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Abstract: The Internet of Things (IoT) has become an important strategy in the current round of
global economic growth and technological development and provides a new path for the intelligent
development of the logistics industry. With the development of the economy, the demand for logistics
benefits is becoming more important. The appropriate use of technologies related to IoT to improve
logistics efficiency, such as cloud computing, mobile computing and data mining, has become a
topic of considerable research interest. Picking operations are currently an extremely important and
cumbersome aspect of logistics center tasks. To shorten the picking distance and improve work
efficiency, this paper uses the genetic algorithm, ant colony algorithm and cuckoo algorithm to
optimize the picking path in a fishbone-layout warehouse and establishes an optimized model of the
warehouse picking path under the fishbone layout. Data-mining technology is used to simulate the
model and obtain the simulation data under the condition of multiple orders. The results provide a
theoretical basis for the study of the fishbone-layout picking path model and has certain practical
significance for the efficient operation of logistics enterprises. Through optimization, it is conducive
to the sustainable development of enterprises and to achieving long-term profitability.

Keywords: ant colony algorithm; cuckoo algorithm; fishbone layout; genetic algorithm; path optimization

1. Introduction

Warehouse layout plays an important role in the logistics activities of the whole warehouse [1–6]. As a
result, enterprises can obtain benefits by changing the layouts of their warehouses [7–16]. Reference [17] first
questioned the traditional layout of shelves, where the fishbone layout was proposed and, under certain
assumptions, it was verified that the fishbone layout reduced costs by an average of 23.5% compared with
the traditional layout. Reference [18] pointed out that in terms of order selection, the fishbone layout is
able to reduce the walking distance by 29.4% compared to the traditional layout. Therefore, it is of great
significance to study the optimization of path picking for the fishbone layout. Government-funded studies
of the picking path strategy for storage centers under the fishbone layout will improve the overall logistics
development level of China to a certain extent, which is conducive to optimizing industrial structure and
promoting the development of the national economy. For logistics enterprises, such research is capable of
accelerating the response of customer demand, improving customer service satisfaction, enhancing overall
operational efficiency, reducing logistics costs, enhancing the competitiveness of enterprises, and promoting
the rapid and effective development of enterprises.

Compared with traditional algorithms, intelligent algorithms have certain advantages. In recent
years, scholars at home and abroad have performed substantial research on intelligent algorithms.
The genetic algorithm was first proposed by Professor J. Holland at the University of Michigan
in 1975. Reference [19] used the genetic algorithm to optimize the storage of goods in warehouses.
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Reference [20] designed a greedy genetic algorithm to effectively solve the assignment and scheduling
of vehicles. Reference [21] improved the basic genetic algorithm to solve or not layout optimization
problems. Reference [22] can improve the optimization effect by improving the genetic operator.
Reference [19] used the genetic algorithm to optimize the storage of goods in the warehouse, and used a
warehouse that stores fast-moving consumer goods to carry out an example verification. Reference [23]
designed a single-parent genetic algorithm based on improved genetic algorithm and applied it to
solve the problem of picking optimization in automated warehouse. Reference [24] proposed the use
of ABC method and adaptive hybrid genetic algorithm to solve the planning problem of warehousing
in the storage area. Reference [25] applied the micro-genetic algorithm to the actual warehouse case.
Reference [26] genetics algorithms have been used for analysis of logistics net in city logistics.

The ant colony algorithm was first proposed by the Italian scholar M. Dorigo et al. in 1991.
Reference [27] used the ant colony algorithm to solve the rebalancing problem of the production line.
In solving the scheduling problem of the production floor, reference [28] used genetic algorithms
and ant colony algorithms to solve scheduling problems. Considering the problem of cargo recovery,
reference [29] designed a hybrid ant colony algorithm to solve the problem of path optimization in
such cases. The cuckoo search was proposed in 2009 by the British scholars [30–32]. Reference [33]
proposed an ant colony algorithm with a three-level ladder structure, which effectively solved the
problem of shop scheduling. Reference [34] made appropriate improvements to the parameters of the
ant colony algorithm and improved the effectiveness of the algorithm.

