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Abstract: This study’s aim is to examine the environmental performance of the South Korean 

manufacturing industry and suggest performance-oriented policies. The manufacturing industry 

is classified into seven sub-sectors based on individual sectoral differences among firms. For this 

purpose, a sequential generalized directional distance function and the Sequential Malmquist-

Luenburger (SML) index are used with the assumption of no deterioration in technology over time. 

The SML is decomposed into two indices: efficiency change (EC) and technical change (TC). The 

empirical results showed an average increase of 0.3% in environmental productivity measured by 

the SML over the whole period. Although the overall average value is low, it showed a 0.8% 

increase after 2015, implying that ETS policy has enhanced environmental productivity. From the 

decomposition of the SML, it was also found that the EC index (−1.1%) was comparatively lower 

than the TC index (1.5%) over seven years, implying that the innovation effect leads the 

environmental productivity of the Korean manufacturing industry. With regard to individual 

sectors, the seven sub-sectors showed quite different patterns in their performance. Therefore, not 

only should firms in each sector make an effort to enhance their performance, but the government 

also needs to support specialized measures to enhance firms’ overall competitiveness. 

Keywords: manufacturing industry; sectoral classification; Sequential DEA; environmental 

productivity; catching-up effect; innovation effect; customizing policy; Korea 

 

1. Introduction 

At the recent general assembly meeting of the Intergovernmental Panel on Climate Change 

(IPCC) at Songdo, on October 1, 2018, the IPCC unanimously approved the “Keeping global 

warming at 1.5 °C” special report [1]. According to this report, to limit the rise in average 

temperature to 1.5 °C until the year 2100, the 2010 Carbon Dioxide (‘CO2’) emissions per year must 

be curtailed by 45% by 2030, and net zero emissions must be achieved by 2050. Therefore, it is an 

urgent challenge for the entire world to reduce CO2  emissions in order to face the challenge of 

global warming. South Korea (‘Korea’) is one of the exemplary cases of this serious challenge, 

because the country was ranked the seventh highest emitter in the world in 2017. In addition, 

according to the Organization for Economic Cooperation and Development (OECD)  environmental 

performance reviews (2017) [2], Korea has recorded the 2nd most rapid growth rate for its 

Greenhouse Gas (‘GHG’) emissions among OECD countries. As we can see from these data, Korea 

needs to make more proactive efforts to overcome the stigma of being an “environmentally 

underdeveloped country.” Nonetheless, it also seems that it will be difficult to achieve the 

ambitious Korean target set at the 21st Conference of Parties meeting in December 2015 , i.e., of 
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cutting business as usual carbon emissions by 37% by 2030  [3]. Especially, there has been strong 

resistance to this ambitious target from a group of passive firms, implying that environmental 

policies may lack the governance or workable mechanisms required to achieve sustainable 

performance. 

Thus, it is important to balance economic and environmental effects to achieve sustainable 

growth. For this purpose, Korea has been working on reducing national GHG emission s. One of 

these efforts is based on regulating economic activities with a nationwide Emission Trading Scheme 

(ETS) implemented in 2015. The scheme provides emission limits for all major emitter industries, 

with particular limits for the manufacturing sector. It is based on a market-oriented approach; 

under this environmental regime, every firm is allocated an emission allowance by the government. 

However, firms can buy or sell permits when they face a shortage or surplus of emission 

allowances [4]. The ETS covers 5 sectors and 23 sub-industries; 525 firms joined the ETS in 2015, 

accounting for 66% of CO2  emissions produced in  Korea [3]. Among the 5 major sectors, the 

manufacturing industry sector contributes 30.4% of the Gross Domestic Production (GDP) and 

27.5% of GHG emissions in Korea [5]. Furthermore, Korean manufacturing industry was ranked 5th 

in the world in 2017, with value added 422,064.51 US dollar [6]. Thus, the Korean manufacturing 

industry is closely related to national competence, and is therefore the focus of this study. 

Moreover, in order to face the current serious challenges from China in the form of extremely 

competitive costs, the manufacturing industry needs to acquire a more advanced environmentally 

competitive structure. Nevertheless, there is little literature to date exploring this industry from an 

environmental perspective, especially on the individual company level. 

To manage GHG emissions in the manufacturing industry, the Korean government introduced 

ETS. Therefore, it is very important to evaluate the feasibility of ETS policies on manufacturing 

companies. As the ETS proposes  a “top-down approach” by the Korean government, it raises the 

following intrinsic questions for its sustainable performance: Will the ETS be helpful in maintaining 

national competitiveness? Are emission allocations for each sector reasonable? Which sectors are 

more beneficial or detrimental to the environment under the current ETS scenario? 

