM2.5 concentration. The closer the I value 
is to 1, the stronger the positive autocorrelation between regions, and the closer tended toward –1, 
the higher the negative autocorrelation, A value of 0 means that there is no spatial autocorrelation. 
Ai is the PM2.5 concentration value of the i area, n represents the area number, and W indicates the 
spatial weight matrix. We set the weight matrix as follows: 

w = 𝑤 𝑤 … 𝑤𝑤 𝑤 … 𝑤⋮𝑤 ⋮𝑤 ⋮… ⋮𝑤  (3)

Here n represents the total number of areas to be studied, Wij indicates the adjacent relationship 
between region i and region j. If they have common vertices or common edges, wij = 1, otherwise wij 
=0. 

Global Moran’s I characterize the spatial clusters of PM2.5 concentrations as a whole. However, 
the index ignores the potential instability of the spatial process and does not reflect the spatial 
heterogeneity of the internal units of the region[52]. The Local Indicators of Spatial Association 
(LISA) can test whether the spatial clusters are significant or not. This article uses the Local Moran's 
I to measure the local autocorrelation, and then conducting significance test of Moran's I. The 
formula is as below. 𝐼 = 𝐴 𝐴𝑆 𝑊 𝐴 𝐴  (4)

Here, S2 and �̅� are the same as in Equation 1; Ii is the local Moran's I of region i, which measures the 
PM2.5 association of the i area and its neighboring area. Ii > 0 indicates positive correlation. Ii < 0 
shows negative correlation. 

3.2. Spatial Panel Data Model 

3.2.1. Model Specification 

The EKC hypothesis argues that environmental pollution and per capita income existing 
inverted-U relationship. Supplementing the EKC model, this paper introduces urbanization, energy 
consumption, industrial structure, and population density into the model. The extended EKC 
model is as follows:  𝐿𝑛𝑝𝑚 = 𝛼 + 𝛽 𝐿𝑛 𝑦 + 𝛽 𝐿𝑛𝑦 + 𝛽 𝐿𝑛𝑦 + 𝛽 𝑢𝑟 + 𝛽 𝐿𝑛 𝑒𝑛 + 𝛽 𝑖𝑛𝑠+ 𝛽 𝐿𝑛 𝑝𝑑 + 𝜀  (5)
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Here, Ln is logarithmic forms of variable, pmit denotes PM2.5 concentration, y represents 
economic growth, ur is the urbanization rate, en stands for energy consumption, ins is industrial 
structure, pd is the population density, and ε means the standard error term. 

3.2.2. Spatial Econometric Method 

Because of the heterogeneity and autocorrelation of spatial units, the results estimated are 
biased and invalid by the traditional econometric method based on hypothesis of homoscedasticity 
and cross-section independence. Spatial econometrics model can effectively deal with spatial 
interaction between geographic units. In fact, PM2.5 emission generated in one region generally 
diffuses to surrounding regions due to of wind and other factors. That is, the observations are not 
independent of each other and have a strong spatial dependence. Therefore, since the traditional 
OLS regression method will cause biased estimation result due to spatial correlation, this study uses 
a spatial econometric model to measure spatial spillover effects. There are three kinds of common 
spatial econometric models: SLM, SEM, and SDM. 

The Spatial Lag Model (SLM) focuses on testing whether a variable experience a diffusion effect 
in a certain area—i.e., whether there is a spatial spillover effect. It takes into account that an observed 
value of a dependent variable in a certain region may depend in part on a spatially weighted average 
of the values of that dependent variable in adjacent regions. The SLM model can be presented as 
follows: 

 𝑦 = 𝛿 𝑤 𝑦 + 𝛽𝑥 + 𝜇 + 𝜆 + 𝜀  (6)

Here, yit indicates the i-th region’s PM2.5 concentration at time t. δ is the spatial autocorrelation 
coefficient, wij is the spatial weight matrix N×N. β represents the unknown parameter vector of the 
independent variable xit. The term μi represents a regional fixed effect and λt denotes a time-period 
specific effect. εit indicates a random error term, which obeys a standard normal distribution (0,σ2). 

