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Abstract: Wellbore integrity management for oil and gas wells plays a vital role throughout the
typical lifespan of a well. Downhole casing leaks in oil- and gas-producing wells significantly affect
their shallow water horizon, the environment, and fresh water resources. Additionally, downhole
casing leaks may cause seepage of toxic gases to fresh water zones and the surface, through the casing
annuli. Forecasting of such leaks and proactive measures of prevention will help eliminate their
consequences and, in turn, better protect the environment. The objective of this study is to formulate
an effective, robust, and accurate model for predicting the corrosion rate of metal casing string using
artificial intelligence (AI) techniques. The input parameters used to train AI models include casing
leaks, the percentage of metal loss, casing age, and average remaining barrier ratio (ARBR). The target
parameter is the corrosion rate of the metal casing string. The dataset from which the AI models
were trained was comprised of 250 data points collected from 218 wells in a giant carbonate reservoir
that covered a wide range of practically reasonable values. Two AI tools were used: artificial neural
networks (ANNs) and adaptive network-based fuzzy inference systems (ANFISs). A prediction
comparison was made between these two tools. Based on the minimum average absolute percentage
error (AAPE) and the highest coefficient of determination (R2) between the measured and predicted
corrosion rate values, the ANN model proposed here was determined to be best for predicting the
corrosion rate. An ANN-based empirical model is also presented in this study. The proposed model is
based on the associated weights and biases. After evaluating the new ANN equation using an unseen
validation dataset, it was concluded that the ANN equation was able to make predictions with a
significantly lower AAPE and higher R2. Use of the proposed new equation is very cost-effective
in terms of reducing the number of sequential surveys and experiments conducted. The proposed
equation can be utilized without an AI engine. The developed model and empirical correlation
are very promising and can serve as a handy tool for corrosion engineers seeking to determine the
corrosion rate without training an AI model.

Keywords: wellbore integrity; corrosion rate prediction; downhole casing leaks; forecasting; artificial
intelligence (AI)

1. Introduction

The impact of corrosion on the oil and gas industry must be viewed in terms of its effects
on both capital and operational expenditures, as well as health, safety, and the environment. The
wide-ranging environmental conditions prevailing in the oil and gas industry necessitate the choice of
appropriate and cost-effective materials and corrosion-control measures. Corrosion-related failures
constitute over 25% of those experienced in the oil and gas industry [1]. Corrosion-related failures
can increase the risk of hydrocarbon leaks and chemical discharges to the atmosphere, subsurface
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formations, and underground water aquifers. Such corrosion failures and leaks can occur during the
drilling, production, transportation, refining, and other phases of the oil and gas field’s operation and
development, presenting a potentially serious health and safety hazard.

Historical rates of well failure in the oil and gas field vary from a few percent of well to more than
40% of the total wells in operation in a given area [2]. An analysis of 8000 offshore wells in the Gulf of
Mexico showed that 11% to 12% of wells developed pressure in the outer casing strings (i.e., sustained
casing pressure), as did 3.9% of 316,000 wells in Alberta [2,3]. Considine et al. [3] investigated state
violation records, estimating that 2.6% of the 3533 gas wells drilled between 2008 and 2011 had barrier
or integrity failures. Vidic et al. (2013) extended the timeline (2008–2013) and number of wells studied
(6466), finding that 3.4% had well barrier leakage, primarily from casing and cementing problems.
Davies et al. [2] also estimated that 6.3% of wells drilled between 2005 and 2013 had well barrier or
integrity failures; this was consistent with the conclusions of Ingraffea et al. [4], who identified the
number as 6.2% for unconventional wells.

The oil and gas industry have reported severe examples of integrity loss in wells, with hugely
significant consequences; these include blowouts such as Phillips Petroleum’s failure in 1977, Saga
Petroleum’s underground rupture in 1989, Statoil’s blowout on Snorre in 2004, and BP’s Macondo
burst in the Gulf of Mexico in 2010. These serious accidents highlight the potential dangers in the
oil and gas industry, and hence the need for greater emphasis on well integrity [5] Casing integrity
surveillance programs consist primarily of temperature and annuli surveys. One common aspect of
these surveillance tools is the detection of casing failures after their occurrence. Corrosion logging,
another surveillance tool, provides the most direct measurement of casing integrity and can also be
used as a predictive measure. Mechanical, ultrasonic, and electromagnetic tools are the three main
types of corrosion logs used to assess casing corrosion.

It is imperative that producers have intact well integrity management programs in brown fields
in which producing wells are asked to withstand economic production for up to 40 years. Failure to
achieve this objective will result in catastrophic economic losses. A good example of this type of loss is
the surface leakages affected by the impairment of downhole casings, which result from the corrosion
of saline shallow aquifers [6,7]. Figure 1 shows an attack on an active acquirer surrounding an external
casing. To better plan for and define future operating regimes and rehabilitation, the capacity to
precisely evaluate corrosion rates is essential; such information is a necessary input parameter for
any effective corrosion management scenario [6,8,9]. Surface leaks due to corrosion comprise just one
example. Surveillance tools can detect casing failures, but only after corrosion occurs.

Corrosion logging is an example of a surveillance tool that offers direct estimation of casing
integrity, and thus can be utilized as a predictive tool. The low frequency permits the inspection of
more than one tubular and provides a quantitative measure of the remaining wall thickness. When a
reduction in metal is encountered while logging, the electromagnetic field induced by the tool will
shift, indicating the presence of corrosion (see Figure 1). The tool’s response is further interpreted and
converted to a metal loss value. Corrosion logs can then be analyzed to assess the casing integrity and
decide on the need for well intervention to prevent potential casing failures (see Figure 2). In large
fields, logging all wells requires substantial time, especially given the current resources and manpower.
In addition, the limited number of electromagnetic (EM) tools dictates the need for the development of
a risk-based candidate selection process. In fact, casing failures and even surface leaks can suddenly
strike before a well is logged. The current practice is to rank the candidates according to many factors,
including well age, well location, completion quality, and historical integrity. All of these factors are
deemed qualitative and solely reliant on the best of judgment of the practitioner.
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Figure 1. View of external corrosion attacking an outer casing string on a well with an active aquifer. 