Reference [35] improved the cuckoo algorithm to solve the problem of combinatorial optimization
in warehouses and improved the convergence speed and accuracy of the algorithm. Reference [36]
improved the cuckoo algorithm and applied the improved algorithm to solving the TSP problem.
Finally, the correctness of the algorithm was verified. Reference [37] introduced the 2-opt optimization
operator based on the traditional cuckoo algorithm, proposed an adaptive discrete cuckoo algorithm
(ADCS) and effectively solved the picking path optimization problem of TSP problems. Reference [38]
introduced the communication mechanism in the teacher-student communication algorithm into the
cuckoo algorithm and applied it to solve the scheduling problem in the workshop. Reference [39]
combined the penalty function method in the cuckoo algorithm and applied it to solve the optimization
problem in practical engineering projects. Reference [40] applied the cuckoo algorithm to solve the
multi-objective function optimization problem, and proposed a new multi-objective cuckoo search
algorithm to improve the efficiency of algorithm calculation. Reference [41] added some features of
collaborative search and adaptive search based on the cuckoo algorithm, and verified the effectiveness
of the improved algorithm.

This paper uses the cuckoo algorithm because it appears recently, and no scholars have used
it in the warehouse picking problem. Researchers have performed extensive research on intelligent
algorithms and picking paths. Nevertheless, research on the fishbone layout is rare and has only
appeared in recent years. For the layout of goods, in addition to the traditional layout, some scholars
have proposed new layout strategies such as the flying-V, the inverted-V, and the fishbone layout [42–47].
In research on the order picking path, there are currently six main types, namely, the S-type strategy,
the return-type strategy, the midpoint return transformation strategy, the maximum interval strategy,
the combined strategy and the optimal strategy. Most of the research on the optimization of goods
picking paths is based on the minimum total picking time. The intelligent optimization methods selected
include the heuristic algorithm, the neural network method, the genetic algorithm, the tabu search
method, the ant colony algorithm and the simulated annealing algorithm. We found that intelligent
optimization algorithms are often used in path optimization problems. In automated warehouses,
intelligent optimization algorithms are mostly used to solve stacker picking problems. Due to the
lack of research on the fishbone layout, few scholars have used such algorithms in the selection and
optimization of fishbone layout.

Compared with traditional algorithms, intelligent algorithms have certain advantages. Intelligent
algorithms can give satisfactory solutions to complex, constrained, nonlinear, and multiextremity
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global optimization problems in a short time. In recent years, researchers have performed extensive
research on intelligent algorithms, and new algorithms are constantly being proposed. Therefore,
it is very meaningful to study the application of intelligent algorithms to the selection problem.
Reference [48] proposed a method for optimizing the layout of different sizes of goods and used
genetic algorithms to optimize the costs of picking operations and the like. Eleonora Bottani and others
used genetic algorithms to optimize the storage of goods in a warehouse and used a warehouse that
stores fast-moving consumer goods to carry out a case study, which not only reduced costs but also
improved efficiency. The fishbone-layout picking path optimization problem is consistent with the
traveling salesman problem, and the intelligent algorithm has obvious advantages in solving such
problems. The genetic algorithm, ant colony algorithm, and cuckoo algorithm were applied to solve
the optimization problem of the picking path in this paper. The first two algorithms have been applied
to picking optimization problems, but there are no scholars that have applied the cuckoo algorithm
to solve the problems of warehouse picking [49]. Therefore, it is also valuable to conduct research
in this area.

In this paper, the intelligent optimization algorithms of the genetic algorithm, ant colony algorithm
and cuckoo algorithm are applied to the optimization problem of the fishbone-layout picking path,
which may benefit fishbone layout research. In particular, the application of the cuckoo algorithm
provides a theoretical basis for the better application of the cuckoo algorithm in solving warehouse
picking problems in the future. By using the intelligent optimization algorithm for the simulation
calculations, the fishbone layout is approximated optimally on the picking path, which provides ideas
for the subsequent optimization of the picking path with fishbone layout parameters. The establishment
of the hybrid picking path model of the fishbone layout provides a decision-making basis for
the efficient management and optimization control of the warehouse system and provides new
ideas and methods for supply chain management theory and the basic operations technology of
logistics distribution.

2. Construction of a Picking Path Model under a Fishbone Layout

2.1. Parameter Design of Fishbone Layout

Setting the parameters of the fishbone layout is a prerequisite for the optimization of the picking
path. A fishbone diagram is shown in Figure 1.

