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Abstract: These days we are witnessing a deep change in the characteristics of the type of energy that
our economies are supplied with. A clear trend is that sustainable and green energies are decisively
replacing traditional fossil fuel-based sources of energy. For various reasons, this fundamental change
implies an increasing risk in investments on portfolios heavily based on traditional energy industries.
What is less known, is that these industries have returns that show a very low correlation with
sustainable fossil fuel-free stock portfolios making them an appealing tool for portfolio managers
to design properly diversified investments. In this study we examine this and related phenomena
proposing statistical methods to implement the expected shortfall (ES), the challenging risk measure
recently adopted by the financial regulator. We obtain evidence that a newly proposed backtesting
procedure for the ES based on multinomial tests is an adequate and simple method to validate these
risk measures when applied to a highly volatile stock index. Backtesting results of the ES show that
flexible heavy-tailed distribution α–stable performs well for modelling the loss distribution. These
results are even improved when the variances of fossil fuel price returns are included as external
regressors in the GARCH model variance equation. In this case, the ES computed from the four
considered loss distributions perform properly.

Keywords: oil and gas industry; expected shortfall; backtesting; sustainability index

1. Introduction

The debate on the role of fossil fuels in climate change affects all facets of society. The financial
industry is also being affected, both by a progressive increase in awareness of the potential impact of
climate change on investments and by the risk of fossil fuels becoming “stranded,” that is, unburned
or in the ground, as regulation increases. The traditional energy industry is currently exposed to
downside risks from write-offs or revaluations of these unsustainable assets. However, companies in
the traditional energy industry have been used for diversification purposes and have demonstrated
their potential to provide high realized returns along with high volatility as commodity prices rise or
fall. While there is a move towards divestment in fossil fuels, replacing investment in the traditional
energy sector with other sustainable investments, individual and institutional investors seek to balance
risk and expected return (For instance, the Rockefeller Family Fund publicly announced its decision to
divest from fossil fuels. In addition, a report by Moody’s [1] notes that 175 oil and mining companies
were on below investment grade watch in early 2016, mainly because of the shift from carbon-intensive
fossil fuel to renewable energy investment, that is transition risk, which affects oil prices.). Beyond
the growing awareness of climate change and regulatory risk and from a strictly financial point
of view, portfolios based on traditional energy industries have underperformed sustainable global
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portfolios in the last decade. Nevertheless, the situation is reversed in times of uncertainty and
crisis since assets of traditional energy industry have a very small or even negative correlation with
the rest. From a diversification perspective, these makes this type of assets particularly appeal to
portfolio managers. A better diversification of portfolios of large institutional investors could increase
investments in sustainable companies, based on globalized financial flows, thus indirectly providing
more resources for project funding aimed at environmental protection or sustainable development.
In this context, it is relevant to examine which measurements of the risk inherent in investing in the
traditional energy industry are more adequate, in combination with a thorough analysis to discriminate
suitable methods for validating risk measurement models. The existing literature proposes several
risk measurement tools to provide financial institutions, risk managers and market participants with
appropriate technical approaches to measure the risk of the financial markets. It is therefore important
for these market players to adequately quantify the potential economic loss of their investments. In the
case of the traditional energy industry, the literature focuses risk quantification based on Value-at-Risk
(VaR) but there is scarce work regarding the new trend-setting topic of the Expected Shortfall (ES)
backtest (Backtesting is the process of comparing daily actual and hypothetical profits and losses
with model-generated measures to assess the conservatism of risk measurement systems). In this
paper, we examine the use and validation of the ES or Conditional Value-at-Risk (CVaR), as the
risk measure recently recommended by banking regulators, in two broadly diversified investments,
one in the traditional energy industry and one excluding fossil fuel companies, during the last decade.
In addition, we implement a new ES backtesting procedure based on multinomial tests.

The main objective of our research in this paper is to examine the ability of ES risk measures
to correctly quantify the risk in investments in the oil, gas and coal industries. ES is defined as the
expected loss conditional on the loss being greater than the VaR level. In January 2016, financial
regulators propose the use of the ES instead of VaR to prudently capture tail risk and capital adequacy.
Regulatory capital calculations are no longer based on the idea that a bank would survive in normal
market conditions with a certain level of confidence (VaR) but on trying to ensure survival in extreme
market conditions by capturing tail risks (ES) (The Basel Committee on Banking Supervision has been
establishing a set of international global regulatory standards for banking regulation. The different
Basel capital accords aim to strengthen the stability of the international banking system. In January
2016, the “Fundamental Review of the Trading Book” proposes to replace the well-established VaR
with another risk measure, the expected deficit (ES), for the calculation of capital requirements for
market risk (see in particular “Minimum capital requirements for market risk,” or the current version
of January 2019,)). This change is challenging for portfolio and risk managers because it is not clear
which validation method the regulator and the industry should use to test the proposed risk measure,
that is, it is not clear how to evaluate the goodness of the ES risk measure. Currently, there is a vivid
debate in academia and the financial industry about how to validate internal models in regulatory
capital under ES calculation. In this paper, we apply the new method proposed by [2] to validate ES.
As this risk measure can be approximated as a weighted sum of different levels of VaRs; this method
consists of utilizing a multinomial test instead of several independent binomial tests.

Our paper makes four contributions to the literature on risk measurement in the context of
the traditional energy markets. The high volatility of the stock returns of the companies of energy
industry provides a suitable and demanding dataset to examine the performance of the proposed
ES backtesting technique. First, we employ several GARCH models to adequately model the risk of
a broadly diversified portfolio of traditional energy industry stocks over a long period of time that
includes periods of calm, turmoil and severe financial and economic crisis. Second, the behaviour
of this portfolio is examined in relation to the behaviour of a sustainable equity portfolio to provide
guidance to investors at a time when a divestment movement is observed in the fossil fuel industry.
Third, we apply a new ES backtesting procedure based on multinomial tests for different VaR levels
instead of performing a binomial test for each VaR level as in the previous literature on financial
markets. To the best of our knowledge, this is the first attempt to apply multinomial tests on traditional
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energy and sustainable stock indexes. Fourth, we analyse the inclusion of exogeneous variables to
improve the performance of the forecast volatility model as corroborated by the backtesting analysis.