To answer all these questions and make feasible suggestions for environmental policies, in the 

first stage, we analyze the effect of ETS policies on environmental productivity, while in the second 

stage, we focus  on the determinants of environmental productivity. In the first stage, we shall focus  

on the policy effects on the manufacturing industry over time, because there may be some bias in 

the top-down approach of the ETS, and thus, the selective limits may work better, at least in the 

initial stage of ETS. In  the second stage, we aim to develop some practical proposals for selective 

concentration policies. A top-down approach on the ETS target for the manufacturing industry may 

result in the overload or shortage of individual emission abatement potentials, implying the need 

for more customized regulatory policies on the subsectors of the manufacturing industries based on 

the individual conditions and internal character istics of the sub-sectors of the manufacturing 

industry. To find out more customized solutions on the individual company level , we adopt the 

directional distance function (DDF) to evaluate the environmental performance of the 

manufacturing sub-industry sectors over the last seven years. 

This study hopes to make the following unique contributions. First, a top-down approach by 

the Korean government may not result in effective GHG emission abatements due to a lack of field-

oriented customization on the regulatory targets in terms of emissions. In order to evaluate this 

biased effect on manufacturing sub-industries, we use individual company-level data and their 

emission volumes in this field. To the best of our knowledge, very few studies [4,7,8] have used 

these data up to now. For this perspective, in this research, recent company-level data is used. This 

may help to enhance the reliability of empirical results and the resulting policy suggestions in terms 

of more-company or sub-industry level perspectives. Second, the seven years of data cover almost 

all manufacturing sectors, which provides more implications than a single-industry or cross-

sectional approach. This panel data analysis may highlight the driving factors of the trends of 

environmental performance, and may also provide cross-sectional benchmarking suggestions. From 

this panel evaluation, the most efficient company in the group, as well as in the whole 
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manufacturing industry, shall be found as the benchmarking case for the catch-up and innovation 

effects. These more specific, customized suggestions on the individual company level shall be the 

most important unique contribution of the research. Third, from a methodological perspective, we 

adopt the concept of sequential generalized DDF (SGDDF), which is suitable for reflecting 

environmentally-sensitive production in more field-oriented terms. To the best of our knowledge,  

this is the first trial adopting this methodology to focus upon the Korean manufacturing industry. 

2. Literature Review 

The DDF approach has been widely used in the Environment and Energy fields (E&E) to 

analyze efficiency or productivity in specific industries and regions [8–16]. This is because it has the 

capacity to expand desirable outputs while reducing inputs and undesirable outputs. This 

characteristic is suitable for the ultimate goals in the E&E field. There are two types of distance 

functions: the Shephard distance function [17] and the DDF proposed by Chambers et al. [18]. The 

former is limited because it analyzes desirable and undesirable outputs at the same rate. It cannot 

reflect conjointness. The latter overcomes this limitation by expanding desirable output s and 

reducing undesirable outputs simultaneously. Thus, the DDF is a generalized form of the Shephard 

distance function and is more powerful and flexible [19]. 

Although the DDF seems to be the more appropriate methodology for this study, Shestalova 

[20] highlighted yet another limitation in standard data envelopment analysis (DEA). According to 

Shestalova, in the standard DEA approach, the production frontier could move inward, implying a 

”technical regression.” This assumption is not appropriate for the manufacturing industry, because 

a decline in productivity in this industry could be a temporary phenomenon; and technological 

deterioration could induce a confusing result. To overcome this limitation, Shestalova [20] adopted 

Sequential DEA to evaluate TFP growth of manufacturing industries in 11 OECD countries, and 

compared this result with contemporaneous DEA data. Beyond this research, there have been 

numerous studies adopting concept of Sequential DEA in exploring environmental performance. 

Oh and Heshmati [21] also focused on excluding technical regress, and suggested the use of the 

Sequential Malmquist Luenburg (SML) index to examine the productivity of 26 OECD countries 

with panel data (1970–2003). Zhang and Kim [22] used a sequential slack-based measure (SSBM) 

model to analyze Korean power companies from 2007 to 2011, and, using same model, Choi and 

Wang [23] explored the land use efficiency of Korean 16 local governments from the period 2006 –

2013. Yu et al. [24] used sequential meta-frontier Luenberger productivity index (SMLPI) to explore 

coal-fired Chinese power plant from 1999–2008, Wu et al. [25] adopted the SML index to examine 30 

Chinese provinces from 1996–2015. Zhang et al. [26] explored the sustainability performance of 

China from the period 2001–2010 based on Sequential Generalized Directional Distance Function 

(hereafter SGDDF), which is an extended version of the Generalized Directional Distance Function 

(hereafter GDDF). These studies exploring environmental performance commonly adopt 

undesirable outputs such as CO2, GHG and pollution. 

