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Abstract: Pinus arizonica is a widely distributed tree species growing in temperate forests of 

Northwest Mexico where it is utilized through different regeneration harvest methods. Yet, 

management models based on estimations of its productive potential are sorely lacking. In this 

study, a procedure to create a productive map using site index (SI) equations and Geographic 

Information Systems (GIS) was developed. A SI model for P. arizonica was created for the study area 

and used to classify a group of randomly sampled plots on three productivity categories (High, 

Medium, and Low) for management purposes. Climatic, topographic and edaphic variables were 

determined on the sampled plots. Then, a statistically-based analysis was performed to identify the 

climatic, topographic and edaphic variables significantly influencing the productivity levels. Based 

on the values of these significant variables, a map of productive potential was elaborated for the 

whole study area. Sites with the highest productivity were those with slopes ≤12°, soil depths ≥0.46 

m, minimum and maximum mean annual temperatures of 5 °C and 18 °C respectively, and 

precipitation ≥900 mm. This methodology could be considered for similar species/conditions where 

productivity models do not exist or to update old models rendered obsolete by climate change. 

Keywords: forest productivity; pine tree growth; productive potential map; GIS 

 

1. Introduction 

Forest ecosystems play an important role in biodiversity conservation and the provision of 

ecosystem services, such as timber production and carbon sequestration [1]. These ecosystems play 

an important role in the economies of worldwide rural communities [2,3]. The need to provide forest 

products to a growing world population despite major obstacles such as climate change, 

desertification, environmental pollution, and loss of biodiversity is a major challenge for forest 

managers [4]. Forest ecosystems have experienced strong degradation due to deforestation, changes 

in land use and land cover, fires, climate variability and fragmentation [5–8]. Forests in northern 

Mexico are used extensively for timber extraction but have experienced disturbance by changes in 

land use by agricultural and pastoral activities, resulting in productivity changes as well as habitat 

modification for many species of fauna and flora [9]. 
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Forest productivity estimations are necessary for both effective forest management decisions 

and the assessment of site conditions for ecological studies [10,11]. This knowledge greatly improves 

the ability to manage forest resources at a specific site, which in turn will help in making cost-effective 

decisions on the use of silvicultural soil [12]. Site productivity can be defined in many ways, 

depending on the objectives of resource managers [13]. From a forest management perspective, 

productivity is generally defined as the ability of a site to produce wood volume [14]. Assessing forest 

productivity is essential to understand sustainability in forest management because timber extraction 

should be based on the capacity for recovery of a forest area [15]. 

Commonly, forest monitoring has been carried out by traditional methods, which include 

extensive field sampling [16]. However, these methods are highly costly and time-consuming, 

especially in inaccessible locations [17,18]. Productivity assessments have traditionally been 

performed by determining the quality of the forest stands based on the site index (SI) approach [1]. 

For more than 100 years, the SI has been implemented as the world’s most widely used forest 

productivity measure. The SI based decision making serves as the baseline for land use management, 

forestry investment analysis, and growth and yield predictions [19,20]. The SI models are generally 

developed to describe the response of a defined variable, commonly the height of dominant trees 

[20,21], with respect to the quality of several edaphic, topographic, climatic and biotic variables [22]. 

For example, Ercanli et al. [12] developed a multiple linear regression model in Turkey for Picea 

orientalis with field sampling data and topographic, soil nutrients and climatic factors. The model 

explained 77% of the variation between factors and field data. In Ireland, Farrely et al. [23] generated 

a series of models to predict the SI of Picea sitchensis using climate variables and soil chemical factors 

as predictor variables. Bueis et al. [24] developed a discriminant model for estimating SI for Pinus 

yvestris L. in northern Spain using soil, climatic, and physiographic parameters. Sharma et al. [25] 

also developed a set of multiple linear regressions with different combinations of sites and climatic 

factors for Picea abies and Pinus silvestris. These studies agree that soil, topographic and climatic 

variables have the greatest influence on tree height and thus in SI modeling. In addition, studies have 

highlighted the feasibility of using accessible and low cost tools such as digital elevation models, 

lidar, or spectral images, to classify forest SI with high accuracy [10,11,26]. 

The use of SI curves based on height analysis is a preferred estimation of productivity because 

of the strong relationship between height and age of dominant trees [27], i.e., the age of healthy trees 

can serve as a predictor for the height of the trees. This and other plant-based analysis are called 

phytocentric methods while the geocentric methods are based on site properties such as climate, 

topography and soil [20]. It has been also stated that the productivity analysis should neither be 

constrained to the use of tree structural variables nor to the use of biophysical variables exclusively 

[20]. In many cases the use of both phytocentric and geocentric methods could be highly useful. Other 

procedures to estimate SI involve the use of some relationships such as the ratio of height/diameter 

as an inverse measure of productivity [28] or the use of non-parametric random forest models to 

estimate SI as a function of climatic variables [29]. In many cases, the SI cannot be measured directly 

and must be estimated from other site characteristics related to climate, topography, and soil [30]. 

However, the use of geographic variability is essential to account for local plant growth responses. 

The increasing availability of spatially explicit data created by digital mapping using the 

geographic information system (GIS) allows the development of models with a spatial context for 

forest management that promise high regional accuracy. The combination of this spatial information 

with field data provides valuable information on the relationships between site condition and 

environmental variables [31]. For this reason, the joint GIS use of the SI is an attractive alternative in 

forest management [32,33]. The main benefit of the GIS is the capacity to model environmental 

problems, including large volumes of spatial data that link processes occurring across space and time 

[34]. Prediction models are applied to field data and as a result only provide point estimates of site 

productivity. The application of geostatistical techniques to layers of point data allows to pass from 

a point representation to a continuous one, as well as the obtaining of the uncertainty measure of the 

sites not sampled [35]. Several studies have been developed to create useful maps for forest 

management [36–39]. However, attempts to map geospatial attributes to measure forest productivity 
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have been limited [37]. To bridge the gap between geospatial information, the relationship with forest 

productivity and reduce fieldwork, SI and GIS as a set of spatial variables such as climate, soil, and 

topography, allow the development of maps, which could be effective tools for managing complex 

ecosystems [40–42]. Recent approaches to bridge the gap between geospatial information and its 

relationship to SI have been employed by Waring et al., (2014) [40], where they used a forest growth 

model based on 3-PG (Physiological Principles Predicting Growth) processes using satellite estimates 

of the Maximum Foliar Area Index contrasting it with the site’s growth potential for Pseudotsuga 

menziesii and thus visualizing its variation in the western region of North America. Brandl et al., 

(2014) [31] used national forest inventory information from the state of Bavaria, Germany, together 

with maps derived from the digital elevation model, temperature and precipitation maps, soil maps, 

to spatially predict the productivity of the SI, using the Generalized Additive Model. Mestre et al., 

(2017) [33] used geospatial slope and exposure variables together from a productivity index map 

constructed using a multi-Gaussian Kriging method in a geographic information system, where they 

evaluated high, intermediate, and low productivity levels. 