Figure 1. Example of a fishbone layout.
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The parameters of this article are set as follows:

r : Width of the warehouse;
a : Half length of the warehouse;
Wr : Width of the cross aisle on both sides and the rear cross aisle;
Wd : Width of two diagonal aisles (main aisle);
l1 : Width of the picking aisle;
l2 : Width of double row shelves;
Wh : Length of the diagonal aisle (main aisle);

α : Angle of the diagonal aisle (main aisle); and

S1, S2, S3, S4 : Four pick zones divided by the two diagonal aisles and the warehouse centerline

In order to construct the optimization model of the fishbone layout picking path problem,
this paper designs the fishbone layout warehouse, as shown in Figure 2 below:

Figure 2. Sketch of the fishbone layout warehouse.

In addition, some assumptions about the picking environment of the warehouse need to be made
before the model is established. The specific assumptions are as follows.

(1) When the picking operator picks, he must start from the I/O point. After picking is completed, he
must return to the I/O point. The two parts of the warehouse are symmetrical around the center.

(2) The space between parallel shelves is called the picking aisle. The space between Zone 1 and
Zone 2 is the main aisle, namely, the diagonal aisle. The space without shelves at the back of the
warehouse and the space without shelves at the side of the warehouse are collectively called the
aisles, namely, the rear aisles and the cross aisles on both sides of the warehouse.

(3) The cargo is stored on the shelves, and the shelves are made up of a variety of openings. The length
and width of each opening are the same, and the height of the shelves is not considered.

(4) In regard to picking walking distances, we only consider the distance to walk to the location of
the cargo, and the distance in the vertical direction is negligible. The picking aisle is a narrow
aisle. The picker walks along the center of the passage. When the picker picks items on shelves on
both sides of the aisle, the left and right movement distances are usually not considered, and both
sides can be selected.

(5) In the process of picking, when it is necessary to pass through the diagonal aisle and the cross
aisle, the picking personnel and equipment must walk along the centerline until entering another
sorting aisle.



Sustainability 2019, 11, 1148 5 of 17

(6) When the picking operator picks according to an order, items are selected according to the
position of the goods stored in the opening. The picking operator only needs to walk to the fixed
opening to pick, and the picking operation can only take place in the picking aisle.

(7) Before selection, all orders will be satisfied, and there will be no shortage in the selection process.
(8) The capacity of the equipment and the number of pickers are sufficient to meet the demand,

that is, the items in each order are chosen at a time when equipment and pickers are available.
(9) The selection of each item at a single location can be fulfilled at one time.

(10) In the fishbone layout warehouse, S1, S2 ,S3 and S4 are symmetrical about the diagonal aisle.
(11) S1, S2, S3, and S4 have the same number of picking aisles, and the number is m.
(12) The angle of the diagonal aisle is α = 45◦ . The length and width of each opening are equal and

are equal to the width of the picking aisle, that is, Wh =
1
2

l2 = l1 and Wr = l1 .

2.2. Construction of the Picking Path Model

Based on the parameters set in the fishbone layout and the assumptions set in the fishbone layout
selection, the optimization model of the picking path established in this paper is as follows:

Objective function:

D = min(d01x01 +
n

∑
i=1

n

∑
j=1

dijxij + dn0xn0) (1)

Restrictions:

n

∑
i=1

xij = 1, j = 1, 2, 3, ..., n (2)

n

∑
j=1

xij = 1, i = 1, 2, 3, ..., n (3)

∑
i,j∈ K

xij ≤ |K| − 1, K ⊂ V (4)

xij = 0 or 1 (5)

where: D indicates the total travel distance of the picker to complete a selection activity,
dij(1 ≤ i, j ≤ n, i 6= j) represents the shortest distance between i and j, d01 represents the distance
from the I/O point, which is the distance from the starting point to position i, and dn0 represents the
distance from the final destination back to the starting point.

The function (6) is given by

xij =

{
1, The picker goes through the path from the position i to the position j,
0, Otherwise.