Corrosion is the gradual loss of the electrons from the surface of a metal, triggering that metal 
to convert into its ionic shape [10–13]. The rate of corrosion can be measured by several methods, 
such as loss of weight and the rate of penetration. Corrosion occurs because metals want to return to 
the form in which they are found in nature (i.e., oxides, sulfates, or carbonates); such forms are more 
stable [14]. Downhole assessment of the corrosion rate is the most difficult task in well-integrity 
surveillance programs. Typically, there are two categories of well downhole corrosion: external and 
internal [15]. Internal corrosion is triggered when the fluid moving inside the wellbore is naturally 
corrosive. External corrosion occurs when the outer wall of the tubing comes in contact with the 
formation. Saline and shallow aquifers are potential sources of external corrosion. Moreover, the 
cement bond behind the casing being of weak quality can also raise the probability of external 
corrosion [16,17].  

Al-Ajmi et al. [18] used casing corrosion logs such as the EM logging tool to develop a new, risk-
based approach to the prediction of oil well bottom-hole leaks. These researchers observed that an 
EM logging tool alone is not a sufficient estimator of downhole casing leaks caused by corrosion, 
because this tool is only capable of determining the average value of any external casing corrosion 
and does not offer its orientation. In their work, the authors developed a new, probabilistic approach 
that uses the average metal lost as determined by the EM logging tool to assess the possibility of 
casing failure.   

Surveillance programs designed to determine casing integrity are mainly based on annuli and 
temperature surveys. The tools used for surveillance detect the failure of a casing after it occurs. The 
purpose of the temperature survey is to locate casing leaks that can lead to a loss of oil production, 
surface blowouts, and contamination with nearby connected aquifers. Identification and location of 
casing leaks is imperative to reducing the loss of hydrocarbons and minimizing contamination of 
nearby connected aquifers.  Annuli surveys are regularly conducted to determine annulus pressures. 
An annulus is the empty space between the casing, tubing, and any pipe with a formation adjacent. 
In well drilling, an annulus between the casing and formation provides a path for mud to circulate. 
Corrosion logging tools provide direct measurement of a casing’s integrity, and in many cases can be 
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Figure 2. Typical response of the EMIT logging tool showing the metal loss percentage. 
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Corrosion is the gradual loss of the electrons from the surface of a metal, triggering that metal to
convert into its ionic shape [10–13]. The rate of corrosion can be measured by several methods, such as
loss of weight and the rate of penetration. Corrosion occurs because metals want to return to the form
in which they are found in nature (i.e., oxides, sulfates, or carbonates); such forms are more stable [14].
Downhole assessment of the corrosion rate is the most difficult task in well-integrity surveillance
programs. Typically, there are two categories of well downhole corrosion: external and internal [15].
Internal corrosion is triggered when the fluid moving inside the wellbore is naturally corrosive.
External corrosion occurs when the outer wall of the tubing comes in contact with the formation. Saline
and shallow aquifers are potential sources of external corrosion. Moreover, the cement bond behind
the casing being of weak quality can also raise the probability of external corrosion [16,17].

Al-Ajmi et al. [18] used casing corrosion logs such as the EM logging tool to develop a new,
risk-based approach to the prediction of oil well bottom-hole leaks. These researchers observed that
an EM logging tool alone is not a sufficient estimator of downhole casing leaks caused by corrosion,
because this tool is only capable of determining the average value of any external casing corrosion
and does not offer its orientation. In their work, the authors developed a new, probabilistic approach
that uses the average metal lost as determined by the EM logging tool to assess the possibility of
casing failure.

Surveillance programs designed to determine casing integrity are mainly based on annuli and
temperature surveys. The tools used for surveillance detect the failure of a casing after it occurs. The
purpose of the temperature survey is to locate casing leaks that can lead to a loss of oil production,
surface blowouts, and contamination with nearby connected aquifers. Identification and location of
casing leaks is imperative to reducing the loss of hydrocarbons and minimizing contamination of
nearby connected aquifers. Annuli surveys are regularly conducted to determine annulus pressures.
An annulus is the empty space between the casing, tubing, and any pipe with a formation adjacent.
In well drilling, an annulus between the casing and formation provides a path for mud to circulate.
Corrosion logging tools provide direct measurement of a casing’s integrity, and in many cases can
be used as a predictive tool. In corrosion logging, the most common instruments are mechanical,
electromagnetic, or ultrasonic.

The main objective of the current research is to present a novel empirical model based on artificial
intelligence (AI) and capable of quantifying the corrosion rate in any casing, using its average metal
loss percentage data. For the first time, the concept of the average remaining barrier ratio (ARBR)
is being presented here, utilized as an input parameter for the new model. This study explores the
comparative performances of state-of-the-art and conventional AI techniques in the prediction of
corrosion rates. The outcome of this study will assist users of AI techniques in making informed
choices regarding the appropriate state-of-the-art methods for use in petroleum production, with the
goal of obtaining improved predictions and better decision-making, especially when being faced with
limited or sparsely integrated data.

2. Materials and Methods

2.1. Data Analytics

A total of 250 hotspots were collected from 218 wells. Of the 250 data points, 230 were non-leaking;
the remaining were considered leaking average metal loss hotspots. The dataset consisted of a variety
of completion types, with different casing grades and sizes. The wells produced both oil and water.
The ranges of the input parameters were as follows: well age, 2 to 67 years; average metal loss hotspot
depth, 9 to 7723 feet; ARBR, 0.095 to 0.908; and corrosion rate, 3.052 to 26.368. The developed AI model
was based only on the numerical value for leaking and non-leaking, with 1 representing leaking and 0
representing non-leaking.