Despite the development of allometric equations and fitting models for SI [43], the incorporation 

of geospatial variables influencing tree growth and the use of GIS tools have been poorly studied and 

applied to forests management in Mexico. This is particularly the case of the temperate forests of 

Northwest Mexico, where Pinus arizonica Engelm is a species distributed on a wide range of soil and 

topographic conditions [44]. The need for current forest productivity estimations, not only in Mexico 

but worldwide, arises also because of contemporary climate change, as forest growth estimations 

based on decades-old equations may not reflect current tree growth rates [40]. 

Pinus arizonica is a key species of great ecological, economic, and social importance in the Sierra 

Madre Occidental, which includes the states of Chihuahua and Durango, Mexico [45,46]. Yet, little 

information exists on its productivity related to the spatial environmental variability and thus timber 

utilization cannot have a sustainability target. Here, we attempted to analyze the validity and 

usefulness of growth curves linked to GIS techniques to generate an easy-to-use geographic model 

to predict tree productivity. The objectives of this study were (1) to develop a SI model for P. arizonica 

under the conditions of southern Chihuahua, Mexico, considering the height and age of dominant 

trees, and (2) to create a spatial model to display the landscape productivity for this species as a 

function of topographic, climatic and edaphic variables on a scale relevant to regional forest 

management. We used the Schumacher model as basis for our SI analysis and the obtained 

productivity classes were assigned according to the conditions of physical variables in the field to 

obtain useful predictor maps. The results could be used by forest managers and planners to better 

understand forest productivity and to implement decisions based on sustainable forest management 

plans. Likewise, geospatial information could be useful for territorial ecological ordering considering 

the spatial distribution of forest productivity. 

2. Materials and Methods 

2.1. Study Area 

This study was conducted in the area of Guadalupe y Calvo, Chihuahua, which is part of the 

Sierra Madre Occidental, in Northwest Mexico (Figure 1). This area was chosen because P. arizonica 

is a key species naturally and amply distributed in these forest ecosystems. The altitude of the study 

area ranges from 1600 m to 3020 m, with an average slope of 33% (Table 1). The most common soil 

types are regosols and lithosols with an average A-horizon depth of 33 cm, about 23% of rockiness, 

and an average mulch depth of 2 cm. The predominant climate is temperate sub-humid with an 

annual precipitation between 576 mm to 1248 mm, mainly occurring as rainfall in the summer, and 

with occasional snowfall occurring from December to February. In this region, the main productive 

activities are timber harvesting, cattle ranching, rainfed agriculture, and mining. The forests of this 

region are of great economic importance and, particularly, P. arizonica is one of the most exploited 

species due to its timber quality [47]. 
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Figure 1. Location of the study area in the Guadalupe y Calvo municipality, Chihuahua, Mexico. 

Table 1. Summary of site and forest characteristics of the P. arizonica sampled plots of the study. 

Variable Average Max Value Min Value 

Above sea level altitude (m) 2314 3020 1690 

Slope (%) 31 85 5 

A-Horizon (cm) 33 97 3 

Rockiness (% Cover) 23 78 0 

Bare soil (% Cover) 13 85 0 

Litter depth (cm) 2 9.5 0.3 

Min temperature °C 5 13 1 

Max temperature °C 23 32 17 

Precipitation (mm) 898 1248 576 

2.2. Methodological Outline and Data 

To create a spatial model of productivity we used physical variables of soil, topography and 

climate. The general methodological outline to elaborate such spatial model appears in Figure 2. The 

information was obtained from pure and mature stands of P. arizonica distributed over different 

aspects. We selected 42 P. arizonica dominant trees (tallest trees of the stands) from different 

conditions of slope, soil depth and aspect in the study area. Then, we carried out a stem analysis 

following the methodology proposed by the British Columbia Forest Productivity Council [48]. Each 
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tree was harvested to subsequently perform cross-sectional cuts at 0.30 m, 1.30 m (diameter at breast 

height or DBH) and every 2 m until the stem reached 10 cm in diameter. The length of the remaining 

tip was recorded. Following guidelines, we counted the number of annual rings, measured diameters 

of the stem transverse cross sections, and estimated the height of the tree at different ages. This 

information integrated the database of height-age data pairs to perform the SI analysis. 

 

Figure 2. Framework used to develop the productivity potential map of P. arizonica based on a site 

index model. ERIC: Extractor Rápido de Información Climatológica (source of climatic information 

from Mexico), DEM: digital elevation model. INEGI: Instituto Nacional de Geografía e Informática 

(National Institute of Geography and Informatics) (Mexico). ANOVA: Analysis of Variance. 

To identify the influence of the physical variables over the forest productivity 220 circular plots 

of 1000 m2 each with the presence of P. arizonica were located and sampled by using a 5 km systematic 

design. Every site was georeferenced using a Garmin Etrex Global Positioning System (GPS) and then 

the height and the age of the two dominant trees were registered for each plot. The height was 

measured with a Suunto clinometer, whereas the age was determined by counting the trees annual 

rings through samples extracted with a Pressler drill. At the center of each sampling plot we recorded 

slope and aspect and located a 1 m2 sub-plot to determine percent bare soil area, pedregosity, and 

litter depth. Also, a soil pit was dug adjacent to the subplot to determine soil depth. We also included 

in the database climate variables such as the means of minimum and maximum annual temperatures 

and annual precipitation from a time series of 64 years (1940–2004). Climate data were obtained from 

ERIC III, a historical weather information depository provided by the Mexican Meteorological 

Service (Mexican Institute of Water Technology) [49] 

(https://www.imta.gob.mx/productos/software/eric-iii-version-3-2-extractor-rapido-de-

informacion-climatolo-detail). The selected climate data corresponded to weather stations placed 

around and within the study area.  
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2.3. Site Index Model 

In this study, the Schumacher model (Equation (1)) (see Palahi et al. [50] for details) was 

evaluated. 