(6)

The objective function (1) indicates that the total walking distance is the shortest distance in a
single selection process. Equations (3) and (4) indicate that the locations to be picked are picked once
and only once. x01 and xn0 indicate that the picker starts from point I/O and returns to point I/O.
The picker will certainly go through two paths, from position 0 to position 1 and from position n to
position 0, so x01 = 1 and xn0 = 1. Formula (5) indicates that there is no small loop, that is, solutions
with an incomplete path are removed.
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2.3. The Distance Between Any Two Picking Points in the Fishbone Layout

The optimization problem of the picking path in the fishbone layout warehouse is an NP hard
problem, and we set the objective function as the shortest distance of the picking path. First, we assume
that the sequence number of any picking point is (s, x, y, z), where s = 1, 2, 3, 4, represents the number of
the zone where the object is located. x = 1, 2, ..., m, indicates the number of the aisle to be selected, and
x ≤ 7 represents the number of aisles in the fishbone-layout warehouse. y = 0 or 1, which represents
the two sides of the aisle in which the object is to be selected. If the item is on the lower or right
side of the aisle, then y = 0. z = 1, 2, 3, ..., n indicates that the goods to be chosen are in opening
n. The numbering method is such that the numbers of the openings near the side and rear aisles
are 1, and numbers are sequentially given as 1, 2, 3, ..., n. I/O is set to(0, 0, 0, 0), and the number is 0.
Now let us assume that there are any two picking points P, Q, and the parameters are (si, xi, yi, zi) and
(sj, xj, yj, zj). dij is the distance between two points.

First, we calculate the solution for d01. The number 1 is the first position to be picked, which can
be any point N in the picking scheme, where the serial number is (s1, x1, y1, z1):

The Equation (7) is given by

d01 =

1
2

l1 + (x1 − 1)l1 +
1
2

l2 + (x1 − 1)l2

sin α
+

1
2

Wd sin α + (21− 3(x1 − 1)− z1 +
1
2
)Wh (7)

According to the assumptions of this paper, the above equation can simplified, as follows:

d01 = ((3
√

2− 3)x1 − z1 + 25− 3
2

√
2)l1 (8)

Let dn0 denote the distance from the last picking point back to I/O , assuming that the number of
points M is (Sn, Xn, Yn, Zn). In this case, dn0 can be solved as follows:

The Equation (9) is given by

dn0 =

1
2

l1 + (xn − 1)l1 +
1
2

l2 + (xn − 1)l2

sin α
+

1
2

Wd sin α + (21− 3(xn − 1)− zn +
1
2
)Wh (9)

According to the assumption of this paper, the above equation is simplified, as follows:

dn0 = ((3
√

2− 3)xn − zn + 25− 3
2

√
2)l1 (10)

dij represents the distance between any two picking points P, Q, and the solution process is
shown as follows:

1. When P, Q are two points in the same picking aisle, that is, xi = xj, the solution process is
as follows:

dij = |Zi − Zj|Wh (11)

Equivalent to the following formula,

dij = |Zi − Zj|l1 (12)

2. When P, Q are two points in different picking aisles, the solution is divided into the following
two cases:
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(1) From picking point P to Q through the diagonal aisle, we have the following:
The Equation (13) is given by

dij =
|xi − xj|(l1 + l2)

sin α
+ (49− 3(xi + xj)− (zi + zj))Wh + Wd sin α (13)

According to the assumptions of this paper, the above equation can be simplified, as follows:

dij = (3
√

2|xi − xj| − 3(xi + xj)− (zi + zj) + 50)l1 (14)

(2) From picking point P to Q through the aisle on both sides or the rear aisle, we have
the following:

dij = |xi − xj|(l1 + l2) + (Zi + Zj − 1)Wh + Wr (15)

According to the assumptions of this paper, the above equation can be simplified, as follows:

dij = (3|xi − xj|+ (zi + zj))l1 (16)

In summary:
The Equation (17) is given by

dij = min

{
(3
√

2|xi − xj| − 3(xi + xj)− (zi + zj) + 50)l1.

(3|xi − xj|+ (zi + zj))l1
xi, xj ∈ M; zi, zj ∈ N (17)

3. When P, Q are two points that are located in different picking zones, the following situations
are discussed: (1) When P, Q are two points that are distributed in the two different zones of
zone 1 and zone 4, there are two optional paths for picking. (2) When P, Q are distributed in the
two different zones of zone 1 and zone 2 or zone 3 and zone 4, there are three optional paths for
picking. (3) When P, Q are distributed in the two different zones of zone 1 and zone 3 or zone 2
and zone 4, there are three optional paths for picking (assuming that P is in zone 1 and Q is in
zone 3). (4) When P, Q are two points that are distributed in the two different zones of zone 2
and zone 3, there are two optional paths for picking.