The range of the data represented the length of each data interval and arithmetic mean of each
implemented parameter. Generally speaking, the standard deviation of a dataset illustrates how that
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dataset is distributed around its mean value and how much closer the data values are to the mean.
The higher the standard deviation from the mean for a specific data type, the more deviated the data
are from the mean value. Data skewness explains how symmetrical or skewed the data distribution is
in hand. A positive value of skewness indicates that the dataset is skewed to the left, with a longer tail
to the right; a negative value of skewness shows that the dataset is skewed to the right, with a longer
tail to the left. Skewness values less than −1 or higher than +1 demonstrate that the distribution is
highly skewed. Skewness values between −1 and 1 indicate that the data distribution is moderately
skewed or approaches symmetricity. The positive Kurtosis values for the current dataset indicate that
the data distribution deviated from the normal distribution, with a heavier tail and a sharper peak.

Table 1 includes the complete statistics for all input and output parameters studied in the
present research.

Table 1. Training data statistics for corrosion prediction.

Parameter Leaking Case
(Yes/No) Average ML, % Age, Years

Average
Remaining

Barriers Ratio

Corrosion
Rate, MPY

Mean 0.107 0.331 40.664 0.699 9.930
Standard Error 0.028 0.013 0.925 0.013 0.418

Median 0.000 0.300 41.000 0.732 9.644
Mode 0.000 0.230 42.000 0.779 18.227

Standard Deviation 0.310 0.148 10.219 0.142 4.614
Sample Variance 0.096 0.022 104.423 0.020 21.288

Kurtosis 4.745 0.344 0.789 2.155 1.386
Skewness 2.582 0.804 0.216 -1.190 1.051

Range 1.000 0.720 55.000 0.813 23.316
Minimum 0.000 0.100 12.000 0.095 3.052
Maximum 1.000 0.820 67.000 0.908 26.368

Sum 13.000 40.380 4961.000 85.231 1211.481
Count 122.000 122.000 122.000 122.000 122.000

2.2. Average Remaining Barriers Ratio

The ARBR is a dimensionless parameter that takes into account the impacts of various sizes and
combinations of casing strings. This parameter is defined as the ratio of the mean number of strings
between the corrosive zones (normally water-bearing sands) and the wellbore to the total number
of nominal strings at a certain corrosion growth hotspot. The following Equation (1) can be used to
compute ARBR:

ARBR = 1 −

[
TL1
TN1

+ TL2
TN2

+ TL3
TN3

+ . . . TLX
TNX

]
X

(1)

where ARBR is the average remaining barriers ratio (dimensionless), TL1 is the outer string loss of
metal thickness (in), TL2 is the second outer string loss of metal thickness (in), TL3 is the third outer
string loss of metal thickness (in), TN1 is the outer string’s nominal thickness (in), TN2 is the second
outer string’s nominal thickness (in), TN3 is the third outer string’s nominal thickness (in), and X is the
number of strings surrounding the hotspot.

For all practical purposes, a hotspot is defined as any casing depth showing a 12% average metal
loss as measured by the electromagnetic induction tool (EMIT) logging device. EMIT gives the average
metal loss levels for all installed casing strings. If the tool reads a lower frequency, this means that the
penetration is deeper into the casing. The tool detects the average metal loss and changes in casing
geometry, regardless of the fluid type. Figure 2 shows a typical response of the EMIT tool.

2.3. Design of the Artificial Neural Networks Model

For the last two decades, ANN has served as a useful engineering tool in many applications [19,20].
ANN is an AI technique inspired from the natural features of the biological neurons found in human
and animal brains. The fundamental processing units of the ANN model are neurons spread in
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different layers. Every neuron in the system is linked together to make a network of nodes that form a
structure like a biological neural network [21]. A typical ANN model contains an input layer, some
number of hidden layers, and an output layer. Signals are received by the input layer. Then, the hidden
layer(s) develop relationships among the inputs, and the results are generated at the output layer.
Every neuron of a single layer is linked to every neuron in the subsequent layer, and every connection
has a related weight [22]. Weights and biases act like coefficients in non-linear equations [23]. The
general structure of an ANN model is shown in Figure 3.Sustainability 2018, 10, x FOR PEER REVIEW  7 of 18 
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In this study, the designed ANN model was developed with three layers: an input layer, a
hidden layer, and an output layer. The input layer was comprised of four members. The hidden layer
encompassed 20 neurons, and the output layer consisted of one member. The number of neurons
in the hidden layer was selected based on the best performance during the training and testing of
the modeling phase. A tangential sigmoidal type of activation function was used between the input
and hidden layers, and a purely linear type of activation function was used between the hidden and
output layers. The learning of ANN model was done with the Levenberg–Marquardt back propagation
algorithm. There can be a number of hidden layers between the input and output layers, with varying
numbers of neurons. Therefore, to determine the optimum parameters for our problem, an extensive
sensitivity analysis was conducted that not only identified the best possible layer/neuron combination,
but also provided the most effective training algorithm and transfer function. Consequently, this
analysis led us to the best design for an ANN addressing the corrosion rate prediction problem. The
complete architecture of the ANN model for predicting corrosion is explained in Table 2.

Table 2. Developed neural network model for predicting the corrosion rate architecture.

Neural Network Parameter Range

Number of Inputs 3

Number of Outputs 1

Number of Neurons 20

Number of Hidden Layer(s) 1

Training Algorithm Levenberg–Marquardt
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Table 2. Cont.