� = b��
�b���� (1) 

 

where H is the dominant height (m); E is the age (years); and 0 and 1 are empirical parameters of 

the model. Our analysis considered a tree base age of 80 years. This model was tested using the guide 

curve (GC) methodology [27]. To evaluate the results of the model we considered the value of the 

root mean square error (RMSE), the value of R2, and the distribution of residuals. 

2.4. Analysis 

The analysis to determine the best-fitted model was performed through the NLIN procedure 

and the DUD method by using the Statistical Analysis System version 10.1 (SAS Inc® Cary, NC, USA). 

The Shapiro–Wilk test was conducted to verify compliance with the assumptions of regression. 

Additionally, the relative and cumulative residual frequencies were obtained. These frequencies 

resemble a straight line with respect to the probability of normal distribution and the corresponding 

percentages resemble a Gauss-bell curve [51]. 

We used the predicted height according to the model using the guide curve method, and then a 

group of anamorphic site index curves were fitted. Tree growth was stratified in three quality classes 

(25 m = High, 21 m = Medium and 12 m = Low). The curves showing the growth trend were 

constructed by holding the shape parameters of the chosen model constant and varying the 

asymptote parameter as necessary to achieve the required dominant height when the tree age equaled 

base age, which was 80 years in this study. This approach has been used in previous studies [52]. 

The three height classes generated with the Schumacher model were used to assign the quality 

level of productivity to each of the 220 plots according to the height-age data of their dominant trees. 

Then, we performed analyses of variance (ANOVA) to determine if each of the physical variables 

recorded from the plots significantly influence the productivity level (High, Medium, and Low). A 

comparison of means with the Tukey test (α = 0.1) was also performed to determine differences of 

such variables among productivity levels.  

In a following step, a spatial layer for each of the physical variables significantly influencing the 

productivity level was created with the software ArcGIS 10.2 [53]. The layer of topography (slope) 

was elaborated from a Digital Elevation Model (DEM) 1:50,000 [54]. The layer of soil depth was taken 

from a soil digital map of the state of Chihuahua, Mexico. The climatic layers (precipitation and 

temperatures) were created by interpolating the data of climate variables obtained from ERIC III. 

Interpolation was based on the Inverse Distance Weighting method [55], employing the Geostatistical 

Wizard available in the software ArcGIS 10.2 [53]. The cell size used for all the layers was of 25 m. 

For each layer, their values were categorized in three levels of productivity; High (3), Medium 

(2), or Low (1), according to the results from the Tukey tests. Then, the mean value of each level was 

assigned to the pixels based on their corresponding category. Once categorized, the layers were 

summarized (slope + soil depth + mean minimum temperature + mean maximum temperature + 

precipitation). As a result, a map was created, which was then reclassified in three equal intervals 

(High, Medium, and Low) to create the productive potential map. 

To validate this new map model, age and height of the trees were taken from a random sample 

of 190 sites within the study area. The effectiveness of the productive potential map was assessed 

with the KAPPA Index, which is denoted by Equation (2) [56] 

KAPPA=
�∑����∑

�(���∗���)

���∑�(���∗���)
 (2) 

 

where: KAPPA = Kappa index, k = number of matrix files, xii = observation number of row i and column 

i (along the diagonal), xi+ and x+i = Total marginal for row i and column i, respectively, and N = total 
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number of observations. To characterize the level of agreement suggested by the KAPPA index, we used 

the qualitative descriptors pointed out by Monserud and Leemans [57]. These authors classified the 

effectiveness as poor (0–0.4), fair (0.4–0.55), good (0.55–0.7), very good (0.7–0.85), and excellent (0.85–

1.0). 

3. Results 

Descriptive statistics of the diameter at breast height (DBH) and height at different ages of the 

dominant trees used to fit the SI model are shown in Table 2. We considered records of every ten 

years. Such records were gotten from a stem analysis performed by following the methodology 

proposed by the British Columbia Forest Productivity Council [48]. The maximum height registered 

from the trees was 25.6 m at an age of 90 years, with diameters of 33.1  6.1 cm, which may indicate 

the existence of high variability in the productivity of the study area. This may be an effect of the high 

topographic and soil variability of the sites where the trees grew. This response could be observed in 

young (10–30 years), as well as in full mature trees (50–90 years). 

Table 2. Descriptive statistics of the sampled trees. 

 DBH (cm) Height (m) 

Age Mean St. Dev. Min Max Mean St. Dev. Min Max 

10 4.3 2.5 3.1 10.6 2.5 0.9 1.6 4.6 

20 8.9 4.2 5.5 16.6 5.5 1.9 2.1 9.7 

30 13.8 5.1 4.3 21.6 8.8 2.8 3.5 12.5 

40 18.7 5.3 9.3 26.7 11.7 3.0 5.7 16.6 

50 22.6 5.4 12.6 32.2 13.6 2.9 7.2 18.7 

60 26.3 5.1 16.0 34.4 15.5 3.0 9.6 19.8 

70 28.1 5.3 20.1 35.0 16.4 3.5 11.3 23.9 

80 31.4 6.4 23.9 40.9 17.8 3.4 12.1 25.0 

90 33.1 6.1 26.2 43.7 19.6 3.5 14.7 25.6 

DBH = Diameter at Breast Height, St.Dev. = Standard Deviation, Min = Minimum, Max = Maximum. 

The Schumacher model [50] showed an adequate fit to the stem analysis data (Table 3). Although 

we initially found positive autocorrelation in the residuals, estimated with the Durbin–Watson 

statistic (DW = 0.33), the autocorrelation was corrected (DW = 1.4) by applying two delays in the 

residuals using a CAR (2) shape structure [58]. The quality of the SI model adjustment for P. arizonica 

was then in compliance with the assumptions of normality of the regression sample errors, since the 

SW test was acceptable with W normal = 0.99. In addition, no trend was observed on the variance of 

the residual distribution, thus discarding heteroscedasticity. 
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Table 3. Statistical fit for the Schumacher model, parameters values and their significance. 

Schumacher SSE MSE RMSE R2 R2
ajus DW Parameter Estimate Approx 

Std Err t Value Approx 

Pr > |t| 

 554.6 2.6287 1.6213 0.9258 0.9247 1.3877 0 25.5103 1.0893 23.42 <.0001 

       1 31.7767 1.8258 17.40 <.0001 

       p1d 0.9656 0.0208 46.39 <.0001 

       p2d 0.8785 0.0251 34.95 <.0001 

 

SSE = Sum Square Error, MES = Mean Square Error, RMSE = Root Mean Square Error, DW = Durbin 

Watson Statistic, Approx. Std Err = Approximate Standard Error, Approx. Pr > |t| = Approximate p 

value. 