Because the aim of this study is to evaluate the overall environmental performance of the 

Korean manufacturing industry from a more dynamic perspective, we will analyze the overall, as 

well as sub-sectoral manufacturing industries’, performance in a stepwise approach. Here, Dynamic 

perspective stands for analysis with time-series data. It is different from cross sectional analysis , in 

that it is possible to focus on performance change over times. In the first stage, the environmental 

efficiency shall be derived based on the SGDDF on the manufacturing industry. In the second stage, 

we examine the governing factors of this dynamic change in the Korean manufacturing industry by 

using the Sequential Malmquist-Luenberger (SML) index. In this second stage, we not only find the 

feasible factors influencing environmental productivity, but also the innovator companies for each 

sub-sector industry. In order to find the determinant factor in the second stage, we shall decompose 

the SML into efficiency change (‘EC’) and technology change (‘TC’). However, we assume that even 

in the manufacturing industry, different individual characters exist among sub-sectoral industries, 

and thus, we may find the over- and sub-sectoral determining factors between EC and TC. If a sub-
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sectoral industry outperforms in EC, the catch-up effect is much more important to enhance its 

environmental performance. Based on this argument, we shall propose that the leader companies 

may serve as the benchmark for less productive companies. For the same reason, if a sub-sector 

outperforms in TC, it should find the leading innovative company to enhance its productivity. 

Therefore, at the end of the second stage, we report on innovative companies in each sector that are 

worthy of benchmarking using the concept of technical change. 

3. Methodology 

3.1. Environmental Production Technology 

Based on the traditional approach to production function, the model begins with the basic 

three inputs: capital (K), labor (L), and energy consumption (E). These inputs generate a desirable 

output of sales turnover (T) and an undesirable output of GHG (C ) emissions. In this study, GHG 

will be expressed as ‘C’, since almost all studies have used carbon as an undesirable output. This 

production technology can be expressed as follows: 

T={(K,L,E,T,C):(K,L,E) can produce (T,C)} (1) 

where T is assumed to satisfy all the standard axioms of the production theory [27]; that is, 

inactivity is always possible, and finite amounts of a given input can produce only finite amounts of 

output. In addition, an input and a desirable output are often assumed to be freely disposable. 

Concerning the regulated environmental technologies, weak disposability must be imposed on T. 

We can express this assumption as follows: 

(i) If (K,L,E,T,C)∈ T and 0≤θ≤1, then(K,L,E,θT,θC)∈ T  

(ii) If (K,L,E,T,C)∈ T and C=0, then T=0  

The weak disposability assumption (i) implies that reducing GHG emissions is costly. It entails 

an opportunity cost measured by the proportionate reduction in sales turnover. The null-jointness 

assumption (ii) implies that GHG emissions inevitably accompany the production process.  

3.2. The SGDDF 

Based on the above assumptions, environmental production technology (T) can be introduced 

in a more detailed functional form. According to Färe and Grosskopf [28], we define the GDDF as 

follows: 

�⃗⃗� = max(𝛽1 +∙∙∙ +𝛽𝑚 + 𝛾1 +∙∙∙ +𝛾𝑠 + 𝛼1 +∙∙∙ +𝛼𝑗)  

𝑠. 𝑡.∑ λ𝑛𝑥 𝑖𝑛 ≤

𝑁

𝑛=1

𝑥 𝑖0 − 𝛽𝑖g𝑖  

∑ λ𝑛𝑦𝑟𝑛

𝑁

𝑛=1

≥ 𝑦𝑟0 + 𝛾𝑟g𝑟   

∑ λ𝑛 𝑏𝑗𝑛

𝑁

𝑛=1

= 𝑏𝑗0 + 𝛼𝑗g𝑗  

λ𝑛 ≥ 0, 𝑛 = 1,2, … , 𝑁  

𝛽𝑖 ≥ 0, 𝛾𝑟 ≥ 0, 𝛼𝑗 ≥ 0  
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𝑖 = 1,2, ∙∙∙, m; r =1,2, ∙∙∙, s (2) 

In Equation (2), g𝑖 , g𝑟 , andg𝑗  are explicit directional vectors in which the input/output 

combination is scaled. 𝛽𝑖 and 𝛾𝑟  are scaling factor vectors. Although the directional vector g is set as 

(1, 1) for inputs and outputs respectively, it lacks the unit invariant property  in this setting. 

Therefore, following Chung et al. [29] and Zhou et al. [30], this study selected the observed value as 

the directional vector. However, the GDDF is estimated separately for each time period t, and this is 

often translated into wide oscillations [26]. Therefore, as suggested by Zhang et al. [26], we adopted 

sequential technology as in Equation (3). This estimates each period not only for the current year, 

but also for all the preceding years. 