For example, when P, Q are two points that are distributed in the two different zones of zone 1
and zone 4, there are two optional paths for picking:

(1) Without the passage of the rear aisle, that is, after passing through aisle xi where Q is selected,
we enter the diagonal aisle and then enter aisle xi where Q is selected. Then:
The Equation (18) is given by

dij = (49− 3xi − 3xj − zi − zj)Wh + 2Wd sin α + l2 +
(xi + xj − 2)(l1 + l2)

sin α
(18)

According to the assumption of this paper, the above equation can be simplified, as follows:

dij = (53− 6
√

2 + (3
√

2− 3)(xi + xj)− zi − zj)l1 (19)

(2) With the passage of the rear aisle, that is, after passing through aisle where Q is selected, and
after passing through zones 2 and 3, we enter the diagonal aisle and then enter aisle xj where Q
is selected to be picked.
The Equation (20) is given by

dij = (97− 6xi − 6xj − zi − zj)Wh + (sin α + cos α)Wd + Wr + (xi + xj − 1)(l1 + l2) (20)
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According to the assumptions of this paper, the above equation can be simplified, as follows:

dij = (97− 3xi − 3xj − zi − zj)l1 (21)

In summary:
The Equation (22) is given by

dij = min

{
dij = (53− 6

√
2 + (3

√
2− 3)(xi + xj)− zi − zj)l1

dij = (97− 3xi − 3xj − zi − zj)l1
xi, xj ∈ M; zi, zj ∈ N (22)

The above Equations (7)–(22) represent some solution of the distance between any two picking
points in the fishbone layout warehouse. Due to the randomness of the goods in the picking order,
different picking orders may have different picking paths depending on the picking strategy.

3. Calculation Steps of Three Intelligent Algorithms

3.1. Genetic Algorithm Operation Steps

In the warehouse picking process, the specific implementation steps of the basic genetic algorithm
are as follows:

(1) First, generate the distance matrix of the coordinates of the goods to be picked and the distance
traveled by any goods to be picked;

(2) Randomly generate the initial population P(0);
(3) According to the fitness function, find the fitness value in the initial population, determine the

current optimal picking path, and calculate the total path length;
(4) Select the crossover operation to generate new individuals and new populations; and
(5) Determine whether the solution with the highest fitness in the new population satisfies the output

condition. If yes, output the optimal solution; otherwise, return to step 3 to continue the iteration
until the terminating condition is satisfied.

In the process of picking goods in the warehouse, the structural flow chart of the basic genetic
algorithm is shown in Figure 3.
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Start

Generating an initial population

i=i+1

Calculating individual fitness

Select,Cross,variation

Generating new populations

Whether the

 requirements are met

Output maximum fitness individual

Y

N

Figure 3. Genetic algorithm flow chart.

3.2. Ant Colony Algorithm Operation Steps

According to the previous research in the literature, we take the number of ants as the number of
goods to be picked, and m ants are located in n storage places. After accessing store i, the ant moves to
the next store based on the pheromone concentration function probability pk

ij on path j:

pk
ij =


[τij(t)]

α[ηij(t)]
β

∑i∈allowedk
[τij(t)]

α[ηij(t)]
η j ∈ allowedk

0 others

(23)

Among these parameters, allowedk represents the set of all paths that ants can choose when
walking to the next store, which changes with the progress of ant k. The amount of information τij will
gradually weaken with time, and ηij is the expectation of being transferred from store i to j.

To intuitively illustrate the realization of the ant colony algorithm, this article assumes the
following symbolic descriptions:

m : The number of ants in the colony;
NC_6max : The maximum number of iterations;
C : The coordinates of n storage locations;
n : The number of the opening in which the goods to be picked are located;
Alpha : Parameters that indicate the importance of pheromones;
Beta : Parameters that indicate the significance of the heuristic factor;
Rho : Pheromone evaporation coefficient;
Q : Pheromone increase intensity coefficient;
Eta : Said heuristic;
Tau : Pheromone matrix;
R_best : The best path from generation to generation;
L_best : The length of the best path from generation to generation.
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In the warehouse picking process, the specific implementation steps of the basic ant colony
algorithm are as follows:

(1) Initialize the parameters and set the amount of initial information for storage (goods);
(2) Assign ants to the various selected goods and modify the ant taboo list Tabu;
(3) According to the selection probability formula, calculate the moving probability of each

picking point;
(4) Each ant k(k = 1, 2, 3, ..., m) chooses the opening j according to the probability moving formula

and modifies the ants’ tabu table Tabu;
(5) If the ants have traversed all the selected openings, then proceed to step 6; otherwise, return to

step 4.
(6) Calculate the loop distance traveled by each ant, and calculate and update the intercity

pheromone Tau;
(7) If the stop condition is satisfied, then the loop is ended, and the result is output. Otherwise,

the taboo list of each ant is deleted and the procedure returns to the second step.