We proxy the traditional energy industry through the S&P 500 Oil, Gas and Consumable Fuels
Index, called Traditional Index (TI) and the divestment movement in fossil fuels thorough the FTSE
Developed ex Fossil Fuel Index, called Sustainable Index (SI). A simple descriptive analysis reveals that
the global portfolio excluding fossil fuel industry assets performs financially better than the portfolio of
assets related to the traditional oil and gas industry over the last decade. However, TI outperformances
during the 2007–2008 global financial crisis and subsequent period of uncertainty, which is a good
feature for portfolio and risk managers seeking to diversify overall risk of their portfolios.

We consider four statistical models, namely normal, Student’s t, α–stable and generalized
Pareto, to model the variability of negative log-returns of two broadly diversified stock indexes. The
one-day-ahead VaR and ES are calculated by applying a rolling window of 250 observations. Thus, the
length of the backtesting period for both indexes is 2709 days with an expected number of exceptions
of 27.09 for a 99%-VaR. We compute the well-known binomial tests for VaR at 99% and the two new
multinomial tests, that is, the Pearson and Nass statistics, proposed by [2], for 97.5%-ES backtesting.

Our empirical results provide useful guidelines for regulation purposes and for practitioners
suggesting that flexible heavy-tailed distribution α–stable performs quite satisfactorily. On the other
hand, concerning the design of ES backtesting methods, we find evidence in favour of including the
variance of unsustainable asset returns as external regressors in the GARCH model as it helps to
improve backtesting results. In this case, the ES computed from the four considered loss distributions
perform properly.

The rest of the paper is organized as follows: we present a survey of the relevant literature in
Section 2 of the paper. Section 3 presents the models and the backtesting methodology, Sections 4 and 5
analyse the data and the results on ES backtesting and Section 6 concludes the paper.

2. Literature Review

There is an abundance of academic literature on the modelling of the risk of highly volatile
prices of both energy commodities and energy stocks and derivatives. Energy commodity markets
are naturally vulnerable to significant price changes. It is therefore important to model these price
fluctuations and implement an effective tool for managing energy price risk. VaR has become a
popular risk measure in the financial industry among many other alternative risk measures (e.g., [3,4]).
The internal model approach under the Basel II framework proposes VaR as a risk measure to gauge the
amount of assets needed to cover possible losses, that is, the minimum regulatory capital requirements.
A variety of works have been published on risk quantification applied to different financial assets
(e.g., stocks, bonds, commodities and derivatives) and several backtesting methods have been proposed
to validate VaR models (see for instance [5]; for different VaR forecasting tests) (The idea is to calculate
the number of times the actual losses have exceeded the estimated VaRs. It is expected that the
number of exceptions is approximately 1% of cases when a 99% VaR is calculated. If the percentage of
exceptions is higher (lower) than 1%, then the VaR model underestimates (overestimates) risk).

VaR answers the question of how much we can lose with a given probability over a given
time horizon (The idea is to calculate the number of times the actual losses have exceeded the
estimated VaRs. It is expected that the number of exceptions is approximately 1% of cases when
a 99% VaR is calculated. If the percentage of exceptions is higher (lower) than 1%, then the VaR
model underestimates (overestimates) risk.). The popularity of this instrument is essentially due to its
conceptual simplicity. VaR reduces the risk associated with any portfolio to a single number, the loss
associated with a given probability. In addition, VaR helps portfolio managers to determine the most
appropriate risk management policy for each situation. Thus, VaR is the primary tool used to forecast
extreme declines in returns and is often used for designing optimal risk management strategies.

Previous literature examines the use of VaR to measure risks in energy markets using different
return distributions in order to estimate VaR from oil and carbon prices (e.g., [6–8]). Some studies
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consider GARCH specifications to model heavy-tailed and asymmetric return distributions for VaR
estimation from energy commodity prices (e.g., [9–18]) and from their financial derivative prices and
even from carbon dioxide emission allowance prices (e.g., [19,20]). Alternative methodologies to
capture downside risks for crude oil prices are also used (e.g., [21–24]). For multivariate analysis cases,
recent papers propose copula approaches to model dependence between different crude oil markets or
between crude oil and other energy markets (e.g., [25–30]).

Nevertheless, financial regulatory entities have recently expressed concerns about the inability of
VaR to capture tail risk. It is not a “coherent” measure of risk because it does not satisfy the property of
“subadditivity” [31]. In addition, VaR does not provide a measure of the magnitude of losses suffered
above the threshold. In January 2016, the Basel Committee on Banking Supervision changes from
requiring banks to calculate market risk capital on the basis of VaR to using ES on the behaviour
of market variables during a 250-day period of stressed market conditions (The “Minimum capital
requirements for market risk” (both in its most recent version published on 14 January 2019 and in the
previous version of 2016), changes the measure to use for determining market risk capital. Instead of
VaR with a 99% confidence level, expected shortfall (ES) with a 97.5% confidence level is proposed).
ES (also known as C-VaR or expected tail loss) is the expected loss, conditional on the loss being worse
than the VaR loss. As with VaR, ES attempts to provide a single number that summarizes the total risk
in a portfolio. The papers of the Special Issue “Advances in Modelling Value at Risk and Expected
Shortfall” of Journal of Risk and Financial Management present a recent state of the art in these market
risk measures and its implications for stability of financial system. [32] proposes a novel method to
estimate VaR and ES implied by financial options, whereas [33] provide a closed-form expression for
ES of portfolios when risk factors are elliptically distributed. On the other hand, [34] develop a new
VaR model based on financial markets overnight information. The ES is also used as risk measure for
portfolio diversification strategy purposes [35] and for hedging purposes [36]. In any case, the use of
ES poses a challenge to portfolio and risk managers because it is not clear which validation method
the regulator and the industry should employ to test the proposed risk measure, that is, it is not clear
how to evaluate the goodness of the ES risk measure. Designing backtesting method for ES is not as
straightforward as in the case of VaR, since ES does not satisfy the elicitability property (e.g., [37,38]).
An appropriate scoring function that this risk measure potentially minimizes does not exist. In fact,
the Basel Committee proposes to use ES to calculate capital requirements but proposes to carry out the
backtest using a VaR measure (The backtesting requirements continue to be based on the 1-day static
VaR measure considering 250 days of (rolling) window size).