𝐷𝑆
⃗⃗⃗⃗  = max(𝛽1 +∙∙∙ +𝛽𝑚 + 𝛾1 +∙∙∙ +𝛾𝑠 + 𝛼1 +∙∙∙ +𝛼𝑗)  

𝑠. 𝑡.∑ ∑ λ𝑛
𝑇𝑥 𝑖𝑛

𝑇 ≤

𝑁

𝑛=1

𝑇

𝑇=1

𝑥 𝑖0
𝑇 − 𝛽𝑖g𝑖   

∑ ∑ λ𝑛
𝑇𝑦𝑟𝑛

𝑇

𝑁

𝑛=1

𝑇

𝑇=1

≥ 𝑦𝑟0
𝑇 + 𝛾𝑟g𝑟  

∑ ∑ λ𝑛
𝑇𝑏𝑗𝑛

𝑇

𝑁

𝑛=1

𝑇

𝑇=1

= 𝑏𝑗0
𝑇 + 𝛼𝑗g𝑗   

λ𝑛
𝑇 ≥ 0, 𝑛 = 1,2, … , 𝑁  

𝛽𝑖 ≥ 0, 𝛾𝑟 ≥ 0, 𝛼𝑗 ≥ 0  

𝑖 = 1,2, ∙∙∙, m; r =1,2, ∙∙∙, s (3) 

where λ𝑛
𝑇  is an (N ×  1) vector representing the intensities assigned to each observation in 

constructing the sequential environmental technology for the current period t. 

In both the GDDF and SGDDF, the author can set vector g freely, based on academic goals. If 

�⃗⃗� = 0, then it would indicate that the firms are located along the best-practice frontier in the g 

direction. From these two DDFs, we will first derive firm efficiency, and then, as the next step, 

derive environmental productivity using the SML concept. 

3.3. SML Index and Its Decomposition 

Based on the SGDDF result, the second stage focuses on determining the governing factors of 

these results. To examine the factors that contribute to the dynamic change in environmental 

efficiency, we analyze the decomposition of efficiency over time using the Malmquist-Luenburger 

(ML) index. As already stated, this study’s aim is to evaluate environmental productivity using the 

SML index. Therefore, we should define the ML index first. Equation (4) defines the c onventional 

ML index [29]. 

𝑀𝐿𝑠=
(1+�⃗⃗� 𝑐

𝑠(𝑥𝑡 ,𝑦𝑡,𝑏𝑡 ))

(1+�⃗⃗� 𝑐
𝑠(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1))

 (4) 

where the contemporaneous DDFs, �⃗⃗� 𝑐
𝑠(x, y,b)  = max {b: (y  + βy, b -βb )∈ 𝑃𝑠 (𝑥) }, s = t, t+1, are 

defined on each of the contemporaneous production possibility set (PPS) at the time period s. c in  

the DDF implies “contemporaneous.” 

However, the sequence reference is different. The frontier consists of the decision-making units 

(DMUs) of the current period and all previous periods, and DMUs constructing the frontier of 

period t+1 contain the DMUs of period t. Compared with period t, therefore, the frontier of period 

t+1 will certainly not move backward, which is an important characteristic of the sequential 
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Malmquist model. As a result, based on Oh and Heshmati [21], we redefine the SML index as 

follows: 

𝑆𝑀𝐿𝑠=
(1+�⃗⃗� 𝑞

𝑠(𝑥𝑡 ,𝑦𝑡,𝑏𝑡 ))

(1+�⃗⃗� 𝑞
𝑠(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1))

 (5) 

Meanwhile, the geometric mean form of the SML productivity index can be decomposed into 

the EC and TC indices as follows: 

𝑆𝑀𝐿𝑡,𝑡+1=
1+�⃗⃗� 𝑞

𝑡 (𝑥𝑡 ,𝑦𝑡,𝑏𝑡 ) 

1+�⃗⃗� 𝑞
𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1 )

  

× [
1 + �⃗⃗� 𝑞

𝑡+1(𝑥𝑡, 𝑦 𝑡, 𝑏𝑡)

1 + �⃗⃗� 𝑞
𝑡(𝑥𝑡 , 𝑦 𝑡, 𝑏𝑡 )

∗
(1 + �⃗⃗� 𝑞

𝑡+1(𝑥𝑡+1, 𝑦 𝑡+1, 𝑏𝑡+1)

1 + �⃗⃗� 𝑞
𝑡(𝑥𝑡+1, 𝑦 𝑡+1, 𝑏𝑡+1)

]

1/2

  

=EC𝑡 ,𝑡+1 × TC𝑡,𝑡+1 (6) 

The EC index in Equation (6) measures the “catching-up” effect denoting the environmental 

efficiency changes for a DMU (firm) between the period t and t+1. EC captures the movement of a 

DMU toward the contemporaneous environmental benchmark frontier. If EC >  1, it means that 

there is an efficiency gain between t and t+1, and vice versa (efficiency loss) if EC < 1. If EC = 1, it 

means there is no efficiency change in consecutive years. That is to say, EC stands for distance 

change between specific DMU and efficient frontier. The TC index measures how much a frontier 

shifts between period t and t+1. If TC > 1, then technical change enables more production of 

desirable outputs and less production of undesirable outputs. The TC index measures frontier shifts 

in contemporaneous technology; hence, it is regarded as an innovation effect. However, as 

mentioned, TC is always more than value ‘1’ in this study. This is because there is an assumption of 

‘no technical regress’ under sequential DEA. 