In the warehouse picking process, the structural flow chart of the basic ant colony algorithm is
shown in Figure 4.

Start

Variable initialization

  i>=Total number 

of picking points

Assigning ants Modify the taboo table

Each ant chooses the next picking point j

Number of storage points traversed i=1

Calculate the probability of movement 

between picking points

Move to j and modify Tabu

Output result

Circuit distance of each ant

i+1

Calculate and updat pheromones

End

Meet The requirements

N

N

Y

Y

Figure 4. Ant colony algorithm structure flow chart.
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3.3. Cuckoo Algorithm Operation Steps

A cuckoo bird randomly looks for the bird’s nest. In the Cuckoo Search algorithm, each egg
represents a solution, and during initialization, a solution is created randomly. The cuckoo random
walking equation is as follows:

x(t+l)
i = xt

i + α +©Levy(λ) (24)

where xt
i is the ith solution of the tth generation, α is the step information, +© is the dot multiplication,

and Levy(λ) is the random search path, that is generated by the distribution. The levy formula is
as follows:

levy− u = t−λ(1 < 3) (25)

The specific formula for generating a new individual is as follows:

v = v + Stepsizej × rand n[D] (26)

where rand n[D] is the Gaussian distribution generated on [1, D], where Stepsizej is calculated
as follows:

Stepsizej = 0.01(
uj

vj
)

1
λ (v− Xbest) (27)

Among the above parameters, u = t−λ × rand n[D] ,v = rand n[D] , and v is initialized as v = xt
i .

After the new program is generated, it needs to be compared with the original program, and the
program with the lower fitness value will be reserved for the next generation.

In the event that a cuckoo’s egg is detected, the host bird’s selection and establishment of a new
nest takes preference over random walk behavior, as follows:

vi =

{
Xi = rand(Xr1 − Xr2) rand < Pa

Xi otherwise
(28)

In the CS algorithm, the solution is limited by the search space, Within this space, the lower bound
of the population search is Xmin = (x1,min, x2,min, ..., xD,min), and the upper bound of the population
search is Xmax = (x1,max, x2,max, ..., xD,max)

In the warehouse picking process, the structural flow chart of the basic cuckoo algorithm is shown
in Figure 5.
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Start

Create initial nest Calculate the fitness value of all initial values

Whether

 the termination

 condition is reached

Use Levy flights to generate new solutions

Calculate the new solution fitness value Fi

Select the current optimal solution

Find and update inferior solutions with probability 

Pa, and generate new solutions

Find and save the optimal solution in the population

Output optimal solution

N

Y

Figure 5. Flow chart of the cuckoo algorithm structure.

A detailed description of the algorithm steps is as follows:
Step 1. Population initialization; randomly initialize the nest position p0 = [x(0)1 , x(0)2 , ..., x(0)n ],

find the best bird location x0
best, and record the fitness value fmin of the optimal solution

x0
best simultaneously.

Step 2. Loop body

(1) Keep the best birdhouse position xt−l
best of the previous generation. Then use Formula (24) to update

all nest locations and get a new set of nest locations, which is indicated as pt = [x(t)1 , x(t)2 , ..., x(t)n ].
After that, the selection operation is performed, and by comparing this result with the previous
generation of bird’s nest positions pt − 1 = [x(t−1)

1 , x(t−1)
2 , ..., x(t−1)

n ], the bird’s nest position

gt = [x(t)1 , x(t)2 , ..., x(t)n ] with the best fitness value is selected.
(2) The probability of a cuckoo’s egg being found is pa ,compare pa with r ∈ [0, 1]. Save the nest

location in gt that meets pa ≤ r and update the preserved nest location with Formula (28),
Then the new nest location with the corresponding nest location in the middle of gt . Choose the
best bird nest location and keep it. This will yield a new set of better bird’s nest locations:
pt = [x(t)1 , x(t)2 , ..., x(t)n ].