Neural Network Parameter Range

Learning Rate, α 0.12

Hidden-Layer Transfer Function Tangential sigmoidal

Outer-Layer Transfer Function Pure linear

Training Ratio 0.7

Testing Ratio 0.15

Validation Ratio 0.15

2.4. Design for the Adaptive Network-Based Fuzzy Inference System Model

The adaptive network-based fuzzy inference system (ANFIS) is a type of fuzzy logic (FL) that
includes mapping the inputs and outputs of a particular kind, such as in feed-forward neural network
systems [24]. Initially developed to model and control ill-defined and uncertain systems [25–27],
ANFIS models are a blend of FL and neural networks. They comprise a supervised learning technique
that uses the Sugeno fuzzy inference system [26]. They operate by applying conventional Boolean
logic (i.e., 0’s and 1’s) to describe a principle of truthiness (i.e., values between the completely false,
0, and total truth, 1) [28]. The steps needed for a typical ANFIS model are as follows: (1) defining
the input and output variables, (2) declaring fuzzy sets, (3) defining fuzzy rules, and (4) creating and
training the network [29,30].

The ANFIS model for the present research was developed with genfis type-2 subtractive clustering
(SC). The value of the radius used in SC genfis-2 was selected to be 0.5. The value of the epoch was
500, which represented the number of iterations. The complete architecture of the ANFIS model for
predicting corrosion rates is detailed in Table 3.

Table 3. ANFIS model architecture.

Neural Network Parameter Range

Number of Inputs 3

Number of Outputs 1

Number of Rules 5

Genfis Type 2

Cluster Radius 0.5

Epoch Size 500

The petroleum production property prediction process requires a very high degree of precision;
any minor variation from what is anticipated may lead to enormous waste, as well as the loss of man
hours and financial investment. Conversely, a slight enhancement of the prediction scenario will
produce exponential improvement in present production and exploration projects. Current predictive
models are still recognizable in the oil and gas field, but there is an ongoing quest for reliable and
improved results.

The modern trend in data analytics and mining is integrating multi-dimensional and multi-modal
data for value-added decision-making in petroleum engineering applications. Many commonly used
AI techniques have been applied; however, there is still ample room for improvement. Over the years,
various AI techniques have attracted attention in a number of geoscience and engineering applications.
Many successful implementations of this science in real oil and gas cases have attracted considerable
interest, especially those applying these techniques to predict challenging industry parameters.
Some areas of petroleum engineering in which AI techniques have introduced new innovations
include: permeability porosity relationship predictions [20,31], hydraulic flow unit identification [32],
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geomechanics parameters estimation [33,34], geophysical well logs estimation [35,36], drilling
parameters estimation [37,38], water saturation prediction [39], enhanced oil recovery [40], and
many others. Common traditional AI techniques applied in petroleum engineering applications
include ANNs, functional networks (FNs), support vector machines (SVMs), decision trees, and FL.
These techniques have various advantages and disadvantages that impose structural and technical
limitations, affecting their predictive performance; these make their applications inappropriate in
specified situations such as conditions of limited, sparse, or missing data [41]. A rigorous comparative
study that determines the applicability and performance of state-of-the-art AI techniques in petroleum
production parameter prediction is sorely needed.

2.5. Feature Selection Using a Multivariate Linear Regression System

Every AI model is data-driven, including all of the available attributes acting as input parameters.
These do not generate useful results, so it is always important to determine which input parameters
are the strongest contributors and the most influential. In the present research, a Pearson’s correlation
coefficient (CC) was utilized to determine that relationship, in terms of the CC between input and
output parameters. The CC input and output values were determined using Equation (2).

CC =
k ∑ xy − (∑ x)(∑ y)√

k(∑ x2)− (∑ y)2
√

k
(

∑ b2
)
− (∑ b)2

(2)

The CC value for a pair of variables always lies between −1 and 1. A CC value close to −1 shows a
strong inverse relationship between the pair of variables, while a value close to 1 indicates a strong
direct relationship between the two. A CC value of zero demonstrates that no relationship exists
between the two variables.

2.6. Goodness-of-Fit Tests

To determine the strength of the proposed model, several goodness-of-fit criteria were used, such
as the average absolute percentage error (AAPE) given by Equation (3), root mean squared error
(RMSE) given by Equation (4), and coefficient of determination (R2) given by Equation (5).

Average Absolute Percentage Error

AAPE =
∑
∣∣∣(ai − bi)

∣∣∣× 100
ai

n
(3)

Root Mean Square Error

RMSE =

√
∑(ai − bi)

2

n
(4)

where a is the actual value and b is the predicted value, and n is the total number of data points.
Coefficient of Determination

R2 =

 k ∑ xy − (∑ x)(∑ y)√
k(∑ x2)− (∑ y)2

√
k
(

∑ b2
)
− (∑ b)2


2

(5)

where x and y are the two variables and k is the total number of data points.

3. Mathematical Model for Predicting the Corrosion Rate

A major outcome of this work is the development of an empirical model using a trained neural
network based on a set of weights and biases related to both the hidden input and output layers. The
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weights and biases corresponding to their neurons are shown in Table 4; those linked with the hidden
input layer are characterized by w1, whereas those linked with the hidden output layer are called w2.
Furthermore, the hidden input and output layer biases are b1 and b2, respectively. The new empirical
correlation developed using ANN for the water saturation estimation is given by Equation (6):

CRn =

[
N

∑
i=1

w2i

(
2

1 + e−2 (w1i,1
ρn+w1i,2 MLn+w1i,3 Yn+w1i,4

ARBRn+b1i )
− 1

)]
+ b2 (6)

where ρn is the normalized value for the leaking/non-leaking case, MLn is the normalized value of the
metal loss, Yn is the normalized value of the age of the casing, and ARBRn is the normalized value of
ARBR, N is the total number of neurons from the trained model, w1 and w2 are the weights between
input/hidden layers, and b1 and b2 are the biases in the input/hidden layers.