The Spatial Error Model (SEM) is a method for dealing with spatial dependence of error terms. 
It can be seen as a combination of standard regression models and spatial autoregressive models of 
error terms. The SEM is specified as follows: 

𝑦 = 𝛽𝑥 + 𝜇 + 𝜆 + 𝜑 , 𝜑 = 𝜌 𝑤 𝜑 + 𝜀  (7)

Here, the φit term represents the spatially autocorrelated error term and ρ denotes the spatial 
autoregressive coefficient of the error term. 

In order to overcome some defects of the SLM and SEM models, Le Sage and Pace [53] 
proposed the spatial Dubin model (SDM), which contains the lagged terms of the interpreted 
variables and the explanatory variables. The spatial Durbin model is expressed as follows: 

 𝑦 = 𝛿 𝑤 𝑦 + 𝛽𝑥 + 𝑤 𝑥 𝛾 + 𝜇 + 𝜆 + 𝜀  (8)

Here, γ is a vector （k×1） of the spatial autocorrelation coefficient of the explanatory variable. 
Equation 8, if appropriately constrained, can describe all three models. If γ = 0, the model is 
simplified to SLM. If γ+ δβ = 0, the model is simplified to SEM. 

Since the estimation model includes the spatially lagged explanatory variables and interpreted 
variables, it is hard to accurately measure the effects of the independent variable on the dependent 
variable. LeSage and Pace [53] pointed out that using point estimation method may lead to 
erroneous conclusions when used to test whether there is spatial spillover effect in a spatial 
regression model. According to their suggestions, it is valid to use a partial derivative to measure the 
impact of changing the explaining variable on the explained variable. The effects of independent 
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variables on the dependent variables can be divided into three effects: The first is the direct effect; 
that is, the explained variable is affected by the changing of explanatory variable in the region. The 
second is the indirect effect; that is, the impact of changing the factor in the region on dependent 
variable in all other region. The third is the total effect; that is, the sum of these impacts. 

In this paper, the general least squares (OLS) method is employed to estimate the non-spatial 
panel data model. However, if the estimation of the spatial model uses OLS method, the coefficient 
estimates will be biased or invalid [54]. So, the maximum likelihood (ML) method is employed to 
estimate spatial model parameter. The model fitting effect is tested by the R2 and Log- likelihood 
function values. 

3.3. Data Collection 

The PM2.5 data which are estimated by combining Aerosol Optical Depth retrievals are collected 
from the Atmospheric Composition Analysis Group/Dalhousie University. The validation of 
satellite-derived estimates has been confirmed by empirical research, which suggests they are 
generally consistent with ground-based PM2.5 measurements [55]. We used ArcGIS to extract a 
dataset and obtained data on PM2.5 concentrations for 31 provinces in China during the sample 
period.  

The night light data used in this study came from the global DMSP/OLS nighttime light remote 
sensing data posted on the National Oceanic and Atmospheric Administration (NOAA) website. 
The data about China’s local administrative regions come from the 1:4 million vector maps provided 
by the China National Basic Geographic Information Center. This article uses ArcGIS software to 
extract data of China provincial administrative regions from the global nighttime lighting data 
during 1998-2013. To improve the accuracy of the data, we drew on Liu's suggestion [56] and 
processed the lighting data by inter-calibration and intra-annual composition methods to reduce the 
measurement error of the data. In this paper, the intensity of each grid is summed up as a measure of 
its total light data in the provincial area. The night light data divided by the number of permanent 
residents of each province (in units of 10,000) are used as a substitute for per capita GDP in each 
year. 

The urban population ratio of total population is selected to measure urbanization rate. 
Industrial structure is measured by the fraction of secondary industry among gross domestic 
product. The number of people per square kilometer is used to measure population density. Energy 
consumption is measured by per capita energy consumption. Economic growth is expressed by GDP 
(1998 constant price) divided by the total population at year-end. The research period covers the 
years 1998-2013 for 31 provinces of China, not including Taiwan province, Macao, and Hong Kong 
special administration regions due to missing data. All of these data are extracted from the Chinese 
statistical yearbook between 1998 and 2013 and China Energy Statistical Yearbook from 1998 to 
2013. 