Step 3. Update the population, Then, the fitness value of the optimal bird’s nest position
xt

best obtained from pt in (2) is compared with the optimal value fmin. If the value is less than fmin,
update fmin and gbest simultaneously, if the value is not less than fmin, then do not update fmin and gbest.
After that, if the stop condition is satisfied, the global optimal value fmin and the corresponding global
optimal position gbest are output, and if the stop condition is not reached, the iteration is continued.

To visualize the cuckoo algorithm implementation process, this article uses the following symbols:
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n : Indicates the number of host nests;
pa : Indicates the probability that the nest is discovered by the host;
nd : Indicates the number of points to be picked in the fishbone layout;
N_iter : Indicates the maximum number of iteration.

In the warehouse picking process, the concrete realization of the basic cuckoo algorithm is as follows:

(1) Parameter initialization;
(2) Generate initial nest, initialize all solutions of the population and calculate the fitness of all

initial solutions;
(3) Use the Levy flights method to generate new solutions;
(4) Calculate the fitness of the new solution;
(5) A candidate solution is randomly selected from the initial solution, and the solution with smaller

fitness value is retained by comparing the fitness values of the candidate solution and the
new solution;

(6) Discover and update the inferior solutions with probability pa, which result in new solutions;
(7) All the optimal solutions remain in the next generation; find and save the optimal solution;
(8) If the stop condition is satisfied, the loop is ended and the result is output; otherwise, return to

step 3 to continue the iteration.

4. Comparison of the Performance of the Three Intelligent Algorithms

4.1. Solution Example

To facilitate the calculation, this chapter sets the width of the picking channel l1 to 1. The genetic
algorithm parameters are as follows: M = 100, Cnum = 500, Pc = 0.8, Pmutation = 0.08. The ant
colony algorithm parameters are as follows: Alpha = 1, Beta = 5, Rho = 0.1, NC_max = 500, Q = 100.
The cuckoo algorithm parameters are as follows: n = 100, Pa = 0.25, and N_iter = 500. In reality,
due to the random arrival of customer orders, the optimization effect of picking different items is also
different. For this reason, we randomly generated 100 storage positions for the points to be selected and
randomly selected 10 orders, each containing 10, 20, 30 and 40 points to be selected for the calculations.

4.2. Comparison of the Performance of the Three Algorithms

The above 10, 20, 30, and 40 points for the selected orders were run through the three intelligent
algorithms, and the results are summarized. The results of the comparisons are summarized in the
following Tables 1–3:

Table 1. Summary of Results of The Initial Run.

Number of
Picking Points Method CPU Running Time Optimization Results Equivalent to the S-Type

to Improve the Distance
Quivalent to S-Type
Improvement Ratio

10

S type 0 187.7 0 0
GA 25.191099 160.97 26.73 14.24%

ACO 2.984924 146.46 41.24 21.97%
CS 33.538280 146.46 41.24 21.97%

20

S type 0 345.43 0 0
GA 27.219359 330.94 14.49 4.19%

ACO 10.568599 268.21 77.22 22.35%
CS 3.196464 272.70 72.73 21.05%

30

S type 0 415.67 0 0
GA 29.630254 491.15 −75.48 −18.16%

ACO 28.910247 302.21 113.46 27.30%
CS 3.524749 304.70 110.97 26.70%

40

S type 0 407.91 0 0
GA 31.732872 607.37 −199.46 −48.90%

ACO 62.150011 302.94 104.97 25.73%
CS 3.585820 293.43 114.48 28.07%
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Table 2. Summary of Operating Results with 10 Orders.

Order Path Distance 1 2 3 4 5 6 7 8 9 10

10

S type 188 203 196 175 184 207 192 183 177 231
GA 161 165 170 148 152 171 159 167 142 206

ACO 146 147 152 133 140 153 144 137 142 173
CS 146 147 152 133 140 153 144 137 142 173

20

S type 345 373 321 349 330 345 362 297 308 319
GA 331 347 301 317 305 309 338 257 274 301

ACO 268 289 276 265 274 263 287 226 246 248
CS 273 280 282 247 274 273 269 233 237 257

30

S type 416 471 445 408 433 396 421 439 418 427
GA 491 503 429 561 482 430 491 464 583 529

ACO 302 367 328 310 354 301 307 318 301 316
CS 305 359 307 321 341 301 313 329 297 318

40

S type 408 499 439 419 476 461 430 463 408 437
GA 607 709 633 672 584 496 549 683 491 539

ACO 303 374 319 296 373 351 319 320 296 317
CS 293 368 323 304 364 347 313 312 293 309

Table 3. Optimization Ratio Summary Table.