Procedure for Using the New Empirical Correlation for the Corrosion Rate

Following are the three steps to follow when adopting the new equation to predict a corrosion rate.
Step 1: Normalize the input parameters to be between −1 and 1. The input parameters (i.e.,

casing leaks, metal loss percentage, age of casing, and ARBR) are denoted here by “Input”. The general
equation for normalization is Equation (7):

Inputnorm =
(Inputmax − Inputmin)(X − Xmin)

Xmax − Xmin
+ Inputmin (7)

where Inputmin = −1 and Inputmax = 1, X is the input parameter, Xmin is the minimum value of the
trained input parameter, and Xmax is the maximum value of the trained input parameter. Xmin and
Xmax are given in Table 1. To perform the normalization for casing leaks, metal loss percentage, age of
casing, and ARBR, Equations (8)–(11) were used:

ρn = 2 ×
(
ρ− 0
1 − 0

)
− 1 (8)

MLn = 2 ×
(

ML − 0.1
0.82 − 0.1

)
− 1 (9)

yn = 2 ×
(

y − 12
67 − 12

)
− 1 (10)

ARBRn = 2 ×
(

ARBR − 0.095
0.908 − 0.095

)
− 1 (11)

Step 2: The weights and biases given in Table 4 were necessary to apply Equation (6). The
sequence of parameters going into the model was as follows: casing leaks, metal loss percentage, age
of casing, and ARBR.

Step 3: Equation (6) gives the corrosion rate in a normalized form, within the range of −1 to 1. To
de-normalize the corrosion rate and transform it into a real-value form, Equation (13) can be used:

CR =
(26.368 − 3.052)(CRn + 1)

2
+ 3.052 (12)

CR = 11.652 × CRn + 14.72 (13)
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Table 4. Weights and biases of the ANN model for predicting the corrosion rate (in mills per year).

Hidden
Layer

Neurons (N)

Weights Between Input and Hidden Layers (W1)

Weights Between
Hidden and

Output Layers
(W1)

Hidden
Layer Bias

(b1)

Output
Layer Bias

(b2)

Leak ML, % AGE,
Years ARBR

1 −0.8056 2.0361 −0.7806 1.5471 0.5893 3.2630

0.3366

2 0.7801 −2.2259 −1.1987 −1.4638 −0.7081 −2.5455
3 −1.1518 1.9819 0.5252 1.2399 −0.2656 2.8491
4 −2.2960 −0.0809 0.2676 −2.3103 −0.8699 1.8388
5 −2.7286 1.1579 1.0355 0.2912 0.2949 1.1351
6 2.4246 −0.5461 0.9256 0.6130 −0.4835 −1.6147
7 1.4496 2.5089 1.4569 0.0958 1.0998 −1.2605
8 1.3588 −0.3056 −1.7989 −1.1340 1.0042 −1.4414
9 −1.9955 −0.3955 −1.7329 −0.6282 1.3636 −0.0667
10 2.6130 −0.8845 1.0068 −0.3291 −0.5042 −0.6139
11 0.3650 1.7472 3.1860 1.1018 −0.9459 0.4697
12 −0.6945 −1.5393 −0.9785 −1.1627 1.0357 −0.9896
13 0.1043 1.8686 −0.6753 −2.2764 −0.0062 0.8773
14 −2.1720 −0.4880 2.0517 0.9744 −1.3560 −1.1831
15 −0.4380 −2.0103 −3.1879 −0.2956 −1.1222 −1.5927
16 1.1553 −2.1156 −1.5031 −1.5825 −1.0756 1.9112
17 0.7408 2.1181 1.6252 0.7625 −0.2558 2.1355
18 0.1500 0.4894 −2.4771 1.6431 −0.5102 2.0059
19 −1.9882 −0.4098 0.3490 −1.9301 −0.3645 −2.9039
20 1.2717 2.3014 0.9231 1.1425 0.9099 2.9353

4. Results and Discussion

A total of 250 data points were divided randomly into two sets, at a proportion of 0.7 to 0.3. The
set with 70% of the data (i.e., 175 data points) was utilized for training the models, and the second set,
with 30% of the data (i.e., 75 data points), was used to test the prediction capabilities of the trained
models. Two AI techniques, ANN and ANFIS, were implemented to develop the models and predict
the corrosion rate. A comparison was made between these techniques, based on the lowest AAPE and
highest R2 for the actual and predicted values. For ANN, several runs were executed with various
values for the model parameters. At every run, the parameters of learning rate, number of hidden
layers with a corresponding number of neurons, and different transfer functions were all changed.
For ANFIS, in genfis-2, the sensitivity of the cluster radii was performed such that it reached the
optimum model. The proposed model(s) were tuned by optimizing their several variables via particle
swarm optimization.

On a training dataset, ANN predicted the corrosion rate with an AAPE of 3.1, and ANFIS
predicted the corrosion rate with an AAPE of 4.9. On the testing dataset, ANN predicted the corrosion
rate with an AAPE of 3.8, and ANFIS predicted it with an AAPE of 5.4. Figures 4 and 5 show a
comparison of the corrosion rates predicted by ANN and ANFIS, during both the training and testing
phases of modeling. Figure 6 shows a cross-plot comparison of the ANN and ANFIS techniques for
predicting corrosion rates. To prevent the model from becoming stuck on a local minima, more than
50,000 realizations were performed with the initialization of different sets of weights and biases during
training of the prediction modeling. After training, the optimum weights and biases from the trained
model were extracted; these are given in Table 4.
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5. Validation of the Proposed Model

To validate the new model, a variety of datasets from different wells were obtained. The data
gathered via the EMIT logging tool response were then digitized. Table 5 shows the input parameters,
actual corrosion rates, and predicted corrosion rates from the ANN model. With a new dataset, the
proposed model yielded a perfect prediction by giving a coefficient of determination of 0.85, AAPE
of 13%, and RMSE of 3.7, as shown in Figure 7 and Table 6. The results obtained from the validation
confirmed the generalization and robustness of the new model. Thus, it can be argued that the new
model is capable of make predictions with any new dataset, so long as the inputs are within the range
defined in Table 1.