Literature on the use of ES in the energy industry is limited. The ES measure is employed in the
financial industry specially to quantify the economic or regulatory capital for banking and insurance
companies. This paper focuses on risk quantification of traditional energy and sustainable investment
indices; however, our methodology can be applied to estimate climate change risk, since lot of investors
are facing huge losses due to effects of climate according to [39]. Some studies use ES constraints in the
optimization programs to choose investment projects (e.g., [40–44]). Other papers include the ES as
risk objective function in the estimation of hedging strategies to reduce price volatility risk into energy
markets (e.g., [45–47]). These authors suggest that ES should be an appropriate metric accounting for
some properties of the energy assets. Finally, [13] apply both VaR and ES to model the price risk of
four energy commodities. To backtest ES, they use a circular bootstrap method from the one-sided
test proposed by [48]. They conclude that the forecasted ES measure captures actual shortfalls in a
satisfactory manner.

3. Model and Methodology

This study is an attempt to shed light on the correct measurement of risk in the traditional energy
industry, which has a particularly interesting behaviour in the financial markets for portfolio managers.
It maintains a very low or even negative correlation with sustainable portfolios, which is an excellent
tool for diversifying risks. However, investing in the traditional energy industry requires precise
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validation measures of the risk measurement models used to make predictions. In this section, we focus
on ES and study different strategies to model the asset returns on which we will calculate ES and test
the validity of the different predictions obtained. Backtesting ES remains an open question and we
implement a novel method that produce quite satisfactory results compared with existing procedures.

3.1. Modelling Asset Returns

VaR and ES approaches model the left tail of the return distribution or, similarly, the right tail of
the loss distribution. The losses or negative log-returns over the next day are defined here as Lt+1 =
−100log (Pt+1/Pt), where Pt represents the corresponding index prices. As it is commonly employed
in the literature (see, e.g., [49]), we suppose that conditional on the location-scale parameters µt+1

and σt+1, negative log-returns follow Lt+1 = µt+1 + εt+1 and the innovations are εt+1 = σt+1Zt+1.
The random variables Zt+1 are assumed to be independently distributed with a common cumulative
distribution function (CDF) G that, for certain cases, depends on unknown parameters. We discuss
several possibilities for G in the next section. The parameter µt+1 is modelled by an ARMA (1,1)
process and a GARCH (1,1) process is employed for σt+1, that is,

µt+1 = θ0 + θ1µt + θ2εt + εt+1,
σ2

t+1 = β0 + β1ε2
t + β2σ2

t + γ1varoil
t + γ2vargas

t + γ3varcoal
t ,

(1)

where θ1 and θ2 are the parameters associated of AR (1) and MA (1) respectively. Apart from the
variables of the standard GARCH (1,1) model, the variances of oil, gas and coal price returns are
considered as external regressors. Thus, our empirical results consider two methods of backtesting.
One method excludes the external regressors (i.e., γ1 = γ2 = γ3 = 0) from the GARCH model and the
other method takes into account these variables in the variance equation of the GARCH model. Given
a probability level α, the VaR can be expressed as

VaRα = µt+1 + σt+1qα, (2)

where qα is the α quantile of G. The ARMA-GARCH model is implemented by using rugarch package
in R [50].

In the ARMA (1,1)-GARCH (1,1) setting above, the location and variability of negative log-returns
are modelled through the parameters µt+1 and σt+1. The distribution G should be free of any such
parameters (to avoid identifiability issues) and must account for other important features, such as
asymmetry and/or kurtosis. In particular, the statistical models we consider are: (i) normal (used for
comparative purposes), (ii) Student’s t, (iii) α–stable and (iv) generalized Pareto.

(i) Normal distribution

The CDF of a standard normal distribution is given by

Φ(x) =
∫ x

−∞

1√
2π

e−
t2
2 dt. (3)

(ii) Student’s t distribution

The CDF of a Student’s t distribution is given by

H(x) =
∫ x

−∞

Γ
(

ν+1
2

)
√

πνΓ
(

ν
2
)(1 +

t2

ν

)− ν+1
2

dt, (4)

where Γ represents the gamma function and ν > 0 is the degrees of freedom parameter that controls
the kurtosis (small values of ν correspond to heavier tails). The Cauchy distribution is a particular case
when ν = 1.
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(iii) α–stable distribution

The α–stable distribution is commonly described by its characteristic function, since the probability
density function (PDF) is not available in closed-form.

E
[
eitX
]
=

{
exp
(
−
(
1− iβ(sign(t)) tan πα

2
))

if α 6= 1,
exp
(
|t|
(
1 + iβ 2

π (sign(t)) ln|t|
))

if α = 1,
(5)

where the sign(t) function is defined as 1 if t > 0; 0 if t = 0 and −1 otherwise.
The parameters in this distribution are the index of stability (characteristic exponent) α ∈ (0, 2]

and a skewness parameter β ∈ [−1, 1]. There are three cases with known closed-form expressions for
their densities: the normal (when α = 2 and β = 0), Cauchy (α = 1 and β = 0) and Lévy distributions
(α = 1/2 and β = 0). The smaller the value of α, the heavier the distribution tail. The stable package
for R developed by Nolan is employed to fit Stable distribution (Robust Analysis Inc. (2013). STABLE.
R package, version 5.3.).

