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Abstract: The application of pesticides is unavoidable in conventional agricultural practice. To develop
effective biofertilizers, bacterial strains with both pesticide tolerance and plant growth-promoting (PGP)
traits were isolated for further testing. Seedlings of rice (Oryza sativa) were planted in soil with 1, 5,
or 10 times the recommended rates of the fungicides etridiazole, metalaxyl, and tricyclazole. Endophytic
bacteria were isolated from roots of rice seedlings. The bacterial 16S rDNA sequences and related PGP
characteristics including potential nitrogen fixation, phosphorus-solubilizing and indole acetic acid (IAA)
production ability were further examined. In all, 17 different strains were obtained from rice seedling
roots; five strains with both nitrogen fixation potential and IAA production ability included Rhizobium
larrymoorei E2, Bacillus aryabhattai E7, Bacillus aryabhattai MN1, Pseudomonas granadensis T6, and Bacillus
fortis T9. Except for T9, all strains could tolerate two or more fungicides. We inoculated rice roots with
the endophytic bacteria and all conferred rice growth-promoting ability. Bacillus aryabhattai MN1 was
further tested and showed high tryptophan dose-dependent IAA production ability, tolerance towards
etridiazole and metalaxyl application and should be considered a potential bacterial biofertilizer.
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1. Introduction

Rice is the largest crop cultivated in Taiwan and is a major source of food in Asia. To achieve high
yield, considerable progress has been made in its cultivation, including breeding, nursery cultivation,
fertilizer management and pest control, for one of the most representative crops in the world [1].

Bacterial biofertilizers are plant growth-promoting rhizobacteria (PGPR) applied in the field to
promote crop growth and reduce the need for synthetic fertilizers. PGPR promote plant growth in
many ways, including nitrogen fixation, phosphorus dissolution, secretion of chelating substances
such as siderophores; cyanide and extracellular polysaccharide; and plant hormones such as indole
acetic acid (IAA) [2].

Endophytic bacteria are defined as bacteria colonizing the internal tissues of plants (apoplasm
or symplasm) without causing symptomatic infections or having negative effects on their host [3].
As compared with many rhizobacteria, endophytes have generally greater beneficial effects [4] and are
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less likely to encounter an extreme change of the soil environment because of the insulation of plants.
Thus, to achieve better yield and protection of rice, the use of endophytic rather than rhizobacter
biofertilizers, is preferred.

The possibility of inoculating rice endophytic bacteria strains has been studied. Diazotrophic
endophyte Azoarcus sp. BH72 is one model species among many that was found capable of
colonizing the interior of rice roots [5]. Rice endophyte Burkholderia vietnamensis was inoculated
in pots and in the field to raise rice grain production significantly [6]. Stenotrophomonas maltophilia
and Ochrobactrum sp. were isolated from rice seeds, and from the result of PCR-DGGE analysis,
soil types alter rice endophytic bacterial diversity: the endophytes Pseudomonas oryzihabitans and
Rhizobium radiobacter dominated in neutral pH soil, Enterobacter-like and Dyella ginsengisoli dominated
in acid soil, and Stenotrophomonas maltophilia could be found in both soil types [7]. The production of
1-aminocyclopropane-1-caboxylate (ACC) deaminase was found to be a useful trait for elongation
and endophytic colonization of rice roots under constant flooded conditions [8]. Therfore, endophytic
bacteria could be used as biofertilizers in promoting rice growth and production.

However, to develop effective bacterial biofertilizers, PGP traits and also pesticide tolerance should
be confirmed before their application because applying pesticides is inevitable in most agriculture
practices [9]. The fungicides etridiazole, metalaxyl, and tricyclazole are recommended for rice leaf blast
and rice blight in rice seedling boxes in Taiwan. Etridiazole [5-ethoxy-3(trichloromethyl)-1,2,4-thiadiazole]
causes the hydrolysis of cell membrane phospholipids into free fatty acids and lysophosphatides, leading
to the lysis of membranes in fungi [10,11]. Metalaxyl [methyl 2-(N-(2-methoxyacetyl)-2,6-dimethylanilino)
propanoate] inhibits RNA and protein synthesis in many members of the Peronosporales [12]. Tricyclazole
[5-methyl-1,2,4-triazolo[3,4-b] benzothiazole] is a systemic fungicide used to control Pyricularia oryzae (rice
blast) in transplanted and direct-seeded rice [13]. Because of its systemic activity, it also reduces damage
to roots as seedlings against Pythium spp. seed decay [14].