Table 5. Performance comparison of different AI techniques.

ID
Leaking

Case
(Yes/No)

Average
ML%

Age,
Years

Average
Remaining

Barriers Ratio

Corrosion
Rate, MPY ANN

APE AAPE

ANN ANN

1 1 0.59 45 0.455 10.253 11.877 15.839 13.919

2 0 0.3 45 0.744 7.327 8.347 13.921

3 0 0.21 22 0.789 12.505 12.241 2.111

4 0 0.25 46 0.787 5.973 6.938 16.156

5 0 0.4 40 0.658 10.990 12.738 15.905

6 0 0.24 37 0.768 8.173 8.607 5.310

7 0 0.31 39 0.736 8.736 10.715 22.653

8 0 0.18 41 0.847 4.825 5.488 13.741

9 0 0.19 45 0.838 4.640 5.493 18.384

10 0 0.38 42 0.676 9.943 11.162 12.260

11 0 0.39 42 0.668 10.205 11.346 11.181

12 0 0.47 40 0.577 13.419 14.505 8.093

13 1 0.53 43 0.522 13.546 12.370 8.682

14 0 0.2 34 0.801 5.088 6.821 34.061
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Table 5. Cont.

ID
Leaking

Case
(Yes/No)

Average
ML%

Age,
Years

Average
Remaining

Barriers Ratio

Corrosion
Rate, MPY ANN

APE AAPE

ANN ANN

15 0 0.16 41 0.882 6.064 4.257 29.799

16 0 0.19 42 0.842 4.850 5.773 19.031

17 0 0.47 37 0.571 20.058 17.612 12.195

18 0 0.13 40 0.889 3.572 3.525 1.316

19 0 0.34 46 0.710 8.123 8.818 8.556

20 0 0.22 28 0.786 9.955 8.818 11.421

21 0 0.42 53 0.625 9.050 9.994 10.431

22 0 0.23 41 0.814 7.809 7.260 7.030

23 0 0.25 55 0.771 5.373 5.231 2.643

24 0 0.22 45 0.820 7.744 6.318 18.414

25 0 0.33 45 0.719 8.059 8.937 10.895

26 0 0.31 44 0.730 6.475 8.965 38.456

27 0 0.25 37 0.780 10.365 8.518 17.820

28 0 0.68 41 0.366 18.227 22.696 24.519

29 0 0.36 37 0.693 10.693 13.114 22.641

30 1 0.62 45 0.429 15.142 11.936 21.173

31 0 0.4 42 0.658 10.467 11.544 10.289

32 0 0.27 56 0.737 6.041 5.583 7.582

33 0 0.42 42 0.637 10.990 11.941 8.653

34 0 0.27 33 0.761 9.347 9.133 2.290

35 0 0.24 58 0.779 4.912 4.636 5.619

36 0 0.24 28 0.767 10.860 9.555 12.017
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Table 6. Validation results of the ANN-based model.

AAPE RMSE CC R2

13 3.7 0.92 0.847

6. Conclusions

This paper presents an ANN-based empirical model that can be used as a predictive tool when
implementing wellbore integrity management strategies, leading to more sustained environmental
protection. The imprecise results produced by the EMIT logging tool can be focused by studying
the average metal loss measurements across the leaking and non-leaking metal loss hotspots,
and presenting how the ARBR concept normalizes the impact of multiple casings sizes, grades,
combinations, and thicknesses. The following conclusion can also be drawn from this study.

• Machine learning techniques have successfully been shown to predict corrosion rates with
a correlation of determination of approximately 94% in the case of ANN, and 96% when
using ANFIS.

• A new empirical model for estimating corrosion rates has been proposed that can be applied
to any case in which the input parameters are within the developed model’s range; this can be
accomplished without the need for intricate software.

• ANFIS provides slightly better results. However, the estimation is not greatly affected if ANN is
used. Furthermore, neural networks have been used to produce a practical working equation.

• Additional techniques like SVMs and FNs should be explored to investigate the possibility of
gaining better results.

Author Contributions: Every aspect of the paper was covered by the main author.

Funding: This research received no external funding.

Acknowledgments: The author would like to acknowledge Mr. Zeeshan Tariq for proofreading of this paper.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

AAPE average absolute percentage error
AI artificial intelligence
ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network
ARBR average remaining barriers ratio (dimensionless)
CR corrosion rate, MPY
FN functional networks
SC subtractive clustering
SVM support vector machines
TL1 thickness loss from the outer string (in)
TL2 thickness loss from the second outer string (in)
TL3 thickness loss from the third outer string (in)
TN1 nominal thickness of the outer string (in)
TN2 nominal thickness of the second outer string (in)
TN3 nominal thickness of the third outer string (in)
X number of strings across a hotspot
n number of sample data points



Sustainability 2019, 11, 818 15 of 17

References

1. Kermani, M.B.; Harrop, D. The Impact of Corrosion on Oil and Gas Industry. SPE Prod. Facil. 1996, 11,
186–190. [CrossRef]

2. Davies, R.J.; Almond, S.; Ward, R.S.; Jackson, R.B.; Adams, C.; Worrall, F.; Herringshaw, L.G.; Gluyas, J.G.;
Whitehead, M.A. Oil and gas wells and their integrity: Implications for shale and unconventional resource
exploitation. Mar. Pet. Geol. 2014, 56, 239–254. [CrossRef]

3. Considine, T.J.; Watson, R.W.; Considine, N.B.; Martin, J.P. Environmental regulation and compliance of
Marcellus Shale gas drilling. Environ. Geosci. 2013, 20, 1–16. [CrossRef]

4. Ingraffea, A.R.; Wells, M.T.; Santoro, R.L.; Shonkoff, S.B.C. Assessment and risk analysis of casing and
cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proc. Natl. Acad. Sci. USA 2014, 111,
10955–10960. [CrossRef] [PubMed]

5. Klassen, W. Secondary Intervention of Blow Out Preventers. In Proceedings of the SPE Offshore Europe Oil
and Gas Conference and Exhibition, Aberdeen, UK, 3–6 September 2013.