(iv) The generalized Pareto distribution (GPD)

The CDF of the GPD is given by

Fξ,β(x) =

{
1− (1 + ξx/β)−1/ξ , if ξ 6= 0

1− exp(−x/β), if ξ = 0
, (6)

where ξ is the shape parameter and β is the scale parameter. When ξ > 0, the GPD is the Pareto
distribution; when ξ = 0, it is the exponential distribution; and when ξ < 0, the distribution is the
Pareto type II distribution. Heavy-tailed empirical distributions usually follow a GPD with a positive
shape parameter ξ > 0.

When G is either a normal or a Student’s t distribution, the parameters for the ARMA (1,1)-GARCH
(1,1) and for the innovations are estimated jointly by employing the Maximum Likelihood (ML)
estimation. A two-step approach is used to estimate the parameters for the cases where G is either a
α-stable or a generalized Pareto distribution. First, the Quasi-ML (QML) method is used to estimate the
parameters in the ARMA (1,1)-GARCH (1,1), thus allowing estimations of the underlying innovations
to be produced, say, ε̂t+1. Specific methods are then performed in a second step to estimate the
parameters in G:

• For the α-stable distribution, the ML approach is employed by using the direct integration method
in Reference [51].

• For the generalized Pareto distribution, the peaks over threshold (POT) method is employed to
estimate the parameters. According to [49], the VaR or α-quantile is obtained from

qα(Z) = u +
β

ξ

[(
1− α

Tu/T

)−ξ

− 1

]
, (7)

where u is the chosen threshold, β and ξ are the scale and shape parameters, respectively, Tu is the
threshold exceedances and T is the sample size. Therefore, Tu/T is an empirical estimator for the
excess distribution. In this paper, the threshold is chosen as the 10th percentile of the standardized
residuals of the negative log-returns as is typical in the literature [19,48,52–54]. The evir package
in R is employed to implement the EVT-GPD model [55].

3.2. Backtesting ES

As mentioned above, the method to be used to validate the results of the application of the ES
remains an open question [56] show that ES and VaR are jointly elicitable and the authors propose a
scoring function that is more complicated than the well-known scoring function for VaR. Comparative
tests can then be performed following the Diebold-Mariano test (e.g., [57]). Based on the Monte
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Carlo simulations, [58] propose other tests for ES; following the argument that VaR and ES are jointly
elicitable, in this paper, we employ the simple approach proposed by [2] to validate ES calculations
in an implicit manner. ES can be approximated by a weighted sum of VaR levels [59] and then,
a multinomial test can be performed rather than the binomial test for each VaR level. This paper
extends applications of [2] to traditional energy and sustainable indexes. Moreover, our work considers
an ARMA-GARCH model with external regressors to filter the negative log-returns of the analysed
assets, whereas [2] employ the ARCH and GARCH models.

Following the [2] notation, ES can be calculated as in Reference [60]

ESα(L) =
1

1− α

∫ 1

α
qu(L)du. (8)

A simple approximation can be obtained from different quantiles [59]

ESα(L) ≈ 1
4
[qα(L) + q0.75α+0.25(L) + q0.5α+0.5(L) + q0.25α+0.75(L)], (9)

where qα(L) = VaRα(L). [2] then propose backtesting for ES by simultaneously backtesting multiple
VaR estimates. Backtesting is based on multinomial tests of VaR exceptions. It is worthwhile to mention
that the approximation can be generalized as

ESα(L) ≈ 1
N

N

∑
i=1

qα+ i−1
N (1−α)(L), (10)

where N is the number of quantiles to be used in the approximation. Although a higher N results in a
better estimation of ES, simulations performed by [2] show that four quantiles provide reasonable size
and power for the backtest. It is also noteworthy that the previous notation implies that risk measures
are calculated over the loss distribution, that is, the right tail of the distribution.

The number of exceptions (violations) are estimated given a certain model (distribution) and for
each confidence level. As is typical in the literature, the exception indicator at each time t is defined as
a function that takes value 1 if a loss has exceeded the VaR level. That is,

It,i = I{Lt>VaRαi ,t}, (11)

where αi is as follows:

αi = α +
i− 1

N
(1− α), (12)

for i = 1, . . . , N, with α0 = 0 and αN+1 = 1.
Then, the number of exceptions Xt at each time t is given by

Xt =
N

∑
j=1

It,i. (13)

As the number of exceptions follows a multinomial distribution, the unconditional coverage
property can be written as

Xt ∼ MN(1, (α1 − α0, . . . , αN+1 − αN)), (14)

Our interest is a measure that counts the outcomes {0, 1, . . . , N} with probabilities α1 −
α0, . . . , αN+1 − αN that sum to one. The cell counts Oj are then given by

Oj =
n

∑
t=1

I{Xt=j}, (15)
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where n is the backtesting period and j = 0, 1, . . . , N. Then, the random vector should follow the
multinomial distribution

(O0, . . . , ON) ∼ MN(n, (α1 − α0, . . . , αN+1 − αN)). (16)

The null and alternative hypotheses are given by

H0: θi = αi for i = 1, . . . , N

H1: θi 6= αi for at least one i ∈ {1, . . . , N},

where 0 = θ0 < θ1 < . . . < θN+1 = 1 is an arbitrary sequence of parameters from a specific model and
(O0, . . . , ON) ∼ MN(n, (θ1 − θ0, . . . , θN+1 − θN)) [2].

Figure 1 illustrates an example for our case (97.5%-ES and N = 4).
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Figure 1. Graphical representation for multiple VaR backtesting.

For this case, the number of exceptions Xt for each t is calculated as

Xt=1 = I1,1 + I1,2 + I1,3 + I1,4 = 0,
Xt=2 = I2,1 + I2,2 + I2,3 + I2,4 = 1,

...
Xt=7 = I7,1 + I7,2 + I7,3 + I7,4 = 3.