Fungicide application may have adverse effects on PGP traits in rhizobacteria. Although phosphate-
solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere could survive
with high concentrations of fungicides hexaconazole, ketazin, metalaxyl, and tebuconazole, PGP
attributes such as phosphate-solubilizing and IAA secretion were significantly and dose-dependently
inhibited by fungicides at recommended rates [9]. Application of organophosphates on the PGPR
Methylobacterium spp. and Bacillus spp., markedly reduced the microbial population, especially
Methylobacterium spp. which was completely extinct in soil treated with chlorpyrifos, phorate and
dimethoate [15]. The tolerance of 20 bacterial strains isolated from rhizosphere of okra plants with
high doses of bifenthrin applied, demonstrated that the growth of most of the strains decreased
with increasing pesticide dose [16]. It was reported that etridiazole and metalaxyl adversely affected
ammonifying or nitrifying bacteria in soils [11]; therefore, the multiple or alternatively apply of
different fungicides such as etridiazole, metalaxyl, and tricyclazole may also impede the functions of the
non-target PGPR. The hypothesis of this study was that applying of biofertilizers with pesticide-tolerant
ability would maintain their functions and would be capable of promoting the growth of the crops
under the pesticides applied.

According to Taiwan’s plant protection manual [17], the recommended rates for etridiazole,
metalaxyl, and tricyclazole are 6.7, 9.3, and 160.3 mg/kg, respectively in a 60 × 30 × 4 cm rice seedling
box. From previous research, the EC50 on Pythium sp. isolated from carrot were 11.1 and 133.3 mg/L
for metalaxyl and etridiazole, respectively [18]. The EC50 for tricyclazole on rice blast Magnaporthe
oryzae was 100.41 mg/L [19]. Tricyclazole, at higher levels (20–40 mg/kg), reduced the growth and
sporulation of the cadmium-tolerant fungi Exophiala pisciphil, but the toxic effects were not observed at
a lower concentration, 2.5 mg/kg [20].

From previous studies, it is important to examine the impact of pesticides during the process
of developing biofertilizers in order to make sure the functions of the biofertilizers in the field.
This study aims at screening potential endophytic biofertilizers with fungicides tolerance and plant
growth-promoting characteristics.



Sustainability 2019, 11, 1133 3 of 13

2. Materials and Methods

2.1. Isolation of the Rice Endophytes

Following the suggestions from Taiwan’s Plant Protection Manual [17], we applied 1, 5, and 10 times
the recommended rates of tricyclazole, metalaxyl and etridiazole to soils in plastic trays where rice (Oryza
sativa, cultivar Tainan 11) was planted. We also followed the manual’s suggestions to apply the fungicides
at different periods. Tricyclazole and etridiazole were applied before rice planting, and metalaxyl was
applied a week after rice germination. Rice grains were surface-sterilized prior to the test by soaking them
in 60 ◦C sterilized H2O for 10 min, then seeds were soaked in sterilized H2O for germination. The soils
were from paddy fields in Hualien, with pH 6.7 and texture silt loam. After incubation in the plant growth
chamber for 2 weeks at 25 ◦C, humidity 70%, with 12 h light: 12 h dark photoperiod, rice endophytes
were isolated.

Rice plants were uprooted from the soil. The shoots and the roots were separated. Roots were
soaked in sterilized H2O to remove soil particles, then in 70% ethanol solution for 30 s, rinsed with
sterilized H2O again and the root surface was cleaned with 3% sodium hypochlorite solution for 3 min.
Roots were washed thoroughly by using sterilized H2O several times. The final portion of the sterilized
H2O washed through the root surface was collected. The water was spread onto a sterilized nutrient
broth agar plate to ensure total sterilization of the root surface. A mortar was used to grind roots. Root
debris was diluted by using sterilized H2O and the suspension was spread onto a sterilized nutrient
broth agar plate.