3.4. Innovative Firms 

According to Färe et al. [31] and Oh and Heshmati [21], the three conditions for determining 

innovator firms are as follows: 

TC > 1 (7) 

�⃗⃗� 𝑞
𝑡(𝑥𝑡+1 , 𝑦𝑡+1, 𝑏𝑡+1) < 0 (8) 

�⃗⃗� 𝑞
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) = 0 (9) 

Equation (7) means that the group technology frontier moves towards the direction with more 

outputs that are desirable and less that are undesirable, that is, period t+1 shows better performance 

than period t. Equation (8) means that the production activity of innovative firms during the period 

t+1 should be outside the group technology frontier in period t. In Equation (9), an innovative firm 

should be located on the group technology frontier in period t+1. Based on these three equations, 

we will report the group innovator firms of each sector for seven years in this study. These firms 

could be good models for the rest of the sector to benchmark to enhance their environmental 

performance. Thus far, we have reviewed the methodology that we will use in this study.  

4. Characteristics of Data and Empirical Results 

4.1. Data and Their Characteristics 

In order to examine the environmental performance for Korean manufacturing industries, the 

data of 289 manufacturing firms belonging to seven sectors were collected for 2011–2017. As the 

output variables, we selected sales turnover (T) as the desirable output and GHG (C) as the 

undesirable output. As the input variables, we set two basic types of inputs , labor (L) and capital 
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(K), and included energy (E) as the third input because it has a very significant effect on GHG 

emissions. The data for labor, capital, and turnover were retrieved from the Data Analysis, 

Retrieval, and Transfer System. The energy and GHG emission data were taken from the 

Greenhouse Gas Inventory & Research Center of Korea. In general, studies on the E&E field have 

extracted pure CO2 values under the IPCC guidelines  by using a macro type of data such as fuel 

[14,15] consumption rate. However, CO2 data were unavailable in Korea; thus, we used the numeric 

values from the GHG emissions data, which includes other gases such as methane, nitrogen, 

hydrofluorocarbons, perfluorinated compounds, and sulfur hexafluoride. 

With regard to industries, the mining, wood, and oil  industries were not included because of a  

scarcity of data. Additionally, it was impossible to cover all firms because of the unavailability of 

data. A total of 289 firms were obtained by this process. Table 1 shows the descriptive statistics of 

this study. 

Table 1. Descriptive statistics . 

Variable Type Unit Mean Std. Dev. Max. Min. 

Sales turnover Desirable output KRW Million 2,318,087 9,589,316 161,915,007 7,577 

GHG (Greenhouse gas) Undesirable output CO2 equivalent tons 697,465 4,593,449 77,246,111 2,129 

Capital Input KRW Million 117,807 327,136 3,657,652 100 

Labor Input Per person 2,297 8,061 101,970 29 

Energy Input Tera joules 8,149 41,902 864,884 41 

Sources: Greenhouse Gas Inventory & Research Center of Korea (http://www.gir.go.kr/) [32]. DART: Data 

Analysis, Retrieval, and Transfer System (http://dart.fss.or.kr/) [33] 

Every sector has its own unique characteristics; thus, classifying groups based on 

heterogeneity, as some previous researchers did [20,34–36], seems to be more practical. Therefore, 

we also classified the sectors in the Korean manufacturing industry based on Shestalova [20], 

because it gives a feasible way to analyze the manufacturing sectors in more practical terms. 

However, because her study did not include high-tech sectors such as electronic devices, displays, 

and semi-conductors, we created a new group called “ELE” including them. This ELE sector could 

be very important in the categorized analysis, as it will give us a sustainable signal on the 

environmental policy effect on the Korean economy. Figure 1 shows the shares of seven individual 

groups, and Table 2 shows details of the sub-industries in each group in this study. 

 

Figure 1. Seven groups and the percentage share of firms in each group. 

  

FOD
10% TEX

7%

CHE
19%

MNM
12%

BMI
23%

MEQ
18%

ELE
11%

FOD TEX CHE MNM BMI MEQ ELE
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Table 2. Seven groups and their sub-industries. 

Groups Sub-Industries 

FOD Food, beverage, and tobacco 

TEX Textiles, wearing apparel, and leather industries 

CHE Chemical, chemical petroleum, coal, plastic , and rubber 

MNM Non-metallic , mineral products except products of petroleum, and coal 

BMI Basic metal items 

MEQ Fabricated metal, machinery, and transportation equipment 

ELE (added by author) Electronics, semiconductors, and displays 

From this classification, we finally evaluated the environmental efficiency  and productivity 

based on the SML and its decomposition (EC, TC) and identified the innovator firms in each sector. 