4. Results 

4.1. Spatiotemporal Patterns of PM2.5 Concentration 

4.1.1. Spatial Distribution of PM2.5 Concentration 

Based on the air quality guidelines published by the World Health Organization（WHO）in 
2005, this paper divides the China’s PM2.5 densities in μg/m3 into five levels: Level I (<10), Level II 
(10–15), Level III (15–35), Level IV (35 –50), and Level V (>50). There are obvious regional differences 
in the distribution of China’s PM2.5 pollution. As shown in Figure 1, Levels I and II are mainly 
scattered in areas such as Qinghai-Tibet Plateau and the northwest including the Xinjiang, Gansu, 
and Inner Mongolia provinces, which are west of Hu’s line. PM2.5 concentration in most of these 
areas is lower than 10 μg/m3, which is the WHO standard for acceptable air quality. Level III, Level 
IV, and Level V are mainly located east of Hu’s line, which forms a west-east divide between low 
and high PM2.5 concentration. It is noteworthy that the regions of Level IV and Level V continued to 
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sprawl during the sample period, reflecting the trend toward rising PM2.5 emission in China. Level 
V—that is, the highest concentration level—is mainly found scattered in the Beijing-Tianjin-Hebei 
region in northern China; Henan province of Central China; and Shandong, Jiangsu, and Anhui 
provinces of Eastern China. These provinces not only have a high density of economic activities and 
coal-based industries but are also adjacent to each other. Therefore, the degree of environmental 
pollution shows obvious spatial dependence.     

  

  
Figure 1. The distribution of PM2.5 concentration in China (1998, 2003, 2008, 2013). 

4.1.2. Features of PM2.5 Concentration Variation 

As illustrated in Figure 2, the annual average value of China’s PM2.5 pollution shows a 
fluctuating pattern from 1998 to 2013. The average PM2.5 concentration value was 26.07 μg/m3 in 
1998, following which it increases to 40.32 μg/m3 in 2007, then slowly dropped to 33.83 μg/m3 in 
2012, and later rose again to 39.78 μg/m3 in 2013. It is noteworthy that the variation coefficient of 
PM2.5 concentration was between 0.3 and 0.5 in 1998-2013, and the overall fluctuation range has been 
relatively stable. The variation coefficient showed a noticeable increase from 1998 to 2006 and then 
decreased slowly from 2007 to 2013. This implies that the regional differences of China’s PM2.5 
concentration had a trend of expansion from 1998 to 2006 and shrunk progressively between 2007 
and 2013. 
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Figure 2. Average and variation coefficient of Chinese PM2.5 concentration (1998–2013). 

In order to intuitively describe the dynamic evolution and distribution features of PM2.5 
concentration, this study used the kernel density distribution to analyze its dynamic changes. Figure 
3 depicts the kernel density evolution path of PM2.5 emissions in 31 provinces of China between 1998 
and 2013. In general, the shape of the distribution curve of PM2.5 emissions changed significantly 
over the studied period and the curve itself moved to the right, implying that PM2.5 concentrations 
increased during the studied period. From the changes in the kurtosis of the density distribution 
curve, it is easy to see that the pattern of the haze pollution changed considerably from a sharp peak 
at lower concentrations to a broad peak at higher concentrations, meaning the increase of regional 
PM2.5 concentration difference in China.  

 

Figure 3. Kernel densities of PM2.5 concentration at the provincial level: 1998, 2003, 2008, and 2013. 
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4.2. Spatial Autocorrelation Test 

Table 1 demonstrates the Global Moran's I index of China’s PM2.5 concentration during 
1998-2013. Results of Moran's I are all significantly positive, which suggests that there is a positive 
spatial autocorrelation in PM2.5 concentration. In addition, Global Moran’s I index value also showed 
a rising trend although it fluctuated slightly during the study period, increasing from 0.295 in 1998 
to 0.435 in 2013, implying that the degree of spatial agglomeration of PM2.5 pollution is gradually 
increasing in China over time. 

Table 1. Global Moran’s I index of China’s PM2.5 concentration during 1998–2013. 