Plates were incubated under 30 ◦C for several days after colonies were formed. Colonies with
different morphology were isolated and incubated in a new sterilized nutrient broth agar plate, and the
purity of the colony was confirmed by using the streak plates method twice.

2.2. Identification of Bacteria

DNA was extracted from isolated colonies by using the Exgene DNA Purification Kit (GeneAll
Biotechnology). DNA fragments were amplified by using 16S rDNA universal primer 27 F and
1492 R [21] with a polymerase chain reaction (PCR) machine (Biometra T3000). The PCR reaction
mixture contained 2x Taq PCR Master Mix (Ginomics BioScience and Technology) and 0.4 µM of the
primers. The 16S rDNA was amplified with 95 ◦C denaturing for 5 min, followed by 35 cycles of
94 ◦C for 0.25 min, 60 ◦C for 1.25 min, 72 ◦C for 1.5 min, and with a final extension at 72 ◦C for 5 min.
The DNA sequencing was performed with the ABI PRISM 3700 DNA Analyzer (Perkin Elmer Applied
Biosystems) by Seeing Biosciences (Taiwan).

2.3. Phylogenic Tree

The DNA sequence was searched in the EzTaxon database on 27 July 2017. The phylogenetic
tree was constructed by using Mega 7.0 software with the neighbor-joining method and maximum
composite likelihood method confirmed by 1000 times of bootstrap analysis. DNA sequences
containing gaps and missing data were eliminated [22–25].

2.4. Indole Acetic Acid (IAA) Production

IAA production was quantified as described as described by Gordon and Weber (1951) [26] with
modification following Brick et al. (1991) [27]. In brief, we inoculated the bacteria strain into 100 mL
Luria Bertani (LB) broth (g/L: tryptone 10; yeast extract 5; NaCl 10 and pH 7.5) with 100 µg/mL
tryptophan amendment. Three replicates of the culture were agitated under 30 ◦C for 24 h. Then, 5 mL
of the culture was centrifuged at 9000× g for 15 min. An amount of 1 mL supernatant was mixed with
1 mL Salkowsky reagent (2% 0.5 M FeCl3 in 35% perchloric acid) and incubated in the dark for 1 hr.
The IAA concentration in the supernatant was determined at 540 nm by using a spectrophotometer
(Thermo ScientificTM GENESYS 10S) against a standard curve.
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2.5. Potential for Nitrogen-Fixing and Phosphate-Solubilizing Ability

The culture solution was spread onto a sterilized NFB medium plate [28–30] or a Pikovskaya
plate [31]. The bacteria were considered potential nitrogen-fixing bacteria if the color of the plate turned
from green to blue after 2 weeks of incubation on an NFB medium plate. The bacteria were considered
potential phosphate-solubilizing bacteria if a clear zone around bacterial colony was formed after
7 days of cultivation on a Pikovskaya plate.

2.6. Fungicides on Bacteria Growth

Fungicides tricyclazole, metalaxyl and etridiazole were applied at recommended rates following
Methods Section 2.1 into NB medium inoculated with the bacteria showing PGP characteristics.
The absorbance was measured at OD600 to determine whether bacterial growth was affected by
amendment with the fungicides.

2.7. Endophytic Colonization and the Effect on Rice Growth

We chose bacteria with both PGP and fungicide tolerance for the following test. Bacteria were
inoculated in NB medium solution after colonies exceeded 106 colony forming units/mL. We centrifuged
the culture solution and suspended the pellet by using an equal volume of 0.85% NaCl solution to become
a mixture. Two mL of the mixture containing different bacteria pellets were then inoculated separately
onto 15 rice seedlings (root length <1 cm) in a petri dish with a filter paper. Three replicates of the petri
dishes were incubated in a plant growth chamber (conditions resembled those in Methods Section 2.1).
The shoot and root length were measured after 4 days of incubation. Prior to the germination, the rice
grains were surface-sterilized following the procedure in Methods Section 2.1 before the experiment
was conducted.

We tested whether the bacteria were successfully inoculated in the rice roots by also following the
isolation procedure from Methods Section 2.1. All strains were successfully isolated from rice roots
after inoculation (data not shown).