(17)

The cell counts Oj are given by

O0 = ∑n
t=1 I{Xt=0} = 1, since X1 = 0,

O1 = ∑n
t=1 I{Xt=1} = 1, since X2 = 1,

O2 = ∑n
t=1 I{Xt=2} = 1, since X3 = 2,

O3 = ∑n
t=1 I{Xt=3} = 3, since X4, X6, X7 = 3,

O4 = ∑n
t=1 I{Xt=4} = 1, since X5 = 4.

(18)
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There are several multinomial tests; the most common is the Pearson chi-squared test, for which
the test statistic SN follows a χ2

N distribution under the null hypothesis:

SN =
N

∑
j=0

(
Oj+1 − n

[
αj+1 − αj

])2

n
[
αj+1 − αj

] ∼ χ2
N . (19)

The null hypothesis is rejected at a prespecified type I error κ when SN > χ2
N(1− κ).

Another test is the Nass test, which is an improvement over the previous test when cell
probabilities are small [2]. The test statistic is χ2

υ distributed under the null hypothesis:

2E(SN)

var(SN)
SN ∼ χ2

υ, (20)

where E(SN) = N, var(SN) = 2N − N2+4N+1
n + 1

n ∑N
j=0

1
[αj+1−αj]

and υ = 2(E(SN))2

var(SN)
.

The null hypothesis is rejected at a prespecified type I error κ when 2E(SN)
var(SN)

SN > χ2
υ(1− κ).

4. Data

In this section we compare the validation of the risk model of investments that either includes or
excludes, shares of companies related to the fossil fuel industry. With this in mind, our data comprise
two sets of daily prices detailed as follows. We prepare one of the datasets to consider the companies
that are not exposed to unsustainable assets. We refer to these as the sustainable index (SI). It should
capture the stock return behaviour of sustainable companies. This first set of data corresponds to
FTSE Developed ex Fossil Fuel Total Return Index. This index is a part of the Sustainability and
Environmental, Social and Governance (ESG) indexes of FTSE Russell (other indexes with similar
characteristics can be found at its website). This index is designed to represent the performance
of FTSE All-World Index constituents after the exclusion of companies that have some exposure of
revenues and/or reserves to fossil fuels. The second set of data is obtained from the S&P 500 Oil,
Gas and Consumable Fuels Index (“Standard and Poor’s 500 Oil, Gas and Consumable Fuels Index
is a capitalization-weighted index. The index was developed with a base level of 10 for the 1941-43
base period. The parent index is SPXL3. This is a GICS Level 3 Industries. Standard and Poor’s 500
(Industry) Index is a capitalization-weighted index. The index is designed to measure performance of
the broad domestic economy through changes in the aggregate market value of 500 stocks representing
all major industries. The index was developed with a base level of 10 for the 1941-43 base periods.”
Source: Bloomberg LP). This index includes companies in the energy sector engaged in the exploration,
production, refining, marketing, storage and transportation of oil, gas, coal and consumable fuels.
It is used as proxy of the whole oil and gas industry and is referred to as the traditional oil and gas
index (TI).

Both indexes are capitalization-weighted and enable us to study the risk of investing in broadly
diversified portfolios that include or exclude the traditional energy industry. The price data comprise
information from 31 July 2006 to 16 November 2018 for a total of 3210 price observations (The selection
of the indexes and period is restricted to availability of data from Bloomberg terminal). Moreover,
we are interested in the effect of variability of main stranded asset price returns in the variance
behaviour of the indexes. To this end, prices of oil, gas and coal have been collected for the
same period of SI and TI indexes (The Generic 1st ‘CL’ Futures (CL1), Generic 1st ‘NG’ Futures
(NG1) and Richards Bay Coal Futures (XO1) are obtained for oil, gas and coal prices, respectively).
The abovementioned data are obtained from Bloomberg terminal (Bloomberg Professional Service is
an information service that, through subscription, provides economic and financial data at the level of
individual securities and the entire market. The workstations with the installed service are traditionally
called Bloomberg terminals).
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The descriptive statistics (see Table 1) show that analysed stock index returns exhibit very
well-known stylized facts for financial asset daily returns. The mean and median returns of the TI are
close to zero but the SI shows a mean of 0.024% and a median of 0.071%. In terms of daily volatility, the
TI shows a standard deviation which is approximately two-thirds larger than the SI. The index returns
distributions display fat tails, since excess kurtosis is positive. Moreover, the distributions are negative
skewed, which implies more negative extreme values. Figure 2; Figure 3 depict the returns for both
indexes. The index returns exhibit similar characteristics and are remarkably affected by the global
financial crisis, as exhibited by the high volatility in approximately 2007 and 2008 and the financial
problems faced by most companies in oil and gas industry. For the stranded asset returns, gas presents
the highest volatility, whereas coal exhibit fatter tails among the three assets. All the analysed asset
returns display positive skewed distributions.

Table 1. Descriptive statistics for daily stock returns of the SI (sustainable index) and TI (traditional oil
and gas index).

Statistics SI Returns TI Returns Oil Returns Gas Returns Coal Returns

Mean 0.024 0.007 −0.008 −0.019 0.016
Median 0.070 0.000 0.000 0.000 0.000

Standard deviation 1.002 (15.85) 1.638 (25.91) 2.324 (36.75) 3.034 (47.97) 1.500 (23.72)
Skewness −0.489 −0.261 0.134 0.617 0.697

Excess Kurtosis 9.003 13.747 4.968 5.873 44.624
Minimum −6.785 −16.294 −13.065 −18.054 −20.729
Maximum 8.648 17.208 16.410 26.771 23.841

Figures in percentage. Annual volatility in parentheses. Data range from 31 July 2006 to 16 November 2018 for a
total of 3210 price observations.
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Figure 3. Traditional oil and gas industry Index (TI) returns.