The resulting equation used to classify the SI on the study area was H = 25.21029 −31.7766 E-1. By 

using this equation, the guide curve was estimated considering a base age of 80 years. Upon defining 

the base age and the trend of the guide curve, the SI was established at 25 m, 21 m, and 12 m for High, 

Medium, and Low levels of productivity, respectively. This fitted model produced the height curves 

shown in Figure 3. These curves were plotted together with the observed data. The shape of the 

curves is very close to the shape of the observed data with realistic asymptotes and growth patterns. 

This allowed us to assign the levels of productivity to the group of plots sampled on the field. 

 

Figure 3. Graphical representation of the Site Index for P. arizonica Engelm fitted by using the 

Schumacher model (a) and the guide curve method (b). 

The ANOVA results showed statistical differences among productivity levels for slope, 

precipitation, minimum and maximum temperature, and soil depth. As previously stated, 
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autocorrelation was not a limiting factor for our result analysis. The values associated to the highest 

productivity level of P. arizonica through the selected model were 12° of slope, 46 cm of soil depth, 

901 mm of precipitation, as well as 5 °C and 18 °C of minimum and maximum mean annual 

temperature, respectively (Table 4).  

Table 4. Mean values of physical variables in areas with different productivity levels of P. arizonica in 

the area of Guadalupe y Calvo, Chihuahua, Mexico. 

Variable 

Statistics 
Productivity Level 

Low Medium High 

SS MSE Fc Pr > F Mean Stdv Mean Stdv Mean Stdv 

Slope (degree) ** 0.215 0.107 3.999 0.020 37A 15 30A 15 12B 8 

Soil depth (cm) ** 527.354 263.677 0.698 0.012 26A 18 36B 19 44B 11 

Rockiness (%) 0.154 0.077 2.332 0.100 29 2 22 17 21 18 

Bare soil (%) 0.002 0.001 0.056 0.945 12 1 13 14 13 17 

A-Horizon (cm) 4.311 2.156 2.039 0.133 1.5 0.8 1.6 0.8 1.9 1.3 

Litter depth (cm) 0.071 0.035 0.644 0.527 0.6 0.2 0.6 0.2 0.6 0.3 

Minimum 

temperature (°C) ** 
37.378 18.689 3.261 0.041 5A 2 4A 1 8B 3 

Maximum 

temperature (°C) ** 
86.152 43.076 5.208 0.006 23A 3 23A 2 18B 3 

Precipitation (mm) * 1219.023 609.511 0.043 0.096 794A 43 897B 92 901B 116 

SS = Sum of Squares, MSE = Mean Square Error, Fc = Calculate F, Pr > F = p value, Stdv = Standard 

Deviation, * Variables that were significantly different among productivity levels at p ≤ 0.1, ** 

Variables that were significantly different among productivity levels at p ≤ 0.05. 

Following the methodology, the map of productivity was created, and an estimation of the 

surface for each productivity class was made. The sites with High productivity in the area occupied 

by the temperate forest corresponded to 6.5% (43,112 ha), whereas the sites with Medium and Low 

productivity corresponded to 60.4% (402,887 ha), and 33.1% (220,679 ha) of the study area, 

respectively (Figure 4). The rest of the surface (26%) (236,480 ha) is considered as non-forest area and 

corresponded to deciduous forest with an elevation lower than 1800 m, where the presence of P. 

arizonica was not detected. The accuracy of the spatial model was assessed by comparing values from 

the map with records of productivity measured on the field. The estimated value for KAPPA Index was 

0.79 ± 0.08, resulting in a very good agreement. 
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Figure 4. Spatial model of productivity of Pinus arizonica in the area of Guadalupe y Calvo, 

Chihuahua, Mexico. 

4. Discussion 

Estimating the distribution of the productive potential through traditional sampling is a costly 

and time-consuming activity [59]. In this study we show a parsimonious methodology that allows 

mapping the spatial distribution of the productive potential of P. arizonica which has been carried out 

in other countries such as Germany [31], Spain [32], and Finland [38]. Forest productivity estimations 

are essential to achieve a sustainable forest management [60]. The most utilized indirect method 

worldwide is modeling height of dominant trees [61]. This is generally performed with data pairs of 

age-height from stem analysis of trees growing in permanent monitoring plots [62]. The use of data 

from stem analysis has been extensively documented [61]. Thus, we used stem analysis data to fit the 

P. arizonica SI model. Our study constitutes a methodological proposal for mapping and documenting 

the SI in the northwestern region of the state of Chihuahua, using field information and GIS. Because 

of the high adjustment value that we obtained, our ability to map local information (weather stations) 

and available spatial information (digital elevation model, soil map), the proposed approach 

confirms the successful use of GIS, field data sets, and overlapping of layers. This offers the possibility 

for land managers to obtain and generate accurate information at the scales of their interest and with 

information from their inventories. 

Our results showed an adequate growth prediction for all tree ages, which ratifies the 

effectiveness of this procedure in our study area. Since acceptable statistical and graphical results 

were obtained with the Schumacher model in this study, testing more equations was considered not 

necessary. Due to the close relationship between tree height and tree age that we found for P. arizonica 

(R2 = 0.93) our results are comparable to SI models obtained for a hybrid Larix x eurolepis in Sweden 

(R2 = 0.99) [63], P. silvestris in Spain (R2 > 0.92) [50], and other pine species in Mexico (R2 > 0.96) [43]. 

The statistical analysis clearly showed that the SI is adequate to measure forest productivity as 

indicated by the study carried out by Günlü et al. [64] in an unmanaged forest where analyze the 

relationship between direct and indirect methods using the Chi-square test. The test indicated a 

statistically significant relationship between the SI determined by the indirect method is satellite 

imagery. 

Even though high levels of agreement between the real and predicted values can be achieved 

with the SI models, they still present some limitations. Such limitations include that these models are 

developed and are effective for monospecific and even age stands. In addition, for the development 
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of these models it is supposed that the quality of the stand is calculated from the information of the 

specific points in which the sampled trees are located; however, it does not include the variability of 

the physical or biological variables all over the stand [65] and geographical location between 

ecoregions [32]. 