2.8. IAA Production in MN1 Culture Medium with Different Tryptophan Concentration

We amended LB broth with 0, 100, 500, 1000 mg/L tryptophan and inoculated MN1 in the culture
medium in three replicates. After 1, 5, and 7 days of cultivation, the supernatant was filtered by using
a 0.22-µm membrane. The amount of IAA was quantified following Methods Section 2.9.

2.9. The Effect of Fungicides on IAA Production by MN1

We applied the recommended rates of metalaxyl and etridiazole to Bacillus aryabhattai
MN1-inoculated LB broth containing 500 mg/L tryptophan. After 5 days, we determined
IAA production by using high-performance liquid chromatography (HPLC) [32] instead of
spectrophotometry due to the higher accuracy provided by the HPLC. Chromatographic separation
was performed at ambient temperature on a C-18 column (5 µm, 250-4, Merck) using a gradient elution.
Eluent A consisted of 0.1: 99.9% (v/v) acetic acid: H2O, pH 3.8 (pH was adjusted by the addition
of 1 mol/L KOH) and eluent B consisted of 80%: 20% (v/v) acetonitrile: H2O, the HPLC gradient
condition is listed in Table 1. UV wavelength was set to 249 nm. The absorbance wavelength of
tricyclazole was close to that for IAA, so we did not test the effect of tricyclazole on IAA production in
this experiment.
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Table 1. Gradient program for indole acetic acid (IAA) detection with high-performance liquid
chromatography (HPLC).

Time (Min) Eluent A (%) Eluent B (%)

0.1% acetic acid (v/v, aqueous) 80:20 Acetonitrile: H2O (v/v)

0 80 20
13 50 50
18 0 100
22 80 20
26 Stop

2.10. Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA) with SAS v9.4 (SAS Institute
Inc., Cary, NC, USA). Post-hoc analysis involved Fisher’s least significant difference (LSD) test for
significant difference between treatments. p < 0.05 was considered statistically significant.

3. Results and Discussion

3.1. Endophytes’ Isolation with Application of Fungicides

We isolated bacteria with different morphology from the rice endophytes treated with 1–10 times
the recommended rates of tricyclazole, metalaxyl and etridiazole applied in soil: 13 bacterial
strains under tricyclazole, 10 with metalaxyl, and 11 under etridiazole were cultured and isolated.
We eliminated high-homologous-sequence strains after sequencing. Five endophytic bacteria strains
resulted from triclazole treatments, three from metalaxyl treatments and nine from etridiazole
treatments (Table 2).

Table 2. The 16S rDNA sequence analysis and plant growth-promoting activities of isolated
rice endophytes.

Treatment † Strain Closest Identificaton Similarity
(%)

Nitrogen
Fixation

Phosphate
Solubilization

IAA ‡

(mg/L)

10× Etridiazole E1 Pseudacidovorax intermedius 100 + - <1
10× Etridiazole E2 Rhizobium larrymoorei 99.78 + - 4
10× Etridiazole E4 Sphingomonas aquatilis 100 + + <1
10× Etridiazole E5 Flavobacterium ginsengiterrae 97.1 - - <1
10× Etridiazole E6 Brevundimonas vesicularis 99.63 - - <1
10× Etridiazole E7 Bacillus aryabhattai 100 + - 7.9
10× Etridiazole E9 Mycobacterium sphagni 99.42 + + <1
10× Etridiazole E10 Mycobacterium vanbaalenii 99.71 + - <1

10× Etridiazole EN1 Mycobacterium
aromaticivorans 99.06 + + <1

10× Metalaxyl M1 Bacillus sporothermodurans 98.6 + - <1
5× Metalaxyl M7 Bacillus fortis 98.17 - - <1
1× Metalaxyl MN1 Bacillus aryabhattai 100 + - 8.7

5× Tricyclazole T6 Pseudomonas granadensis 99.49 + + 2.0
5× Tricyclazole T9 Bacillus fortis 98.38 + - 1.1
5× Tricyclazole TN1 Pseudomonas baetica 99.57 + + <1
5× Tricyclazole TN3 Pseudomonas plecoglossicida 99.01 + + <1
1× Tricyclazole T3 Bacillus marisflavi 99.72 + - <1
† The endophytes were isolated from rice seedlings grown on soils amended with different times of recommended
doses of fungicides. ‡ IAA production ability was tested with 100 mg/L typtophan application and 24-h
incubation period.