To show the temporal evolution of accumulated returns during the sample period, Figure 4
depicts the value of an initial investment of 100 on each of the indexes on 31 July 2006. During the
2007–2008 global financial crisis, TI investment value is larger than SI investment. However, after
such period, particularly since 2012, SI investment has clearly outperformed TI investment. According
to the compound annual growth rate (CAGR), the performance of SI investment exceeds that of TI
investment during the analysed period. Considering a year of 252 days (12.7 years for 3210 days) and
final values (on 16 November 2018) for SI and TI of 184.95 and 80.89 respectively, the CAGR for SI and
TI investments are 4.95% and −1.65% respectively.
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The relationship between risk, as measured by standard deviation and the rate of return of
the traditional oil and gas industry index shows a worse performance than that observed for the
sustainable asset index. Alternatively, we also analyse the risk-return combination considering ES as
the measure of risk. The relation value of SI investment to potential loss outperforms the relation of
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TI investment to loss during the analysed period, when loss is estimated based on 97.5%-ES (Values
of 97.5%-ES estimated for Stable model are employed when external regressors are considered in the
GARCH model. Thus, potential loss is calculated as Losst = ES97.5

t (Index Valuet)). Figure 5 shows the
evidence abovementioned.

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 22 

sustainable asset index. Alternatively, we also analyse the risk-return combination considering ES as 
the measure of risk. The relation value of SI investment to potential loss outperforms the relation of 
TI investment to loss during the analysed period, when loss is estimated based on 97.5%-ES (Values 
of 97.5%-ES estimated for Stable model are employed when external regressors are considered in the 
GARCH model. Thus, potential loss is calculated as 𝐿𝑜𝑠𝑠 = 𝐸𝑆 . (𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒 )). Figure 5 shows 
the evidence abovementioned. 

 

Figure 5. Ratio of value index to potential loss. 

Beyond other considerations relating to climate change awareness or the risk of further 
regulation of the fossil fuel industry, that is, from a strictly financial point of view, the global 
sustainable portfolio excluding fossil fuel industry assets performs better than the portfolio of assets 
related to the traditional oil and gas industry over the last decade. However, this relatively poor 
performance on the traditional oil and gas industry assets is not necessarily a bad result. An 
interesting feature for portfolio managers is the outperformance of this index during the global 
financial crisis and subsequent period of uncertainty. During these periods, the correlation of these 
assets with the rest of the market tends to decrease, being very low or even negative. Therefore, these 
are assets to be included in a portfolio to diversify the overall risk. 

5. Statistical Results 

This section presents the results of computing VaR and ES from both datasets, SI and TI stock 
indexes and provides the ES backtesting analysis in comparison with traditional backtesting methods 
for VaR. The analysis here is primarily quantitative and of a strong statistical nature. The discussion 
about the implications of these results is delayed until next section. 

The backtesting is classified in two cases. One method considers the ARMA-GARCH model with 
different innovations presented in Section 3.1. to filter the returns of SI and TI indexes, whereas the 
second method includes the variance of stranded asset (oil, gas and coal) returns as independent 
variables in the variance equation of GARCH model to filter the returns of the indexes. In-sample 
estimation results for the whole period are presented in Table 2. The results show that the parameters 
related to oil, gas and coal variances are statistically not significant. In other words, variance of 
stranded assets does not seem to have explanatory power in the variance of SI and TI returns. In fact, 
the estimation of ARMA-GARCH parameters when the variances of unsustainable assets are not 
included in the variance equation does not vary significantly comparing the estimation when the 
external regressors are taken into account. In what follows, we analyse whether the inclusion of these 
regressors help improve the backtesting results. 

50
10

0
15

0

16/07/2007 3/11/2008 1/02/2010 2/05/2011 1/08/2012 1/11/2013 2/02/2015 2/05/2016 1/08/2017 1/11/2018

Ratio of SI value to Loss (97.5%-ES) 
Ratio of TI value to Loss (97.5%-ES)

Figure 5. Ratio of value index to potential loss.

Beyond other considerations relating to climate change awareness or the risk of further regulation
of the fossil fuel industry, that is, from a strictly financial point of view, the global sustainable
portfolio excluding fossil fuel industry assets performs better than the portfolio of assets related
to the traditional oil and gas industry over the last decade. However, this relatively poor performance
on the traditional oil and gas industry assets is not necessarily a bad result. An interesting feature for
portfolio managers is the outperformance of this index during the global financial crisis and subsequent
period of uncertainty. During these periods, the correlation of these assets with the rest of the market
tends to decrease, being very low or even negative. Therefore, these are assets to be included in a
portfolio to diversify the overall risk.

5. Statistical Results

This section presents the results of computing VaR and ES from both datasets, SI and TI stock
indexes and provides the ES backtesting analysis in comparison with traditional backtesting methods
for VaR. The analysis here is primarily quantitative and of a strong statistical nature. The discussion
about the implications of these results is delayed until next section.

The backtesting is classified in two cases. One method considers the ARMA-GARCH model
with different innovations presented in Section 3.1. to filter the returns of SI and TI indexes, whereas
the second method includes the variance of stranded asset (oil, gas and coal) returns as independent
variables in the variance equation of GARCH model to filter the returns of the indexes. In-sample
estimation results for the whole period are presented in Table 2. The results show that the parameters
related to oil, gas and coal variances are statistically not significant. In other words, variance of
stranded assets does not seem to have explanatory power in the variance of SI and TI returns. In fact,
the estimation of ARMA-GARCH parameters when the variances of unsustainable assets are not
included in the variance equation does not vary significantly comparing the estimation when the
external regressors are taken into account. In what follows, we analyse whether the inclusion of these
regressors help improve the backtesting results.
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Table 2. In-Sample results of ARMA-GARCH model fit to the analysed indexes.