Grouping
GA ACO CS

10 20 30 40 10 20 30 40 10 20 30 40

<0 0 0 9 10 0 0 0 0 0 0 0 0
0–10% 1 7 1 0 0 0 0 0 1 0 0 0

10–20% 9 3 0 0 10 2 1 9 9 3 0 9
20–30% 0 0 0 0 0 8 9 1 0 7 9 1
30–40% 0 0 0 0 0 0 0 0 0 0 1 0

Total 10 10 10 10 10 10 10 10 10 10 10 10

In the optimization of fishbone-layout warehouse picking, when the number of points to be picked
is 10, the basic genetic algorithm can effectively optimize the path. When the number of points to be
selected increases to 30 and 40, the basic genetic algorithm already does not output the optimum results,
which is negative compared with the S-picking strategy. It can be concluded that the basic genetic
algorithm easily falls into the local optimal solution in the process of computing, and it is difficult to
escape the local optimal solution. When the number of points to be picked increases, the optimization
efficiency of the ant colony algorithm for the picking path is stable at 20–30% compared with that of
the S-picking strategy. However, the cuckoo algorithm has the same effect on the optimization of the
picking path of a fishbone-layout warehouse as does the ant colony optimization algorithm. When the
number of picking points increases gradually, the cuckoo algorithm is more stable, and as the number
of points to be picked increases, the optimization effect is more obvious.

Second, with respect to the CPU running time, the average computing time of the genetic
algorithm is very long, and as the number of points to be picked increases, the computing time
tends to increase gradually. When the number of picking points increases from 10 to 40, the CPU
running time of the algorithm is almost exponentially extended. In contrast, the CPU running time of
the cuckoo algorithm is maintained at a very low level of only 3.5 s, and it can be seen that the cuckoo
algorithm’s run time is not affected by the number of points to be selected.

Finally, it can be seen from the algorithm iteration and the result optimization graph that the
genetic algorithm converges slowly and is unstable with an increase in the number of iterations.
The ant colony algorithm converges fast in the early iterations, but the latter effect is not obvious, and
as the number of points to be picked increases, the number of iterations needed to obtain the optimal
solution steadily increases. While the cuckoo algorithm shows a steady convergence in the early and
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late iterations of the algorithm, as the number of points to be picked increases, the number of iterations
needed to reach the optimal solution also steadily increases.

Based on the above analysis, when the number of points to be picked is less than 20, all three
kinds of intelligent algorithms can be used to optimize the picking path. When the number of points to
be picked is more than 20, the picking path optimization effect of the ant colony algorithm and cuckoo
algorithm are obvious. Thus, it can be concluded that the cuckoo algorithm is the best, followed by
the ant colony algorithm, and finally the genetic algorithm when optimizing the picking path of a
fishbone-layout warehouse.

5. Conclusions

This paper carried out the following research work. In view of the characteristics of the
fishbone-layout picking channel, a picking path optimization model was designed. The fishbone
layout changes the traditional arrangement of shelves. In this paper, for convenience, the fishbone shelf
layout is divided into four regions: S1 ,S2 ,S3 and S4 , where S1 and S2 , are both symmetrical around
the oblique channel, as are S3 and S4 . Furthermore, we set the angle of the ramp, the length and width
of each aisle, the picking channel width and other conditions. To facilitate the establishment of the
model, some basic assumptions were made for parameters such as the picking path of the warehouse.
To find the distance traveled between any two openings, this paper establishes the representation
method of opening coordinates and then obtains the picking path optimization model in a fishbone
layout warehouse.

The genetic algorithm, ant colony algorithm and cuckoo algorithm were designed to optimize
fishbone-layout selection and the above models were conducted. The optimization results were
compared with the picking distances of the three S-picking strategies. The performances of the three
intelligent algorithms were compared. The results show that in the optimization of the picking path,
the cuckoo algorithm is better than the ant colony algorithm, and the ant colony algorithm is better
than the genetic algorithm.

In this paper, the parameters of the fishbone layout are set, which makes the limitation of the
fishbone layout selection very large. In subsequent studies, the effects of different parameter changes
on the picking path can be studied in order to design a picking distance optimization model for any
parameter and compare the picking distances in which case. Of course, in the subsequent research,
the routing path optimization problem under random storage or classified storage can be considered.
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