The phylogenetic tree of the fungicide-tolerant bacterial strains is shown in Figure 1.
Three Mycobacerium spp.—Etri N1, Etri 09, and Etri 10—had 100% consensus rates, and three Pseudomonas
spp.—Tric N1, Tric N3 and Tric 06—also had 100% consensus rate, indicating the robustness of the tree.
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Figure 1. The phylogenetic tree for the isolated endophytes with fungicide tolerance. Numbers shown
on branches indicate the percentage of resembling the consensus branch obtained from 1000 times
bootstrap analysis. Branches with <50% resembling rate were eliminated beforehand.

From Figure 1, the isolates were more abundant and diverse under 10 times the etridiazole
recommended dose (67 mg/Kg) as compared with the other treatments. The isolates included
Gram-positive bacteria Mycobacterium aromaticivorans, M. sphagni, M. vanbaalenii, and Bacillus aryabhattai,
and Gram-negative Brevundimonas vesicularis, Flavobacterium ginsengiterrae, Pseudacidovorax intermedius,
Rhizobium larrymoorei, and Sphingomonas aquatilis. The phenomenon was probably due to the low
absorption/distribution rate by the plants or the lower toxicity of etridiazole towards soil biomes.
Although etridiazole had been reported to reduce the nitrification rate of ammonium-oxidizing bacteria
in soil [33], the nitrogen-fixing bacteria were isolated on high-dose applications in this study (Table 2).

All strains from metalaxyl treatments were Gram-positive Bacillus spp. including B. sporothermodurans,
B. fortis, and B. aryabhattai. All three species were reported to be able to survive under adverse
environment by producing resistant endospores [34–36].

Strains isolated from tricyclazole treatment were Bacillus spp. and Pseudomonas spp., including
B. fortis and B. marisflavi, P. baetica, P. plecoglossicida, and P. granadensis. Among them, P. plecoglossicida
was reported to be equipped with bioremediation potential and plant-promoting ability [37,38],
and P. granadensis was reported to be isolated from pharmaceutical applied soil [39]. From previous
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research, several strains from the Bacillus and Pseudomonas genera were also found to use insecticide
phorate and thiamethoxam as sole carbon source at the same time [40].

We tested the PGP characteristics of these bacteria strains (Table 2). Most of the above-mentioned
bacteria strains had one or more PGP characteristics. Fourteen of 17 strains were potential
nitrogen-fixing species, including Bacillus spp., Pseudomonas spp., Pseudacidovorax spp., Rhizobium spp.,
Sphingomonas spp. and Mycobacterium spp. Among them, Pseudomonas intermedius, Brevundimonas
vesicularis, Bacillus aryabhattaihas, Bacillus marisflavi, and Pseudomonas baetica were previously reported
to have nitrogen-fixing ability [41–44].

Six strains were found with phosphate-solubilizing ability, including Sphingomonas spp.,
Mycobacterium spp., and Pseudomonas spp. However, the phosphate-solubilizing clear zone was
not large enough for SI index calculation.

Five strains had IAA secretion ability, including Rhizobium spp., Bacillus spp. and Pseudomonas spp.
The IAA secretion rate was higher for B. aryabhattai MN1 and B. aryabhattai E7 than others and were 8.7
and 7.9 mg/L, respectively. B. aryabhattai, isolated from Crocus sativus rhizosphere, was previously
found to produce IAA [45].

Previous research screening for endophytic bacteria with in vitro IAA production potential
showed that they could provide a reliable base for selection of effective PGP bacteria [46]. Therefore,
we chose R. larrymoorei E2, B. aryabhattai E7, B. aryabhattai MN1, P. granadensis T6 and B. fortis T9,
with both nitrogen-fixing and IAA secretion ability for the fungicide tolerance test.