Moreover, thinning or hard grading tend to modify the height of the trees growing in the stand, 

which also modifies the dominant height causing over or sub estimations on the trend of the trees 

growth. In these cases, the use of soil-site relationships is more suitable for estimating site quality 

[23]. With these limitations in mind our modeling results had adequate agreement with our ground-

truth comparisons [57]. The visual interpretation of the SI and the map of productive potential 

revealed an expected agreement with the topographic variations and the distribution of the SI, found 

in the study area. The High SI level appeared near urban–rural areas, indicating the presence of 

management in the forests, while the Low productive potential SI appear in the most remote areas, 

where the forests are possibly unmanaged, affecting the quality of the SI [66]. 

Our results highlight the importance of relating SI models with direct methods through the use 

of biophysical variables to generate continuous models that are acceptable and easy to understand. 

We integrated a procedure combining both direct and indirect methods to generate spatial maps of 

productivity. We accomplished that by classifying the biophysical variables influencing the height of 

dominant trees. Our findings showed that slope, precipitation, minimum and maximum 

temperature, as well as soil depth are the five variables with the highest relationship with the SI 

model of P. arizonica. The spatial distribution of the SI was consistent with the gradient of temperature 

and precipitation in the municipality. Therefore, an increase in SI productivity is probably the result 

of increased precipitation and low temperatures which is documented by Reich et al. [67] and Peters 

et al. [68]. The approach of this study shows that field work together with digital maps of slope, 

precipitation, minimum and maximum temperature, as well as soil depth provide a representative 

sample of the relationship between average forest productivity across the SI and the variability of 

biophysical conditions as reported by Waring et al. [40] at least on a regional scale [69]. 

That allowed elaborating a productivity map with a good accuracy. Productivity maps as 

developed with our procedure can be a useful and handy tool for forest managers as the maps show 

spatial patterns easy to visualize. Besides, maps created by these procedures could allow to estimate 

forest productivity even in areas where no forest inventories exist [68]. 

The values associated to the highest productivity level of P. arizonica, through the selected model 

were 12° of slope, 46 cm of soil depth, and 5 °C and 18 °C of minimum and maximum annual 

temperature, respectively. Our results agree with other findings obtained for forest areas of Mexico, 

where productivity is commonly affected by slope, aspect and soil depth [70]. In agreement with this, 

it has been reported that soil variables may explain about 55% of the variation in forest productivity 

[71]. Other studies have found influence by other more specific variables such as soil pH and organic 

matter [61]. This is due to the scale of work we use, which is a regional scale [72]. If more detailed 

investigations are conducted, probably some other micro variable could be found influencing the 

growth of the trees. Yet, when trying to incorporate micro variables on mapping procedures, map 

generation could be prohibitively expensive and time consuming [71]. 

Multiple regression techniques and multivariate analysis have also been effective in the 

evaluation of forest productivity when employing direct methods because they allow inferring on 

the influence of complex variables over the variability of the productivity phenomenon [73]. Some 

examples of these are studies developed for Picea in forest of Turkey [13], which reported R2 values 

of 0.77 when variables of soil, climate and topography were included in the analysis. Moreover, 

another study carried out also in Turkey compared three methods for the estimation of productivity: 

(1) indirect model of dominant height with guide curve, (2) direct, using soil samples, and (3) using 

satellite images. Differences among the methods were non-significant and the authors recommended 

the use of direct methods, especially in degraded and open land areas [10]. 

Our findings confirm the importance of using direct or combined methods to evaluate 

productivity of dry forest, such as the forest in northern Mexico. The use of maps of productivity 

could also offer reliable and easy to apply tools for the local forest managers. Additionally, the maps 
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of productivity, which were created by using the influence of biophysical variables over species 

growth, could also allow to spatially classifying the productivity of lands without presence of trees. 

That could be useful for multiple purposes such as the establishment of forest plantations with the 

studied species [74,75]. However, the establishment of monitoring plots could be valuable to evaluate 

the productive variability of the species with a greater precision, also considering some factors such 

as the genetic variability [64] or the influence of forest, agricultural or livestock exploitation activities. 

Overall, we agree with Rodhouse et al. [76] that biogeographic modeling is a parsimonious approach 

to connect land management decisions with spatial monitoring. 

Based on our results, we recommend the use of variables such as slope, temperature, and soil 

depth to perform cartographic studies and to estimate the productivity of these types of ecosystems 

in similar parts of Mexico and the world. The use of outdated growth forest models may be risky 

considering that global modification of climate is altering current vegetation growth patterns [40]. 

We expect our results and models to provide sorely needed tools that can be adopted for forest 

management in other regions of Mexico as part of the national strategy to increase forest productivity 

and production (Estrategia Nacional de Manejo Forestal Sustentable para el Incremento de la 

Producción y Productividad—ENAIPROS). 

5. Conclusions and Recommendations 

The combination of phytometric (SI models) and geocentric analysis provides a powerful tool 

for forest productivity. The use of variables such as slope, temperature, and soil depth to perform 

cartographic studies aimed at estimating forest productivity in temperate, mountainous, sub-humid 

areas was supported by our results. Based on the values of these significant variables, a map of 

productive potential was elaborated for the whole study area. Sites with the highest productivity 

have slopes ≤12° with soil depths ≥0.46 m, with minimum and maximum mean annual temperatures 

of 5 °C and 18 °C respectively, and precipitation ≥900 mm (α ≤ 0.1). 

We recommend to generate growth forests models where they do not exist and to update old 

models following the methodology we proposed here. The use of outdated growth forest models 

involves the risk of assuming growth patterns that do exist any longer because of environmental 

changes imposed by climate change. We expect our results and models to provide sorely needed 

tools that can be adopted for forest management in Mexico. 

Additionally, these results could be used to identify sites for the potential establishment of 

permanent monitoring plots to learn more about the dynamics of forest growth. For further research, 

we recommend to carry out more detailed studies about the influence of variables such as genetic 

diversity, forest exploitation or anthropogenic activities like agriculture and livestock, on the 

productive variability of forest species. 

Author Contributions: M.M.-S., A.P.-A. and G.V.-Q. conceived and designed the research; J.A.P.-A., C.R.M.-N. 

and F.V.-G., processed the data, analyzed it and elaborated the first draft; R.M.-G. substantially contributed to 

the editions and final revision of the present manuscript. 

Funding: This work was supported by the Comisión Nacional Forestal of Mexico (Grant number. C0310027) and 

the Consejo Nacional de Ciencia y Tecnología (CONACYT). CONACYT provided a postdoctoral fellowship to 

the first author at Oregon State University. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Weiskittel, A.R.; Crookston, N.L.; Radtke, P.J. Linking climate, gross primary productivity, and site index 

across forests of the western United States. Can. J. For. Res. 2011, 41, 1710–1721, doi:10.1139/x11-086. 