 I Z P 
1998 0.295 3.028 0.001 
1999 0.237 2.476 0.007 
2000 0.361 3.618 0.000 
2001 0.350 3.554 0.000 
2002 0.392 3.905 0.000 
2003 0.470 4.653 0.000 
2004 0.408 4.071 0.000 
2005 0.473 4.669 0.000 
2006 0.444 4.439 0.000 
2007 0.499 4.897 0.000 
2008 0.457 4.533 0.000 
2009 0.430 4.310 0.000 
2010 0.440 4.367 0.000 
2011 0.473 4.686 0.000 
2012 0.450 4.453 0.000 
2013 0.435 4.371 0.000 

Figure 4 illustrates the scatter plot of the distribution of provincial PM2.5 concentration under 
the geospatial weight matrix for 1998, 2003, 2008, and 2013. The vertical axis signifies the spatial lag 
value of the PM2.5 concentration; the horizontal axis shows the normalized PM2.5 concentration. 
These axes divide the PM2.5 pollution clusters into four types of spatial correlation (high-high, 
low-high, low-low, and high-low). From Figure 4, we can see that most of the provinces are situated 
in the upper right quadrant and the lower left quadrant, which further illustrates the significant 
high-pollution and low-pollution clustering characteristics for PM2.5 pollution in China. 
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Figure 4. Moran scatter plots of PM2.5 concentration in 31 Chinese provinces. 

Local spatial clusters maps are shown in Figure 5, based on local Moran’s I index. Five regions 
are distinguished: a High-High (HH) area denoted by red color, a High-Low (HL) area denoted by 
green color, a Low-Low (LL) area denoted by blue color, a Low-High (LH) area denoted by orange 
color, and areas are not related in a spatially significant manner by gray color. From 1998 to 2013, 
there was a slight increase in provinces located in High-High areas. In 1998, only Beijing, Henan, and 
Shandong provinces were situated in a HH area. However, in 2003, 2008, and 2013, there were, 
respectively, 6, 5, and 5 provinces located in High-High areas. These H-H provinces are mainly 
scattered in Beijing-Tianjin-Hebei and East China, and include Beijing, Hebei, Tianjin, Shandong, 
Anhui, and Jiangsu provinces. The Low-Low areas are concentrated in the southwest of China, and 
include Yunnan, Sichuan, Tibet, Qinghai, and Guizhou provinces in four representative years. 
Xinjiang and Hainan are of the L-H and H-L cluster type, respectively. These results are basically 
consistent with the above conclusions about the spatial distribution of PM2.5 concentration. The H-H 
area is a region with a high level of economic development and high concentration of industrial 
economic activity. The autocorrelation between these regions in economic space relates to a high 
dependence on air pollution, making these regions high concentration areas for PM2.5. 
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Figure 5. LISA cluster map of PM2.5 concentration in China in 1998, 2003, 2008, and 2013. 

4.3. Empirical Results 

4.3.1. Estimated Result 

For the specification of the model, we first made estimates based on non-spatial panel data 
models, and then distinguished whether the spatial dependence of sample data is present or not by 
employing the Lagrange Multiplier (LM) test and Robust Lagrange Multiplier (RLM) test. As Table 2 
shows, the results of the LM test and the RLM test are significant at the 1% level, implying that the 
original hypothesis of no spatially auto-correlated error term can be refused. As a result, spatial 
panel models are suitable for the estimation of sample data. 

Table 2. Diagnostic tests of model specification (per capita GDP). 

Determinants  Determinants  
LM spatial lag 16.508***(0.000) Wald test spatial lag 41.22***(0.000) 

Robust LM spatial lag 69.946***(0.000) LR test spatial lag 37.46***(0.000) 
LM spatial error 80.516***(0.000) Wald test spatial error 22.90***(0.001) 

Robust LM spatial error 69.946***(0.000) LR test spatial error 22.72***(0.001) 

Note: ***, **, or*represent 1%, 5%, or 10% thresholds of significance, respectively. 