3.2. Fungicide Tolerance and Rice Inoculation Test

Table 3 shows the inhibition effect of fungicides on the growth of rice endophytes E2, E7, MN1,T6,
T9 and the PGP effect of the endophytes on rice. Under 160 mg/L tricyclazole, only growth of MN1 was
not inhibited. Under 9 mg/L metalaxyl, the growth of E2, E7, MN1, T6 and T9 was not significantly
inhibited, whereas under 7 mg/L etridiazole, only the growth of T9 was significantly inhibited. The 3
bacterial strains E2, E7, and T6 were able to tolerate etridiazole and metalaxyl fungicides, whereas only
MN1 was able to tolerate all tested fungicides. As a result, we tested the rice inoculation effect of E2, E7,
MN1, and T6.

Table 3. The growth of potential rice endophytic biofertilizers with fungicide amendment and their
effect on rice germination.

Bacterial Strain
Fungicide Inhibition Inoculation Test

Etridiazole
7 mg/Kg

Metalaxy
19 mg/Kg

Tricyclazole
160 mg/Kg

Fungicides
Mixture

Shoots Growth
Promoting

Roots Growth
Promoting

Rhizobium larrymoorei E2 − − + + + +
Bacillus aryabhattai E7 − − + N/A = +

Bacillus aryabhattai MN1 − − − − = +
Pseudomonas granadensis T6 − − + N/A + +

Bacillus fortis T9 + − N/A N/A N/A N/A

+: bacteria growth inhibited by fungicide or seedling growth promotion observed; −: bacteria growth not inhibited
by fungicide, or no seedling growth promotion observed; =: not significantly different from the control; “N/A”:
the experiments were not conducted.

We combined two batches of experiments of inoculating endophytes on the growth of rice (Table 3).
The average root length of E7 and MN1 was 26.8 and 31.2 mm, both significantly longer than that of
the control (15.9 mm). The average shoot length of E7 and MN1 was 9.2 and 10.2 mm, although higher
shoot lengths were observed, it was not significantly different from the control (7.9 mm) under 95%
confidence level.

The average root lengths with E2 and T6 treatments were 40.3 and 39.2 mm, both significantly
longer than the control (20.2 mm). The average shoot lengths with E2 and T6 treatments were 16.2 and
14.4 mm, also both significantly longer than the control (9.9 mm). We isolated the endophytes from
the rice seedling and verified the successful inoculation (data not shown), thus assuming that the rice
growth promotion was contributed by the inoculation of the endophytes E2, E7, MN1 and T6.
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The above tests demonstrated that strain MN1 showed the highest IAA production rates as well
as multiple plant growth promoting and fungicide tolerance ability; we therefore examine the growth
curve, the tryptophan dose-dependent IAA production rates, and the fungicides’ amendment effect on
IAA production of MN1 in latter experiments.

3.3. The Growth Curve of MN1 under Fungicides Application

The MN1 culture medium was amended with a mixture of the recommended rates of the three
fungicides. The fungicides’ mixture only slightly retarded the growth of MN1 within 35 h of incubation
(Figure 2); however, after 35 h, the population of MN1 was slightly augmented with the amendment.
From previous studies, the application of metalaxyl (both soil and foliar applied) and tricyclazole (foliar
applied) at field-recommended rates did not affect the structure and diversity of bacteria and fungi
communities [47,48]. Etridiazole at 100 mg/L application (approximately 14 times the recommended
rate) was apparently fatal to ammonium-oxidizing bacteria [33]. In our study, the growth of MN1 was
slightly augmented with the fungicides mixture amendment, making it among one of the possible
bacterial members capable of utilizing or co-metabolizing the fungicides. From a previous study, one B.
arybhattai strain isolated from rice rhizospheres was found to be equipped with arsenic absorption and
accumulation abilities [49]. However, further analysis still needed to verify its fungicide utilizing ability.
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Figure 2. Bacterial growth curve of Bacillus aryabhattai MN1 amended with the recommended dose of
fungicides mixture.