2. Babulo, B.; Muys, B.; Nega, F.; Tollens, E.; Nyssen, J.; Deckers, J.; Mathijs, E. The economic contribution of 

forest resource use to rural livelihoods in Tigray, Northern Ethiopia. For. Policy. Econ. 2009, 11, 109–117, 

doi:10.1016/j.forpol.2008.10.007. 

3. Youn, Y.C. Use of forest resources, traditional forest-related knowledge and livelihood of forest dependent 

communities: Cases in South Korea. For. Ecol. Manag. 2009, 257, 2027–2034, doi:10.1016/j.foreco.2009.01.054. 



Sustainability 2019, 11, 829 13 of 16 

4. Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat 

ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006, 

225, 378–390, doi:10.1016/j.foreco.2006.01.014. 

5. Mas, J.F.; Velázquez, A.; Díaz-Gallegos, J.R.; Mayorga-Saucedo, R.; Alcántara, C.; Bocco, G.; Castro, R.; 

Fernandez, T.; Pérez-Vega, A. Assessing land use/cover changes: A nationwide multidate spatial database 

for Mexico. Int. J. Appl. Earth. Obs. 2004, 5, 249–261, doi:10.1016/j.jag.2004.06.002. 

6. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.A.; Tyukavina, A.; Thau, D.; 

Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover 

change. Science 2013, 342, 850–853, doi:10.1126/science.1244693. 

7. Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidi, R.; Delzon, S.; 

Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European 

forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709, doi:10.1016/j.foreco.2009.09.023. 

8. Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. Global 

patterns of tropical forest fragmentation. Nature 2018, 554, 519, doi:10.1038/nature25508. 

9. Návar, J. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For. 

Ecol. Manag. 2009, 257, 427–434, doi:10.1016/j.foreco.2008.09.028. 

10. Altun, L.; Başkent, E.Z.; Bakkaloğlu, M.; Günlü, A.; Kadioğullari, A.İ. Comparing methods for determining 

forest sites: A case study in Gümüşhane-Karanlıkdere forest. Eur. J. For. Res. 2008, 127, 395, 

doi:10.1007/s10342-008-0223-9. 

11. Kodani, E.; Tarumi, A.; Awaya, Y. Estimating Forest Productivity of Manmade Coniferous Forest Stands 

Using Low Density Lidar. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 628–630. 

12. Ercanli, I.; Gunlu, A.; Altun, L.; Zeki Baskent, E. Relationship between site index of oriental spruce [Picea 

orientalis (L.) Link] and ecological variables in Maçka, Turkey. Scand. J. For. Res. 2008, 23, 319–329, 

doi:10.1080/02827580802249100. 

13. Mohamed, A.; Reich, R.M.; Khosla, R.; Aguirre-Bravo, C.; Briseño, M.M. Influence of climatic conditions, 

topography and soil attributes on the spatial distribution of site productivity index of the species rich 

forests of Jalisco, Mexico. J. For. R. 2014, 25, 87–95, doi:10.1007/s11676-014-0434-5. 

14. Avery, T.E.; Burkhart, H.E. Forest Measurements, 5th ed.; Waveland Press: Long Grove, IL, USA, 2015; pp. 

211–229, ISBN 1-4786-2908-8. 

15. Richardson, B.; Skinner, M.F.; West, G. The role of forest productivity in defining the sustainability of 

plantation forests in New Zealand. For. Ecol. Manag. 1999, 122, 125–137, doi:10.1016/S0378-1127(99)00037-

7. 

16. Fox, D.M.; Maselli, F.; Carrega, P. Using SPOT images and field sampling to map burn severity and 

vegetation factors affecting post forest fire erosion risk. Catena 2008, 75, 326–335, 

doi:10.1016/j.catena.2008.08.001. 

17. Runkle, J.R. Guidelines and Sample Protocol for Sampling Forest Gaps; Department of Agriculture, Forest 

Service, Pacific Northwest Research Station: Portland, OR, USA, 1992; p. 283. 

18. Vásconez, N.L.; Sevilla, H.C. Uso De Los Sensores Remotos En Mediciones Forestales. Eur. Sci. J. 2018, 14, 

doi:10.19044/esj.2018.v14n15p%25p. 

19. Stearns-Smith, S. Making sense of site index estimates in British Columbia: A quick look at the big picture. 

J. Ecosyst. Manag. 2001, 1, 1–4. 

20. Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts 

for even-aged stands. Forestry 2008, 81, 13–31, doi:10.1093/forestry/cpm041. 

21. Carmean, W.H. Forest site quality evaluation in the United States. Adv. Agron. 1975, 27, 207–269, 

doi:10.1016/S0065-2113(08)70011-7. 

22. Shen, C.; Lei, X.; Liu, H.; Wang, L.; Liang, W. Potential impacts of regional climate change on site 

productivity of Larix olgensis plantations in northeast China. iForest 2015, 8, 642, doi:10.3832/ifor1203-007. 

23. Farrelly, N.; Dhubhain, A.N.; Nieuwenhuis, M. Site index of Sitka spruce (Picea sitchensis) in relation to 

different measures of site quality in Ireland. Can. J. For. Res. 2011, 41, 265–278, doi:10.1139/X10-203. 

24. Bueis, T.; Bravo, F.; Pando, V.; Turrión, M.B. Relationship between environmental parameters and Pinus 

sylvestris L. site index in forest plantations in northern Spain acidic plateau. iForest 2016, 9, 394, 

doi:10.3832/ifor1600-008. 

25. Sharma, R.P.; Brunner, A.; Eid, T. Site index prediction from site and climate variables for Norway spruce 

and Scots pine in Norway. Scand. J. For. Res. 2012, 27, 619–636, doi:10.1080/02827581.2012.685749. 



Sustainability 2019, 11, 829 14 of 16 

26. Socha, J.; Pierzchalski, M.; Balazy, R.; Ciesielski, M. Modelling top height growth and site index using 

repeated laser scanning data. For. Ecol. Manag. 2017, 406, 307–317, doi:10.1016/j.foreco.2017.09.039. 

27. Clutter, J.L.; Fortson, J.C.; Peinar, L.V.; Bailey, R.L. Timber Management: A quantitative Approach, 1st ed.; 

Wiley: New York, NY, USA, 1983; pp. 1–333, ISBN 978-0894647475. 