To determine which spatial econometric model is most suitable for dealing with spatial 
dependence, this study used the SDM model estimation and then performed the Wald test and 
likelihood ratio (LR) test. The outcomes of testing significantly reject the null hypothesis that there is 
no spatial lag and no spatial error at the 1% level (Table 2). Moreover, the R2 and log-likelihood value 
of the SDM model are higher than for other models. As a result, the SDM model, which includes 
features of both SEM and SLM, is most suitable for our sample analysis. In addition, the Hausman 
test results 36.73, p < 0.001, show that the SDM model with fixed effect model is most suitable for 
model specifications. Table 3 reports the empirical results of the Pooled OLS model, SLM model, 
SEM model, and SDM model. 

The spatial correlation coefficient ρ in the SDM model is significantly positive, suggesting that 
there is a strong spatial spillover effect in PM2.5 pollution in China. The finding shows PM2.5 
pollution is affected by the economic and social factors in the region and by pollution in neighboring 
areas; that is, the rise of PM2.5 emission in neighboring provinces will increase the level of provincial 
pollution. The spatial spillover effect further proves the appropriateness of using spatial econometric 
analysis tools and also provides a theoretical basis for the strategies of inter-regional prevention and 
control of pollution. 

Table 3. Parameter summary of estimation results (per capita GDP). 

 
 Pool ols SLM SEM SDM 

 Coef. t Coef. z Coef. z Coef. z 
intercept −77.90*** 25.780       
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ur −0.311 0.223 −0.323 0.242 −0.354 0.225 −0.490** 0.243 
ins 1.068*** 0.260 1.106*** 0.236 0.942*** 0.200 0.871*** 0.241 

lnpd 0.207*** 0.013 0.151*** 0.012 0.205*** 0.015 0.203*** 0.018 
lnen 0.389*** 0.045 0.375*** 0.042 0.311*** 0.041 0.338*** 0.044 
lny 24.850*** 8.203 24.72*** 7.160 23.57*** 6.960 20.400*** 7.070 

(lny)2 −2.655*** 0.868 −2.667*** 0.757 −2.487*** 0.738 −2.136*** 0.750 
(lny)3 0.0938*** 0.030 0.095*** 0.027 0.087*** 0.026 0.074*** 0.026 
W*ur       −0.072 0.464 
W*ins       −0.888 0.543 

W*lnpd       -0.105*** 0.031 
W*lnen       0.056 0.079 
W*lny       −24.330* 13.56 
W*lny2       2.435* 1.443 
W*lny3       −0.081 0.051 
ρ   0.484*** 0.045   0.623*** 0.051 
λ     0.650*** 0.048   
σ2   0.088*** 0.005 0.080*** 0.005 0.078*** 0.005 
R2 0.580  0.586  0612  0.622  

Log-likelihood   −114.808  −109.572  −98.214  

Note: ***, **, or*represent 1%, 5%, or 10% thresholds of significance, respectively. 

The coefficients of industrial structure, population density, and energy consumption are 
significantly positive, suggesting that a higher share of secondary industry in the GDP and more 
population agglomeration increase PM2.5 pollution. Contrary to expectations, the coefficient of 
urbanization rate is significantly negative, which means that the PM2.5 emissions decline with 
growing urbanization. This result seems surprising and is different from most existing research 
conclusions. However, as the urbanization rate increases, the public's requirements for 
environmental quality are correspondingly increased. Under the pressure of public opinion, the 
government introduced stricter environmental regulation policies, which led to the transformation 
of industrial structure from high-pollution industries to low-emission tertiary industries. This result 
can significantly reduce pollution emissions. Moreover, some researchers have found that rural 
energy consumption is an important source of PM2.5 pollution. Urbanization can also significantly 
reduce this part of pollution emissions[57].  

It is a focus of special interest that for the coefficients of income, the quadratic term and the 
cubic term for three models are significantly positive, negative, and negative, respectively. 
According to the estimated results, we can conclude that there exists an N-shaped curve between 
economic growth and PM2.5 pollution, implying that PM2.5 emissions first increased, then decreased, 
and then increased again with GDP per capita growth during the observed period. 