4.2. Empirical Results and Their Implications 

This study follows a stepwise approach. In the first stage, we derive the environmental 

efficiency value based on the GDDF and SGDDF. The purpose of deriving two indices 

simultaneously is to investigate whether adopting a “sequential DDF” is reasonable. For this 

purpose, we should check whether the two efficiencies show an a priori difference. If not, the 

adopted methodology is inappropriate for our purpose. Based on Equations (2) and (3), 

respectively, the average value of the GDDF was 0.686 and SGDDF was 0.641 for the sample period 

of seven years. This proves that the GDDF could overestimate the real efficiency, and that the 

SGDDF reflects the field-oriented phenomena more reasonably. To support statistical differences 

between GDDF and SGDDF, we conducted a Mann-Whitney test to check the null  hypothesis of no 

group difference. As shown in Table 3, the M-W test statistic shows a p-value of 0.000, and we can 

reject the null hypothesis, concluding that there is a significant difference between GDDF and 

SGDDF. 

Table 3. Result of Mann-Whitney test. 

Test Null Hypothesis Test Statistic p-Value 

Wilcoxon-Mann-Whitney Mean(GDDF) = Mean(SGDDF) 1,707,724 0.000 

Because the efficiency value of 1 implies perfectly efficient conditions, the empirical average 

value of 0.641 implies that there is potential for 35.9% improvement in the efficiency of the Korean 

manufacturing industry. This implies huge potential for companies to become more competitive in 

sustainable management. Furthermore, there is scope for appropriate government polices 

promoting sustainability to reduce this gap. 

In the second stage, based on Equation (5) in Section 2, we derived the SML index to examine 

the governing factors to reduce this inefficiency gap by 35.9%. Table 4 and Figure 2 shows the 

empirical results of each sector and the average values for the period 2011–2017. All the individual 

manufacturing companies are categorized into the 7 sub-sectors, as shown in Table 2. The result 

shows a discouraging downward trend in the SML for all sectors during the period 2011–2015, 

implying that environmental efficiency did not improve before the implementation of the ETS. 

However, it shows an upward trend after 2016. Thus, the whole sample period shows a U-trend, 

clearly indicating the effectiveness of the ETS policies since their implementation in 2015. 

Table 4. Average value of the Sequential Malmquist Luenburg index. 

Sector 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 Average 

FOD 1.035 1.013 0.980 1.007 1.011 0.984 1.005 

TEX 0.971 0.984 0.972 1.032 1.022 1.012 0.999 

CHE 1.008 0.999 0.975 0.966 0.992 1.038 0.996 

MNM 1.017 1.019 1.054 0.988 1.011 1.021 1.018 

BMI 0.992 0.982 0.987 0.988 0.991 1.025 0.994 

MEQ 0.996 0.991 0.993 1.000 0.992 0.995 0.994 
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ELE 0.982 1.004 0.998 1.005 1.033 1.066 1.015 

On average, the SML index of all sectors increased by approximately 0.3%, implying that the 

total environmental productivity of the Korean manufacturing industry increased during the 2011 –

2017 period. If we focus on the period from 2015, the average SML index increased to 0.8%, which is 

much higher because of the ETS policies. Although the SML index showed a decrease (0.998) until 

the first year of the ETS, it started to increase (J-curve effect) from 2016. This is a noteworthy result 

because environmental productivity has increased as environmental regulations settled. It partially 

supports the Porter hypothesis [37], implying that strict environmental regulation increases 

efficiency and encourages innovation efforts towards more environmentally-friendly production 

processes. Hence, although it has been just three years since its implementation, we can say that the 

ETS has shown a positive effect on environmentally-friendly productivity, and it will be helpful in 

advancing the Korean economic structure if it strengthens its regulatory policies. 

Meanwhile, we also need to focus in more detail on each of the seven sectors’ performances, 

because each one has a different input-output structure. On the seven-year average, the result 

shows quite different performances: FOD (0.5%), TEX (−0.1%), CHE (−0.4%), MNM (1.8%), BMI 

(−0.6%), MEQ (−0.6%), and ELE (1.5%). This result implies that MNM, ELE, and FOD are the 

leading sectors during the sample period. However, we should pay more attention to the 

productivity change after 2015. After 2015, most sectors, with the exception of MEQ, show an 

average efficiency less than 1, but still higher than before. Especially, the CHE and BMI sectors 

show an impressive upward trend for 2016 and 2017. Therefore, the implementation of the ETS had 

a positive effect on each industrial sector, even if their effects are quite different from each other. 