3.4. Tryptophan Dose-Dependent IAA Production Rates of MN1

Figure 3 shows the IAA-production ability of MN1 with different concentrations of L-tryptophan
amendment. After seven days of inoculation, the IAA concentrations in the supernatant with 100,
500, and 1000 mg/L tryptophan treatments were 34.2 ± 5.7, 79.7 ± 3.4, and 101.7 ± 12.0 mg/L,
respectively. The IAA production ability of MN1 increased with increasing amount of tryptophan
amendment. Since the concentrations of tryptophan did not significantly alter the growth of MN1
(data not shown), we assumed that the IAA production rate of MN1 species increased with increasing
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concentration of tryptophan. Similar findings were reported previously [50]: Higher concentrations of
tryptophan amendment were previously reported to increase the IAA production rates of Azotobacter
spp., fluorescent Pseudomonas spp., and Enterobacter spp. I-3. However, if considering the IAA
production rate from unit tryptophan amended at day seven, it was 18.6% for 500 mg/L tryptophan
applied and 11.9% for 1000 mg/L tryptophan.
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Figure 3. Indole acetic acid (IAA) production in MN1 culture medium with different tryptophan concentrations.

No tryptophan amendment of MN1 produced 3.6 ± 0.6, 15.1 ± 1.6, and 20.7 ± 5.5 mg/L IAA
at days 1, 5 and 7, MN1, respectively (Figure 3), showing the reasonable assumption that NB broth
should contain trace amounts of tryptophan, although relevant tests should be conducted.

The corresponding IAA production by MN1 also showed that MN1 may benefit different plant
species by various concentrations of tryptophan amendment, because for each specific plant or even
each plant cultivar, there should be a suitable PGP exogenous IAA concentration produced by MN1
with different concentrations of tryptophan applied for future biofertilizer application.

3.5. Effect of Fungicides on IAA Production of MN1

We inoculated MN1 in LB culture medium containing 500 mg/L tryptophan and etridiazole and
metalaxyl (Figure 4). We examined IAA production only with 500 mg/L tryptophan because this
conferred the highest growth rate per unit of tryptophan applied. Data for tricyclazole amended
are also not shown because under the current HPLC analytic condition, the peaks for IAA and
tricyclazole overlapped.
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The IAA production of MN1 with control, etridiazole and metalaxyl treatments after 1 day of
cultivation were 9.8, 15.5 and 13.4 mg/L, respectively. Higher IAA production rates were observed
at day 5, which were 48.9, 47.7, and 45.1 mg/L, respectively. Although we observed varied IAA
production with both fungicide treatments, we found no significant differences at the 95% confidence
level. Thus, we assumed that the fungicides applied had no significant effect on IAA production
by MN1.

From previous research, a specific B. arybhattai strain isolated from grapevine rhizospheres was
considered a potential biofertilizer because it showed various PGP abilities such as nitrogen fixation
and the production of IAA, siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase,
chitinase, and protease [51]. Another B. arybhattai strain SanPS1 also isolated from soil showed
chlorpyrifos and malathion degradation ability [52]. Being among one of the potential bioremediation
members as well, it was reported that one B. arybhattai strain isolated from rice rhizospheres was
equipped with arsenic absorption and accumulation abilities [49]. The above findings and our research
together show that B. arybhattai has diverse functions in various applications.

4. Conclusions

From the above experiments, the bacterial strain Bacillus arybhattai MN1 proved to have
nitrogen-fixing and IAA-production abilities. With application of the fungicides metalaxyl and
etridiazole, the IAA production ability was not adversely affected. Previous results showed that
B. arybhattai has diverse functions in various applications, but from our findings, B. arybhattai
MN1was the first rice endophyte reported to possess PGP characteristics under multiple fungicides
applied, and can promote the growth of rice seedlings. As compared with the isolates from the
plant rhizosphere, bacterial endophytes have an advantage because living within a plant’s tissues
represents an opportunity to always be in contact with plant cells and, therefore, more readily exerts
a direct beneficial effect [53]. Thus, in accordance with our hypothesis that applying biofertilizers
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with pesticide-tolerant ability would maintain their functions and would be capable of promoting
the growth of the crops under the pesticides applied, B. arybhattai MN1 should be a potential
endophytic biofertilizer with fungicide tolerance ability and suitable for application in conventional
rice seedling boxes.
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