The product terms of the spatial weight’s matrix W and independent variables in the model 
mirror how these variables in neighboring provinces affect the provinces' PM2.5 pollution. The 
coefficients of W*ur, W*ins, W*lnpd, and W*lny are negative, meaning that increases of urbanization 
rate, secondary industry, population density, and per capita GDP in nearby provinces will mitigate 
provincial PM2.5 pollution, although only two parameters passed the significance test. One possible 
explanation is that the demand for environmental quality increases as incomes rises in neighboring 
areas, which may diminish spillover effects on provincial pollution emissions. In addition, the fact 
that the coefficients of W*lnen are insignificant indicates that the spatial effects of energy 
consumption on PM2.5 pollution is trivial. 

4.3.2. Direct and Indirect Effects of SDM Estimates 

In order to explore the interaction information contained in the regression coefficients, we give 
the estimated results of the direct effect, indirect effect, and total effect of variables. As displayed in 
Table 4, the coefficient of the direct effect is similar to the estimated coefficient of the Spatial Dubin 
Model in Table 3, with subtle changes due to spatial feedback effects. The direct effects of 
urbanization rate, industrial structure, population density energy consumption, and GDP per capita 
are –0.586, 0.785, 0.209, 0.396, and 18.06, respectively. Among them, the direct effect of per capita 
GDP is larger than others, meaning economic growth is a major factor affecting the PM2.5 emission in 
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the province. A positive change of income by 1% will increase the PM2.5 concentration of the 
province by approximately 18%. For indirect effects, only the parameter of energy consumption 
passed the significance test, which shows that energy consumption will not only increase pollution 
in the province but also increase pollution in neighboring provinces. A positive change of energy 
consumption by 1% will increase PM2.5 concentration by approximately 0.7% in neighboring 
provinces. 

Table 4. The effects measurement of Spatial Dubin Model (per capita GDP). 

 Direct z Indirect z Total z 
ur −0.586** 0.287 −0.989 1.232 −1.575 1.422 
ins 0.785** 0.317 −0.898 1.424 −0.113 1.679 

lnpd 0.209*** 0.0161 0.0531 0.054 0.262*** 0.056 
lnen 0.396*** 0.0512 0.660*** 0.214 1.056*** 0.246 
lny 18.06** 8.075 −28.42 32.41 −10.36 37.05 

(lny)2 −1.916** 0.854 2.700 3.437 0.785 3.923 
(lny)3 0.067** 0.030 −0.084 0.121 −0.017 0.138 

turning points 5039/37786      

Note: ***, **, or*represent 1%, 5%, or 10% thresholds of significance, respectively. 

According to the results shown in Table 4, the direct effect for income (the linear term), the 
quadratic term, and the cubic term are significantly positive, negative, and positive, respectively. 
Therefore, the discussions for estimated results are similar to those for Table 3, confirming an N 
shape for the relationship between PM2.5 pollution and GDP per capita. The direct effect of lny, (lny)2, 
and (lny)3 can therefore be used directly to compute the turning points of EKC. Our estimated 
turning points of the EKC for PM2.5 pollution is 5039 (yuan) and 37,786 (yuan), respectively. In 2013, 
the last year of the study period, the GDP per capita of all the samples exceeded 5039 (yuan), 
implying all provinces are located on both sides of the second inflection points. Therefore, the 
environment may get worse with economic development based on our estimates after PM2.5 
pollution reaches the second peak of EKC in China. 

4.3.3. Robustness Test 

To ensure the reliability of the estimated results, this paper took the nighttime satellite data as 
an alternative to GDP. Based upon the results of the LM test, Roust-LM test, Wald test, and LR test, 
the Spatial Durbin Model is most suitable for sample data (Table 5). Therefore, the SDM model with 
fixed effect is chosen to estimate result. 

Table 5. Diagnostic tests of model specification (nighttime satellite data). 

Determinants  Determinants  
LM spatial lag 20.536***(0.000) Wald test spatial lag 53.38***(0.000) 

Robust LM spatial lag 8.053***(0.005) LR test spatial lag 50.38***(0.000) 
LM spatial error 80.421***(0.000) Wald test spatial error 28.81***(0.000) 

Robust LM spatial error 67.938***(0.000) LR test spatial error 31.39***(0.000) 

Note: ***, **, or*represent 1%, 5%, or 10% thresholds of significance, respectively. 