Although MEQ shows lower productivity for all the sample periods, it does not indicate an adverse 

effect of the ETS, as it maintains a stable productivity value. 

In general, the two leading sectors, CHE and BMI, are capital- and energy-intensive sectors. 

The ELE sector showed a particularly outstanding upward trend for its environmental performance 

as well. Therefore, this might imply that the ETS policies result in a more positive effect on capital-

intensive industries. As capital- and energy-intensive industries contribute a major share to the 

overall GHG emissions, it could be a good signal that transformation to environmentally-friendly 

sustainable development is feasible and successfully workable. 

 

Figure 2. Changes in the Sequential Malmquist Luenburg index. 

As mentioned above, we decomposed the SML index into two indices, EC and TC, to examine 

productivity-governing factors. As the SML value is derived from the EC and TC, we could deduce 

each sector’s characteristics and its main causes (driver) for productivity. 
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The average EC index of the entire Korean manufacturing industry is 0.989 , which implies that 

an average decrease (−1.1%) in efficiency exists. The EC index measures how much a company as a 

DMU in a  specific group increases its efficiency every year. This is called the ‘catching-up’ effect. 

Only ELE shows a comparatively higher value (1.006) for all seven years, while the rest of the 

sectors show less than 1. They ranged from 0.983 to 0.992, which implies a decrease in  the catching-

up effect. This negative EC index result means that the Korean manufacturing industries show the 

digital divide between IT and other industries, and thus, the rest of the sectors need to be more 

active in finding solutions to enhance their comparative efficiency. Certainly, the government 

promotion of policies will encourage their efforts toward frontier efficiency and a faster catching-up 

effect. Using public incentives to improve managerial operations and benchmarking the best 

practices from efficient firms in their group might be optimal. Similar to the SML index, the EC 

index dynamic trends in 2016–2017 show the highest result, indicating the effect of the 2015 launch 

of the ETS on the catching-up effect. It is especially noteworthy to analyze the CHE, BMI, and ELE 

sectors, as they show an extreme increase in the EC index in Table 5 and Figure 3. 

Table 5. Average value of the Efficiency Change index. 

Sector 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 Average 

FOD 0.950 0.974 0.980 1.006 1.011 0.979 0.983 

TEX 0.971 0.968 0.972 0.972 0.996 1.012 0.981 

CHE 0.999 0.982 0.974 0.966 0.992 1.038 0.992 

MNM 0.982 0.999 1.008 0.977 0.956 0.999 0.987 

BMI 0.981 0.943 0.986 0.988 0.991 1.025 0.986 

MEQ 0.987 0.988 0.992 0.999 0.992 0.992 0.992 

ELE 0.977 0.999 0.997 1.004 0.995 1.062 1.006 

Average 0.978 0.979 0.987 0.984 0.989 1.015 0.989 

 

 

Figure 3. Changes in the Efficiency Change index. 

The TC index indicates a change in the technology (innovation effect). As you can see in Table 

6, the average TC value of the Korean manufacturing industry is 1.015; this means that the average 

innovation effect over seven years is just 1.5%. It is noteworthy that TC values range from 1 to 

1.090. As this study has adopted the SGDDF concept, it assumes there is no technical regression. In 

Table 5, we can see that sector MNM shows the best performance in TC because it maintains values 

of more than 1% over the seven years. The ELE sector was also regarded as beneficial to the 
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environment because its values increased dramatically after 2015. We also found that the TC values 

were higher than the EC values, indicating that the TC index has a more significant influence on the 

positive effect of the SML. Thus, we can say that the innovation effect is  the main driver of 

environmental productivity. 

Table 6. Average value of the Technical Change index. 

Sector 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 Average 

FOD 1.090 1.041 1.000 1.001 1.001 1.005 1.023 

TEX 1.001 1.017 1.000 1.095 1.000 1.000 1.019 

CHE 1.008 1.018 1.001 1.000 1.000 1.000 1.005 

MNM 1.035 1.019 1.045 1.011 1.070 1.022 1.034 

BMI 1.016 1.045 1.001 1.000 1.000 1.000 1.010 

MEQ 1.009 1.003 1.000 1.002 1.000 1.003 1.003 

ELE 1.006 1.007 1.004 1.004 1.014 1.014 1.009 

Average 1.024 1.021 1.007 1.016 1.010 1.005 1.015 

So far, we have examined the SML index and its two decomposed indices  (EC and TC).  The 

next step is to identify the most innovative firms in each sector to explore which firms are leaders 

with respect to environmental productivity and innovation based on Equations (7)–(9), Firms 

identified as group innovators here are outstanding in their specific sectors. Table 7 reports 

innovative firms. 

Table 7. Group innovators. 