28. Meyer, H.A. A mathematical expression for height curves. J. For. 1940, 38, 415–420. 

29. Crookston, N.L.; Rehfeldt, G.E.; Dixon, G.E.; Weiskittel, A.R. Addressing climate change in the forest 

vegetation simulator to assess impacts on landscape forest dynamics. For. Ecol. Manag. 2010, 260, 1198–

1211, doi:10.1016/j.foreco.2010.07.013. 

30. Aertsen, W.; Kint, V.; Van Orshoven, J.; Muys, B. Evaluation of modelling techniques for forest site 

productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis 

(SMAA). Ann. For. Sci. 2011, 26, 929–937, doi:10.1016/j.envsoft.2011.01.003. 

31. Brandl, S.; Falk, W.; Klemmt, H.J.; Stricker, G.; Bender, A.; Rötzer, T.; Pretzsch, H. Possibilities and 

limitations of spatially explicit site index modelling for spruce based on National Forest Inventory data 

and digital maps of soil and climate in Bavaria (SE Germany). Forests 2014, 5, 2626–2646, 

doi:10.3390/f5112626. 

32. González, J.G.Á.; González, A.D.R.; Soalleiro, R.R.; Anta, M.B. Ecoregional site index models for Pinus 

pinaster in Galicia (northwestern Spain). Ann. For. Sci. 2005, 62, 115–127, doi:10.1051/forest:2005003. 

33. Mestre, S.; Alegria, C.; Albuquerque, M.T.D.; Goovaerts, P. Developing an index for forest productivity 

mapping-A case study for maritime pine production regulation in Portugal. Rev. Árvore 2017, 41, 

doi:10.1590/1806-90882017000300006. 

34. Goodchild, M.; Haining, R.; Wise, S. Integrating GIS and spatial data analysis: Problems and possibilities. 

Int. J. Geogr. Inf. Syst. 1992, 6, 407–423, doi:10.1080/02693799208901923. 

35. Pelissari, A.L.; Caldeira, S.F.; Figueiredo Filho, A.; Amaral, M.S. Propostas de mapeamentos da capacidade 

produtiva de sítios florestais por meio de análises geoestatísticas. Sci. For. 2015, 43, 601–8. 

36. Ollinger, S.V.; Aber, J.D.; Federer, A. Estimating regional forest productivity and walter yield using an 

ecosystem model linked to a GIS. Landsc. Ecol. 1998, 13, 323–334, doi:10.1023/A:1008004423783. 

37. Payn, T.W.; Hill, R.B.; HÖck, BK.; Skinner, M.F.; Thorn, A.J.; Rijkse, W.C. Potential for the use of GIS and 

spatial analysis techniques as tools for monitoring changes in forest productivity and nutrition, a New 

Zealand example. For. Ecol. Manag. 1999, 122, 187–196, doi:10.1016/S0378-1127(99)00041-9. 

38. Korkalainen, T.; Laurén, A. Using phytogeomorphology, cartography and GIS to explain forest site 

productivity expressed as tree height in southern and central Finland. Geomorphology 2006, 74, 271–284, 

doi:10.1016/j.geomorph.2005.09.001. 

39. Minowa, Y.; Suzuki, N.; Tanaka, K. Estimation of site indices with an artificial neural network (in Japanese 

with English abstract). Jpn. J. For. Plan. 2005, 39, 23–38. 

40. Waring, R.H.; Coops, N.C.; Mathys, A.; Hilker, T.; Latta, G. Process-based modeling to assess the effects of 

recent climatic variation on site productivity and forest function across Western North America. Forests 

2014, 5, 518–534, doi:10.3390/f5030518. 

41. Tang, D.; Bian, F. Forest Site Evaluation Based on GIS and Kriging. In Proceedings of the First International 

Conference on Information Science and Engineering, Nanjing, Jiangsu, China, 26–28 December 2009. 

42. Wulder, M.; White, J.; Fournier, R.; Luther, J.; Magnussen, S. Spatially explicit large area biomass 

estimation: Three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 2008, 

8, 529–560, doi:10.3390/s8010529. 

43. Corral-Rivas, J.J.; Alvarez-Gonzalez, J.G.; Ruız-Gonzalez, A.D.; Von-Gadow, K. Compatible height and site 

index models for five pine species in El Salto, Durango (Mexico). For. Ecol. Manag. 2004, 201,145–160, 

doi:10.1016/j.foreco.2004.05.060. 

44. Alanis Morales, H.; Navar, J.; Dominguez, P.A. The effect of prescribed burning on surface runoff in a pine 

forest stand of Chihuahua, Mexico. For. Ecol. Manag. 2000, 137, 199–207, doi:10.1016/S0378-1127(99)00328-X. 

45. Tarango, J.A.; Valdez, P.J.; Zwank, M.; Cardenas. Mexican spotted owl characteristics in Southwestern 

Chihuahua, Mexico. Southwest. Nat. 1997, 42, 132–136.  

46. Crecente-Campo, F.; Corral-Rivas, J.J.; Vargas-Larreta, B.; Wehenkel, C. Can random components explain 

differences in the height–diameter relationship in mixed uneven-aged stands? Ann. For. Sci. 2014, 71, 51–

70, doi:10.1007/s13595-013-0332-6. 

47. Chávez Rodriguez, N. Estudio Regional Forestal. Asociación Regional de Silvicultores De Guadalupe y 

Calvo, A.C. Unidad De Manejo Forestal No. 0808 Guadalupe Y Calvo, Chihuahua. Available online: 



Sustainability 2019, 11, 829 15 of 16 

http://www.conafor.gob.mx:8080/documentos/docs/9/1147ERF_UMAFOR0808.pdf (accessed on 20 

December 2016). 

48. British Columbia Forest Productivity Council (BCFPC). Minimum Standards and Stem Analysis Procedures for 

Site Index Research. Forest Productivity Council; BCFPC: Victoria, BC, Canada, 1998; pp. 1–13. 

49. Instituto Mexicano de Tecnología del Agua (IMTA). Banco de datos histórico nacional del Servicio Meteorológico 

Nacional. Base de datos digital; Instituto Mexicano de Tecnología del Agua: Mexico City, Mexico, 2006. 

50. Palahí, M.; Tome, M.; Pukkala, T.; Trasobares, A.; Montero, G. Site index model for Pinus sylvestris in 

northeast Spain. For. Ecol. Manag. 2004, 187, 35–47, doi:10.1016/S0378-1127(03)00312-8. 