As shown in Table 6, the coefficients of lny, (lny)2, (lny) 3 are positive, negative, and positive, 
respectively, and all pass a 1% significance level test. The estimated results once again confirm that 
the relationship between per capita GDP and PM2.5 emission take on N-shaped curve. Similar to the 
results shown in Table 3, the coefficients of industrial structure, population density, and energy 
consumption are significantly positive, while urbanization is significantly negative. These results 
further confirm that industrial structure, population density, and energy consumption have 
positive contribution on PM2.5 concentration while urbanization has negative effect on it. The 
estimated coefficient for ρ is also significantly positive, which shows the same spatial spillover 
effect in haze pollution. Thus, robust tests indicate the analysis results are basically consistent with 
the empirical results in Table 3. 
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Table 6. Parameter summary of estimation results (nighttime satellite data). 

 Pool ols SLM SEM SDM 
 Coef. t Coef. z Coef. z Coef. z 

intercept −43.54*** 9.133       
ur −0.606*** 0.175 −0.768*** 0.157 −0.737*** 0.148 −0.838*** 0.154 
ins 0.885*** 0.252 0.806*** 0.222 0.747*** 0.189 0.586*** 0.221 

lnpd 0.225*** 0.014 0.163*** 0.0134 0.226*** 0.015 0.236*** 0.017 
lnen 0.311*** 0.047 0.353*** 0.049 0.256*** 0.047 0.294*** 0.048 
lny 26.36*** 5.537 23.33*** 4.911 17.98*** 4.828 21.00*** 4.756 

(lny)2 −5.321*** 1.111 −4.742*** 0.983 −3.636*** 0.964 −4.225*** 0.952 
(lny)3 0.356*** 0.073 0.319*** 0.065 0.244*** 0.064 0.282*** 0.063 
W*ur       0.864*** 0.331 
W*ins       −0.420 0.488 

W*lnpd       −0.160*** 0.029 
W*lnen       0.186* 0.106 
W*lny       18.81* 10.32 

W*(lny)2       −3.826* 2.080 
W*(lny)3       0.253* 0.139 

ρ   0.456*** 0.046   0.643*** 0.048 
λ     0.629*** 0.050   
σ2   0.088*** 0.006 0.080*** 0.005 0.074*** 0.005 
R2 0.591  0.559  0.583  0.659  

Log-likelihood   −114.808  −105.312  −89.616  

Note: ***, ** or* are 1%, 5%, and10% level of significance, respectively. 

As shown in Table 7, the results using nighttime satellite data have the same sign and size as the 
results using per capita GDP shown in Table 4, and the significance has improved. The estimated 
coefficient of indirect effect is, however, different from the result in Table 4. One difference is that 
economic growth not only has a marked influence on PM2.5 concentration in local regions but also 
intensifies pollution in neighboring areas through indirect effects. Overall, the conclusions of the 
night light data and the real per capita GDP data are consistent, which once again verifies the 
robustness of results. 

Table 7. The effects measurement of Spatial Dubin Model (nighttime satellite data). 

  Direct z Indirect z Total z 
ur −0.769*** 0.181 0.807 0.897 0.0380 1.009 
ins 0.570** 0.287 −0.138 1.319 0.432 1.544 

lnpd 0.235*** 0.0161 −0.0214 0.0542 0.213*** 0.0572 
lnen 0.381*** 0.0608 0.975*** 0.311 1.356*** 0.352 
lny 28.81*** 5.913 84.55*** 29.59 113.4*** 33.47 

(lny)2 −5.807*** 1.190 −17.13*** 6.006 −22.94*** 6.797 
(lny)3 0.388*** 0.0793 1.137*** 0.403 1.525*** 0.456 

Note: ***, **or* represent 1%, 5% or 10% thresholds of significance, respectively. 