Panel A: ARMA-GARCH Estimation

ARMA-GARCH with Gaussian innovations TI Index SI Index

θ0 0.036 (0.067) 0.058 (0.000)
θ1 −0.082 (0.887) 0.023 (0.857)
θ2 0.028 (0.961) 0.101 (0.435)
β0 0.023 (0.000) 0.009 (0.000)
β1 0.084 (0.000) 0.105 (0.000)
β2 0.907 (0.000) 0.888 (0.000)

ARMA-GARCH with Student’s t innovations TI Index SI Index

θ0 0.050 (0.007) 0.071 (0.000)
θ1 −0.040 (0.938) −0.067 (0.656)
θ2 −0.013 (0.980) 0.188 (0.206)
β0 0.019 (0.002) 0.006 (0.004)
β1 0.080 (0.000) 0.101 (0.000)
β2 0.913 (0.000) 0.898 (0.000)
ν 6.923 (0.000) 5.414 (0.000)

Panel B: ARMA-GARCH Estimation Considering External Regressors in the
variance equation

ARMA-GARCH with Gaussian innovations TI Index SI Index

θ0 0.035 (0.667) 0.059 (0.000)
θ1 −0.081 (0.887) 0.024 (0.855)
θ2 0.027 (0.961) 0.102 (0.429)
β0 0.023 (0.003) 0.005 (0.144)
β1 0.083 (0.000) 0.109 (0.000)
β2 0.907 (0.000) 0.881 (0.000)
γ1 0.000 (0.999) 0.000 (0.425)
γ2 0.000 (0.999) 0.000 (0.277)
γ3 0.000 (0.999) 0.000 (0.999)

ARMA-GARCH with Student’s t innovations TI Index SI Index

θ0 0.050 (0.007) 0.071 (0.000)
θ1 −0.040 (0.938) −0.068 (0.652)
θ2 −0.013 (0.980) 0.189 (0.205)
β0 0.019 (0.003) 0.006 (0.093)
β1 0.080 (0.000) 0.103 (0.000)
β2 0.913 (0.000) 0.898 (0.000)
γ1 0.000 (0.999) 0.000 (0.999)
γ2 0.000 (0.999) 0.000 (0.999)
γ3 0.000 (0.999) 0.000 (0.999)
ν 6.923 (0.000) 5.311 (0.000)

P-values in parentheses.

The first 250 returns of oil, gas and coal assets are employed to obtain the first set of values of
their respective variances and a rolling window of 250 observations is implemented to estimate the
rest of the variances. That is, the initial range of data from 1 August 2006 to 15 July 2007 is employed in
order to calculate the variances that act as external regressors. Figure 6 shows the estimated variance
of the stranded asset returns. Variability of oil and coal returns were mainly affected by the global
financial crisis and high volatility in the gas returns is observed posterior that date. The correlation
between log-returns (estimated variance of log-returns) between oil and gas is 0.18 (0.40), for oil and
coal is 0.16 (0.78) and for gas and coal is 0.02 (0.32) for the analysed period (The period of 16 July 2007
and 16 November 2018 is considered to estimate the correlations among asset log-returns).



Sustainability 2019, 11, 720 14 of 22Sustainability 2019, 11, x FOR PEER REVIEW 14 of 22 

 

Figure 6. Variance of Oil, Gas and Coal price returns. 

The one-day-ahead VaR and ES are calculated by also implementing a rolling window of 250 
observations, then the initial window size is ranged from July 16, 2007 to June 29, 2008. The 
backtesting period for both analysed indexes (SI and TI) ranged from June 30, 2008 to November 16, 
2018 and its length period is 2709 days. Thus, the expected number of exceptions is 27.09 
(approximated to 27 in Table 3; Table 4) for both indexes when calculating 99%-VaR.  

Table 3 presents the results of testing VaR and ES for both the SI and the TI when the variance 
of unsustainable assets is not considered in the GARCH model. We compute the well-known 
binomial tests for VaR at 99% and the two new multinomial tests, that is, the Pearson and Nass 
statistics, proposed by [2], for 97.5%-ES backtesting. In the case of the sustainable index, the binomial 
test for VaR rejects the Student’s t and GPD models, since both models overpredict risk for the index 
returns. In most applications of market risk quantification, results of EVT techniques based on GPD 
model are favourable. However, in this case, the binomial test for 99%-VaR rejects the good 
performance of this model. A plausible reason is that the amount of observations (in the tail of the 
empirical distribution) employed to fit the GPD, which is 25 in each step of the rolling window. It is 
very well-known that parameter estimation depends on the threshold selection, which is still an open 
question in EVT and this drawback is discussed for instance in Reference [54]. Backtesting ES of the 
SI, the results of Pearson and Nass tests do not reject the good performance of normal, Stable and 
GPD models but Student’s t model does not perform satisfactorily, which is consistent with 
backtesting of VaR results for the same index (Table 3, Panel a). 

In the case of the traditional oil and gas industry index returns, only the Student’s t model does 
not perform well according to the binomial test for 99%-VaR (Table 3, Panel b), whereas all the models 
perform well for 97.5%-ES backtesting, according to Pearson and Nass statistics. 

Table 3. Comparison of 99%-VaR and 97.5%-ES (implicit) backtesting for the Sustainable Index (SI) 
and the Traditional Oil and Gas Industry (TI). 

Model 
99% VaR 97.5% ES 

EE Violations 𝑶𝟎 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 Pearson Nass 
Panel a) Sustainable Index (SI): 

Normal 27 33 (0.270) 2644 13 17 10 25 7.60 7.39 
Student’s-t 27 11 (0.000) 2658 9 21 10 11 9.71 9.45 

Stable 27 32 (0.357) 2631 21 19 16 12 2.84 2.76 
GPD-POT 27 15 (0.011) 2654 17 20 10 8 8.17 7.94 

5
10

15
20

16/07/2007 3/11/2008 1/02/2010 2/05/2011 1/08/2012 1/11/2013 2/02/2015 2/05/2016 1/08/2017 1/11/2018

Oil
Gas
Coal

Figure 6. Variance of Oil, Gas and Coal price returns.