Industry (No. of 

Firms) 

Group Innovators 

2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 

FOD (2)  
Lotte Food 

SPL 
  SPL  

TEX (2)    
Korea 

Vilene 
 Daenong 

CHE (4) 
Daelim industry, 

Hyundai EP 

Namhae 

chemical 

Jaewon 

Industry 
   

MNM (3)   

Daehan 

Ceramics, 

Wooryong, 

KCC 

  Wooryong 

BMI (2) Youngpoong Sungho     

MEQ (1)      
Volvo 

Korea 

ELE (2)  
Sebang 

battery 
 

LG 

electronics 
 

LG 

electronics 

Among the seven sectors, every sector has more than two innovators, while the MEQ sector 

only has one (Volvo Korea/2016 to 2017). As this sector also shows the lowest environmental 

productivity, it requires more innovator firms to lead it. Looking at each firm, SPL (FOD), 

Wooryong (MNM), and LG electronics (ELE) were registered twice as innovators during the sample 

period, implying that these three firms could be the core role models for firms in their respective 

sectors. For instance, LG electronics has produced energy efficient refrigerators since 2013. Owing 

to this effort, they have exported these refrigerators to India and obtained 173,000 tons of 

accumulated Certificated Emissions Reduction from United Nations Framework Convention on 

Climate Change (UNFCCC), 62,000 tons in India, which can be sold on the Korean ETS market. This 

is regarded as one of LG Electronics’ most outstanding performances as an innovator. If we look at 

the 2015–2016 period, only SPL registered as an innovator. However, there were four innovator 

firms the following year, implying that the drastic increase in the SML happened because of the 

efforts of these firms. 
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5. Conclusions 

As a developing country becoming an advanced economy, Korea has emphasized rapid 

economic development. However, there have been serious air pollution disasters nationwide, and 

thus, it is urgent for the Korean government to find workable, environmentally–friendly economic 

policies. This research analyzed the feasibility of the Korean government’s environmental policies 

by focusing on the ETS. The main findings from the empirical tests can be summarized as follows. 

The entire Korean manufacturing industry showed a very small upward trend in its average 

SML value (0.3%) over the sample period. Furthermore, the post-2015 results were very 

encouraging, showing a higher upward trend (0.8%). This means that environmental regulation has 

obviously been enhancing environmental performance with positive signals within 3 years, 

supporting the Porter hypothesis. Unfortunately, nonetheless, the regulations have not enhanced 

environmental efficiency by much, and thus, the Korean government should strengthen its 

regulatory policies to maintain and strengthen this upward trend to make the national emission 

target achievable or feasible. 

We examined not only the entire manufacturing industry’s performance, but also the 

environmental performance of each sector. According to the results, FOD, MNM, and ELE showed 

positive results, with averages more than 1, while the remaining four sectors did not. CHE and BMI 

showed drastic upward trends in 2017, which makes it possible to expect positive future results. We 

also found that capital- and energy-intensive sectors such as ELE showed good performance after 

2015. They contribute the major share of GHG emissions; this means that regulations have shown a 

good effect already. However, the MEQ sector did not show a value more than 1 for the entire 

seven years; thus, both internal efforts for learning from benchmark firms and external public 

support to promote innovative activities are required to enhance its environmental performance in 

hardware-oriented facilities such as the machinery and transportation sectors. 

By decomposing the SML index, it is also possible to identify the major driving factor that 

influences environmental productivity. In this study, the EC average was below one, while the TC 

average was the opposite, implying that the innovation effect is the main driver for environmental 

productivity. Therefore, each inefficient firm should engage in self-learning from benchmarking to 

enhance efficiency through innovation. Meanwhile, although we assumed that the TC average is 

higher than one, the pattern of each sector was different. Therefore, comparatively lower sector s 

such as MEQ should be more innovative to maintain their overall environmental productivity. 

From the TC index value and efficiencies of consecutive years, we could obtain group innovators 

for each sector. These innovator firms are good models for benchmarking with respect to 

productivity and innovation, and other firms may enhance their environmental performance by 

learning from the group innovators’ cases. This might be the easiest solution for the urgent need to 

enhance the EC value. 

Since the Korean government hosted the Green Climate Fund in Incheon, it has made great 

efforts to enhance its environmentally-friendly growth. Nonetheless, the research shows that 

unilateral measures such as the ETS may have problems, and thus, more precisely differentiated 

environmental regulation for each industry are required. Moreover, the research results support the 

idea that green technology innovation is a key factor for promoting growth in the green economy. 

The benchmarking firms definitely play a leading role in promoting innovation activ ities, and thus, 

more performance-oriented incentives for these leading firms could result in a trickle-down effect 

in green technology. Although this study has several implications, it still has some limitations. First, 

as the non-parametric approach used in this study does not offer statistical reliability, it might be 

necessary to use the bootstrapping approach. Second, the Meta-frontier approach may provide a 

more in-depth analysis in considering heterogeneity across diverse sectors. 
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