6. Al-Ashhab, J.; Afzal, M.; Emenike, C.O. Well Integrity Management System (WIMS). In Proceedings of the
Abu Dhabi International Conference and Exhibition, Abu Dhabi, UAE, 10–13 October 2004.

7. Chatriwala, S.A.; Al-Subaie, F.M.; Al-Shehri, D.A.; Soremi, A.X.; Reaux, J. First Saudi Aramco Use of
Retrievable Downhole Pressure and Temperature Gauges Monitoring System: A Cost Effective Technology
Solution to Manage Maturing Oil and Gas Fields. In Proceedings of the SPE Saudi Arabia Section Technical
Symposium, Al-Khobar, Saudi Arabia, 9–11 May 2009.

8. Al Khamis, M.N.; Al Khalewi, F.T.; Al Hanabi, M.; Al Yateem, K.; Al Qatari, A.; Al Muailu, H. A
Comprehensive Approach of Well Integrity Surveillance. In Proceedings of the International Petroleum
Technology Conference; International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10–12
December 2014.

9. Stokes, P.; Sandana, D.; Jones, L. Corrosion Management—it’s all gone holistic. In Proceedings of the SPE
International Oilfield Corrosion Conference and Exhibition, Aberdeen, UK, 12–13 May 2014.

10. AlAjmi, M.D.; Abdulraheem, A.; Mishkhes, A.T.; Al-Shammari, M.J. Profiling Downhole Casing Integrity
Using Artificial Intelligence. In Proceedings of the SPE Digital Energy Conference and Exhibition, The
Woodlands, TX, USA, 3–5 March 2015.

11. Brill, T.M.; Demichel, C.; Nichols, E.A.; Zapata Bermudez, F. Electromagnetic Casing Inspection Tool for
Corrosion Evaluation. In Proceedings of the International Petroleum Technology Conference, Bangkok,
Thailand, 15–17 November 2011.

12. Brill, T.M.; Le Calvez, J.-L.; Demichel, C.; Nichols, E.; Bermudez, F.Z. Quantitative Corrosion Assessment with
an EM Casing Inspection Tool. In Proceedings of the SPE/DGS Saudi Arabia Section Technical Symposium
and Exhibition, Al-Khobar, Saudi Arabia, 15–18 May 2011.

13. Rahman, M.; Zahir, M.; Haq, M.; Shehri, D.; Kumar, A. Corrosion Inhibition Properties of Waterborne
Polyurethane/Cerium Nitrate Coatings on Mild Steel. Coatings 2018, 8, 34. [CrossRef]

14. McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 2005,
47, 3202–3215. [CrossRef]

15. Tems, R.D. Downhole corrosion. In Trends in Oil and Gas Corrosion Research and Technologies; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 79–94.

16. Papavinasam, S. Monitoring—Internal Corrosion. In Corrosion Control in the Oil and Gas Industry; Elsevier:
Amsterdam, The Netherlands, 2014; pp. 425–528.

17. Papavinasam, S. The Oil and Gas Industry. In Corrosion Control in the Oil and Gas Industry; Elsevier:
Amsterdam, The Netherlands, 2014; pp. 1–39.

18. Al-Ajmi, M.D.; Al-Shehri, D.; Mahmoud, M.; Al-Hajri, N.M. Risk-Based Approach to Evaluate Casing
Integrity in Upstream Wells. J. Energy Resour. Technol. 2018, 140, 122901. [CrossRef]

19. Rammay, M.H.; Abdulraheem, A. PVT correlations for Pakistani crude oils using artificial neural network.
J. Pet. Explor. Prod. Technol. 2016, 7, 217–233. [CrossRef]

20. Nooruddin, H.A.; Anifowose, F.; Abdulraheem, A. Applying Artificial Intelligence Techniques to Develop
Permeability Predictive Models using Mercury Injection Capillary-Pressure Data. In Proceedings of the SPE
Saudi Arabia Section Technical Symposium and Exhibition, S Al-Khobar, Saudi Arabia, 19–22 May 2013.

http://dx.doi.org/10.2118/29784-PA
http://dx.doi.org/10.1016/j.marpetgeo.2014.03.001
http://dx.doi.org/10.1306/eg.09131212006
http://dx.doi.org/10.1073/pnas.1323422111
http://www.ncbi.nlm.nih.gov/pubmed/24982144
http://dx.doi.org/10.3390/coatings8010034
http://dx.doi.org/10.1016/j.corsci.2005.05.046
http://dx.doi.org/10.1115/1.4040237
http://dx.doi.org/10.1007/s13202-016-0232-z


Sustainability 2019, 11, 818 16 of 17

21. Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006,
18, 1527–1554. [CrossRef] [PubMed]

22. Lippmann, R. Book Review: “Neural Networks, A Comprehensive Foundation”, by Simon Haykin. Int. J.
Neural Syst. 1994, 05, 363–364. [CrossRef]

23. Vineis, P.; Rainoldi, A. Neural networks and logistic regression: Analysis of a case-control study on
myocardial infarction. J. Clin. Epidemiol. 1997, 50, 1309–1310. [CrossRef]

24. Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Ali, A.Z.; Abdulraheem, A. A New Approach to Predict Failure
Parameters of Carbonate Rocks using Artificial Intelligence Tools. In Proceedings of the SPE Kingdom of
Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 24–27 April 2017.