51. SAS Institute Help and Documentation, version 9.1.3; SAS Institute Inc.: Cary, NC, USA, 2006. 

52. Onyekwelu, J.C. Site index curves for site quality assessment of nauclea diderrichii monoculture 

plantations in Omo Forest Reserve, Nigeria. J. Trop. For. Sci. 2005, 17, 532–542. 

53. ArcGIS Desktop: 10.2. Environmental Systems Research Institute (ESRI) Home Page. Available online: 

www.esri.com (accessed on 26 September 2017). 

54. Instituto Nacional de Estadística, Geografía e Informática (INEGI). Continúo de elevaciones mexicano 3.0. 

Available online: http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/Descarga.aspx. 

(accessed on 8 December 2016). 

55. Burrough, P.A.; McDonnell, R. Principles of Geographical Information Systems, 2nd ed.; Oxford University 

Press, Oxford, UK, 1998; pp. 1–356, ISBN 9780198233664. 

56. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. 

Environ. 1991, 37, 35–46, doi:10.1016/0034-4257(91)90048-B. 

57. Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 1992, 

62, 275–293, doi:10.1016/0304-3800(92)90003-W. 

58. Zimmerman, D.L.; Nunez-Anton, V. Parametric modelling of growth curve data: An overview. Test 2001, 

10, 1–73, doi:10.1007/BF02595823. 

59. Seynave, I.; Gégout, J.C.; Hervé, J.C.; Dhôte, J.F.; Drapier, J.; Bruno, É.; Dumé, G. Picea abies site index 

prediction by environmental factors and understorey vegetation: A two-scale approach based on survey 

databases. Can. J. For. Res. 2005, 35, 1669–1678, doi:10.1139/x05-088. 

60. Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest 

management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. 

Res. 2009, 24, 473–482, doi:10.1080/02827580903418224. 

61. Curt, T.; Bouchaud, M.; Agrech, G. Predicting site index of Douglas-fir plantations from ecological variables 

in the Massif Central area of France. For. Ecol. Manag. 2001, 149, 61–74, doi:10.1016/S0378-1127(00)00545-4. 

62. Solberg, S.; Dobbertin, M.; Reinds, G.J.; Lange, H.; Andreassen, K.; Fernandez, P.G.; Hildingsson, A.; de 

Vries, W. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in 

European monitoring plots: A stand growth approach. For. Ecol. Manag. 2009, 258, 1735–1750, 

doi:10.1016/j.foreco.2008.09.057. 

63. Johansson, T. Site index curves for young hybrid larch growing on former farmland in Sweden. Forests 

2012, 3, 723–735, doi:10.3390/f3030723. 

64. Günlü, A.; Baskent, E.Z.; Kadiogullari, A.İ.; Ercanli, İ. Classifying oriental beech (Fagus orientalis Lipsky.) 

forest sites using direct, indirect and remote sensing methods: A case study from Turkey. Sensors 2008, 8, 

2526–2540, doi:10.3390/s8042526. 

65. Adams, J.P.; Matney, T.G.; Land, S.B., Jr.; Belli, K.L.; Duzan, H.W., Jr. Incorporating genetic parameters into 

a loblolly pine growth-and-yield model. Can. J. For. Res. 2006, 36, 1959–1967, doi:10.1139/x06-087. 

66. Vicca, S.; Luyssaert, S.; Penuelas, J.; Campioli, M.; Chapin, F.S., III; Ciais, P.; Heinemeyer, A.; Högberg, P.; 

Kutsch, W.L.; Law, B.E.; et al. Fertile forests produce biomass more efficiently. Ecol. Lett. 2012, 15, 520–526, 

doi:10.1111/j.1461-0248.2012.01775.x. 

67. Reich, R.M.; Bonham, C.D.; Aguirre-Bravo, C.; Chazaro-Basañeza, M. Patterns of tree species richness in 

Jalisco, Mexico: Relation to topography, climate and forest structure. Plant Ecol. 2010, 210, 67–84, 

doi:10.1007/s11258-010-9738-5. 

68. Peters, E.B.; Wythers, K.R.; Bradford, J.B.; Reich, P.B. Influence of disturbance on temperate forest 

productivity. Ecosystems 2013, 16, 95–110, doi:10.1007/s10021-012-9599-y. 

69. Coops, N.C.; Waring, R.H.; Hilker, T. Prediction of soil properties using a process-based forest growth 

model to match satellite-derived estimates of leaf area index. Remote Sens. Environ. 2012, 126, 160–173, 

doi:10.1016/j.rse.2012.08.024. 



Sustainability 2019, 11, 829 16 of 16 

70. Véga, C.; St-Onge, B. Mapping site index and age by linking a time series of canopy height models with 

growth curves. For. Ecol. Manag. 2009, 257, 951–959, doi:10.1016/j.foreco.2008.10.029. 

71. Gómez-Tagle, R.A. Levantamiento de suelos del Campo Experimental Forestal Barranca de Cupatitzio y 

sus relaciones con la vegetación de confieras. Master’s Thesis, Universidad Nacional Autonoma de Mexico, 

México City, Mexico, 1985. 

72. Fontes, L.; Tomé, M.; Thompson, F.; Yeomansi, A.; Sales, L.J.; Savilli, P. Modelling the Douglas-fir 

(Pseudotsuga menziesii (Mirb.) Franco) site index from site factors in Portugal. Forestry 2003, 76, 491–507, 

doi:10.1093/forestry/76.5.491. 

73. Aertsen, W.; Kint, V.; Muys, B.; Van Orshoven, J. Effects of scale and scaling in predictive modelling of 

forest site productivity. Environ. Modell. Softw. 2012, 31, 19–27, doi:10.1016/j.envsoft.2011.11.012. 

74. Mitsuda, Y.; Ito, S.; Sakamoto, S. Predicting the site index of sugi plantations from GIS-derived 

environmental factors in Miyazaki Prefecture. J. For. R. 2007, 12, 177–186, doi:10.1007/s10310-007-0004-1. 

75. Johnsen, K.; Samuelson, L.; Teskey, R.; McNulty, S.; Fox, T. Process models as tools in forestry research and 

management. For. Sci. 2001, 47, 2–8. 

76. Rodhouse, T.J.; Irvine, K.M.; Sheley, R.L.; Smith, B.S.; Hoh, S.; Esposito, D.M.; Mata-Gonzalez, R. Predicting 

foundation bunchgrass species abundances: Model-assisted decision-making in protected-area sagebrush 

steppe. Ecosphere 2014, 5, 1–16.  

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