5. Conclusions and Implications 

We have used the exploratory spatial data analysis method to examine the spatial 
autocorrelation of PM2.5 pollution in 31 provinces in China between 1998 and 2013 and further used 
the SDM model to empirically investigate the impact of socioeconomic factors on haze pollution. In 
this section, we summarize our conclusions and make policy recommendations. 

There is a significant spatial clustering characteristic of PM2.5 pollution in China, i.e., high PM2.5 
polluted areas are adjacent to other high polluted areas, and low PM2.5 polluted areas are adjacent to 
other low PM2.5 polluted areas. The results show that the regions with high PM2.5 concentrations are 
distributed in the Jing-Jin-Ji area in the north of China, the Henan province in central China, and the 
Shandong, Jiangsu, and Anhui provinces in eastern China. Considering the difference in PM2.5 
pollution level and the characteristics of agglomeration, the government should implement a 
differentiated regional pollution control strategy. For the Central and Eastern regions where high 
PM2.5 concentrations are found, it should further strengthen comprehensive management to reduce 
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pollution emissions. For the western regions with less haze pollution, it should raise the entry 
threshold for high pollution industry to prevent the risk of pollution shifted from east to west. 

We found a significant positive spillover effect in China's regional haze pollution. The increase 
of PM2.5 concentration in neighboring areas will aggravate haze pollution in the region. To reduce 
the spatial effects of air pollution, it is necessary to strengthen haze control cooperation between 
provincial governments. The government should establish PM2.5 pollution joint prevention, control, 
supervision, and coordination mechanism at the regional level, which transfers haze pollution 
control from local governance to regional integrated governance. Due to the “externality” of haze 
pollution control, cross-regional ecological compensation mechanism should be put in place to 
motivate participants to effectively implement cross-regional collaborative governance tasks.  

Spatial econometric analysis results show that there is a significant N-shaped EKC curve 
between PM2.5 pollution and economic growth. Some provinces are still to the left of the second 
inflection point where haze pollution will increase with economic growth. The decoupling phase 
between haze pollution and economic growth in China has not yet come. Most of the regions will be 
in a phase of simultaneous increase in pollution and economic growth in the coming period. The 
government should implement stricter environmental regulation measures to realize the decoupling 
between haze pollution and economic growth as soon as possible. 

Population density, not surprisingly, has strong influences on PM2.5 pollution. The higher the 
population density, the greater the demand for housing, home appliance, and motor vehicles, 
resulting in more energy consumption. Increased pollution emissions come not from these demands, 
from manufacturing, and also from traffic congestion. The government should attach great 
importance to the influence of population agglomeration on the quality of atmospheric 
environment. Raising the share of public transportation, the efficiency of resource use, and the 
sharing of pollution control and emission reduction facilities are essential measures to mitigate PM2.5 
pollution in high-density population areas. 

Industrial structure also affects PM2.5 concentration. Significant pollution results from 
secondary industry, especially heavy industry such as iron and steel, cement, etc. High-polluting 
industries emit large amounts of small particulate matter as well as other pollutants. As a result, one 
effective measure to reduce PM2.5 pollution is to adjust and optimize industrial structure. In a 
country with coal as the main energy source, more needs to be done to diversify energy sources and 
reduce dependence on coal by increasing the number of renewable and clean energy sources such as 
wind and solar energy. Government departments should also strengthen policy guidance for cleaner 
production, energy conservation, and more recycling. In addition, the government needs to provide 
financial and technical support and encourage human talent for resource conservation and 
environmental protection. 

In short, this study explores the dependence of PM2.5 concentrations on economic activity and 
population density and provides a comprehensive insight into the economic mechanism of haze 
pollution in China. Furthermore, we reach policy conclusions based on our results and put forward 
ideas on controlling haze pollution. One of the limitations of our study is that the spatial unit 
analyzed is a province, a relatively large region. Given the development differences and the internal 
diversity in a single province, future research should identify the mechanisms generating PM2.5 
based on smaller scales in China, such as at the city and county level. As a complex air pollution 
phenomenon, PM2.5 is affected by both climatic factors and human factors. Therefore, an estimation 
model including both anthropogenic factors and natural factors may be helpful in better 
understanding the mechanism of PM2.5 formation in future research. 
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