25. Jang, J.-S.R.; Sun, C.-T. Neuro-fuzzy modeling and control. Proc. IEEE 1995, 83, 378–406. [CrossRef]
26. Jang, J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 1993,

23, 665–685. [CrossRef]
27. Jang, J.-S.R. Input selection for ANFIS learning. In Proceedings of the IEEE 5th International Fuzzy Systems,

New Orleans, LA, USA, 11 September 1996; Volume 2, pp. 1493–1499.
28. Ebrahimi, M.; Sajedian, A. Use of Fuzzy Logic for Predicting Two Phase Inflow Performance Relationship

of Horizontal Oil Wells. In Proceedings of the Trinidad and Tobago Energy Resources Conference, Port of
Spain, Trinidad and Tobago, 27–30 June 2010; ISBN 978-1-61738-885-9.

29. Walia, N.; Singh, H.; Sharma, A. ANFIS: Adaptive Neuro-Fuzzy Inference System—A Survey. Int. J. Comput.
Appl. 2015, 123, 32–38. [CrossRef]

30. Tahmasebi, P.; Hezarkhani, A. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation.
Comput. Geosci. 2012, 42, 18–27. [CrossRef] [PubMed]

31. Abdulraheem, A.; Sabakhy, E.; Ahmed, M.; Vantala, A.; Raharja, P.D.; Korvin, G. Estimation of Permeability
from Wireline Logs in a Middle Eastern Carbonate Reservoir Using Fuzzy Logic. In Proceedings of the SPE
Middle East Oil and Gas Show and Conference, Manama, Bahrain, 11–14 March 2007.

32. Shujath Ali, S.; Hossain, M.E.; Hassan, M.R.; Abdulraheem, A. Hydraulic Unit Estimation From Predicted
Permeability and Porosity Using Artificial Intelligence Techniques. In Proceedings of the North Africa
Technical Conference and Exhibition, Cairo, Egypt, 15–17 April 2013.

33. Abdulraheem, A.; Ahmed, M.; Vantala, A.; Parvez, T. Prediction of Rock Mechanical Parameters for
Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques. In Proceedings of the SPE
Saudi Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia, 9–11 May 2009.

34. Tariq, Z.; Abdulraheem, A.; Mahmoud, M.; Ahmed, A. A Rigorous Data-Driven Approach to Predict
Poisson’s Ratio of Carbonate Rocks Using a Functional Network. Petrophysics—SPWLA J. Form. Eval. Reserv.
Descr. 2018, 59, 761–777.

35. Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A. A Holistic Approach to Develop New Rigorous
Empirical Correlation for Static Young’s Modulus. In Proceedings of the Abu Dhabi International Petroleum
Exhibition & Conference, Abu Dhabi, UAE, 7–10 November 2016.

36. Tariq, Z.; Mahmoud, M.A.; Abdulraheem, A.; Al-Shehri, D.A. On Utilizing Functional Network to
Develop Mathematical Model for Poisson’s Ratio Determination. In Proceedings of the 52nd U.S. Rock
Mechanics/Geomechanics Symposium, Seattle, WA, USA, 23–26 June 2018.

37. Al-Azani, K.; Elkatatny, S.; Abdulraheem, A.; Mahmoud, M.; Al-Shehri, D. Real Time Prediction of the
Rheological Properties of Oil-Based Drilling Fluids Using Artificial Neural Networks. In Proceedings of the
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26
April 2018.

38. Elzenary, M.; Elkatatny, S.; Abdelgawad, K.Z.; Abdulraheem, A.; Mahmoud, M.; Al-Shehri, D. New
Technology to Evaluate Equivalent Circulating Density While Drilling Using Artificial Intelligence. In
Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam,
Saudi Arabia, 23–26 April 2018.

39. Adebayo, A.R.; Abdulraheem, A.; Olatunji, S.O. Artificial intelligence based estimation of water saturation
in complex reservoir systems. J. Porous Media 2015, 18, 893–906. [CrossRef]

http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.1142/S0129065794000372
http://dx.doi.org/10.1016/S0895-4356(97)00163-7
http://dx.doi.org/10.1109/5.364486
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.5120/ijca2015905635
http://dx.doi.org/10.1016/j.cageo.2012.02.004
http://www.ncbi.nlm.nih.gov/pubmed/25540468
http://dx.doi.org/10.1615/JPorMedia.v18.i9.60


Sustainability 2019, 11, 818 17 of 17

40. Tariq, Z.; Mahmoud, M.; Al-Shehri, D.; Sibaweihi, N.; Sadeed, A.; Hossain, M.E. A Stochastic Optimization
Approach for Profit Maximization Using Alkaline-Surfactant-Polymer Flooding in Complex Reservoirs. In
Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam,
Saudi Arabia, 23–26 April 2018.

41. Anifowose, F.; Adeniye, S.; Abdulraheem, A. Recent advances in the application of computational intelligence
techniques in oil and gas reservoir characterisation: A comparative study. J. Exp. Theor. Artif. Intell. 2014, 26,
551–570. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/0952813X.2014.924577
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Analytics 
	Average Remaining Barriers Ratio 
	Design of the Artificial Neural Networks Model 
	Design for the Adaptive Network-Based Fuzzy Inference System Model 
	Feature Selection Using a Multivariate Linear Regression System 
	Goodness-of-Fit Tests 

	Mathematical Model for Predicting the Corrosion Rate 
	Results and Discussion 
	Validation of the Proposed Model 
	Conclusions 
	References