The one-day-ahead VaR and ES are calculated by also implementing a rolling window of 250
observations, then the initial window size is ranged from 16 July 2007 to 29 June 2008. The backtesting
period for both analysed indexes (SI and TI) ranged from 30 June 2008 to 16 November 2018 and its
length period is 2709 days. Thus, the expected number of exceptions is 27.09 (approximated to 27 in
Table 3; Table 4) for both indexes when calculating 99%-VaR.

Table 3. Comparison of 99%-VaR and 97.5%-ES (implicit) backtesting for the Sustainable Index (SI) and
the Traditional Oil and Gas Industry (TI).

Model
99% VaR 97.5% ES

EE Violations O0 O1 O2 O3 O4 Pearson Nass

Panel a) Sustainable Index (SI):
Normal 27 33 (0.270) 2644 13 17 10 25 7.60 7.39

Student’s-t 27 11 (0.000) 2658 9 21 10 11 9.71 9.45
Stable 27 32 (0.357) 2631 21 19 16 12 2.84 2.76

GPD-POT 27 15 (0.011) 2654 17 20 10 8 8.17 7.94
Panel b) Traditional Oil & Gas Industry (TI):

Normal 27 32 (0.357) 2648 9 17 14 21 5.22 5.07
Student’s-t 27 14 (0.005) 2657 14 8 16 14 5.87 5.71

Stable 27 32 (0.357) 2638 9 21 17 24 7.65 7.44
GPD-POT 27 20 (0.151) 2660 13 13 9 14 6.18 6.01

EE stands for Expected Exceptions. The critical value for the Pearson test is 9.49 and that for the Nass test is 9.31.
The P-value for the binomial test in parenthesis. Oj (j = 0, 1, 2, 3, 4) counts the times the number of exceptions (Xt)
are equal to j for each time t and for all VaR levels. Backtesting periods include 2709 days for the SI and the TI
portfolios. Figures in red colour indicates bad performance of the model.

Table 3 presents the results of testing VaR and ES for both the SI and the TI when the variance of
unsustainable assets is not considered in the GARCH model. We compute the well-known binomial
tests for VaR at 99% and the two new multinomial tests, that is, the Pearson and Nass statistics,
proposed by [2], for 97.5%-ES backtesting. In the case of the sustainable index, the binomial test for
VaR rejects the Student’s t and GPD models, since both models overpredict risk for the index returns.
In most applications of market risk quantification, results of EVT techniques based on GPD model are
favourable. However, in this case, the binomial test for 99%-VaR rejects the good performance of this
model. A plausible reason is that the amount of observations (in the tail of the empirical distribution)
employed to fit the GPD, which is 25 in each step of the rolling window. It is very well-known that
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parameter estimation depends on the threshold selection, which is still an open question in EVT and
this drawback is discussed for instance in Reference [54]. Backtesting ES of the SI, the results of Pearson
and Nass tests do not reject the good performance of normal, Stable and GPD models but Student’s t
model does not perform satisfactorily, which is consistent with backtesting of VaR results for the same
index (Table 3, Panel a).

Table 4. Comparison of 99%-VaR and 97.5%-ES (implicit) backtesting for the Sustainable Index (SI) and
the Traditional Oil and Gas Industry (TI). Considering external regressors in the variance equation of
GARCH model.

Model
99% VaR 97.5% ES

EE Violations O0 O1 O2 O3 O4 Pearson Nass

Panel a) Sustainable Index (SI):
Normal 27 33 (0.270) 2641 15 16 13 24 4.13 4.02

Student’s-t 27 17 (0.036) 2655 12 21 10 11 7.40 7.20
Stable 27 32 (0.357) 2633 19 17 17 23 2.45 2.39

GPD-POT 27 20 (0.151) 2649 15 21 11 13 4.21 4.10
Panel b) Traditional Oil & Gas Industry (TI):

Normal 27 35 (0.144) 2643 11 18 14 23 4.83 4.70
Student’s-t 27 23 (0.417) 2650 18 10 18 13 3.91 3.81

Stable 27 34 (0.199) 2630 15 21 18 25 5.16 5.02
GPD-POT 27 25 (0.683) 2655 14 10 11 19 5.75 5.59

EE stands for Expected Exceptions. The critical value for the Pearson test is 9.49 and that for the Nass test is 9.31.
The P-value for the binomial test in parenthesis. Oj (j = 0, 1, 2, 3, 4) counts the times the number of exceptions (Xt)
are equal to j for each time t and for all VaR levels. Backtesting periods include 2709 days for the SI and the TI
portfolios. Figures in red colour indicates bad performance of the model.

In the case of the traditional oil and gas industry index returns, only the Student’s t model does
not perform well according to the binomial test for 99%-VaR (Table 3, Panel b), whereas all the models
perform well for 97.5%-ES backtesting, according to Pearson and Nass statistics.

Table 4 replicates analysis of Table 3 but the new analysis considers the external regressors in
the equation of variance (Equation (1)). Although the binomial test for 99%-VaR still rejects the good
performance of the Student’s t model, all other models now exhibit a reasonable performance for VaR
and ES tests. This is an important result, since there is evidence that employing external regressors
(variance of stranded asset returns) help improve risk model validations for the analysed data in
our paper.

We also conduct the simple backtest of ES, commonly used in the literature, as a robustness
check of the new multinomial test previously applied to validate ES. Table 5 shows the results of
independent individual binomial backtests of VaR for four confidence levels equal to and higher than
that used in the 97.5% ES estimate. This analysis is performed for both indexes without considering
external regressors in variance equation. This methodology based on independent testing for different
confidence levels provides results similar to those obtained in the multinomial test for three loss
distributions. However, it indicates that the GPD model overpredicts risk when VaR is calculated at
98.75% and 99.375% (97.5% and 98.125%) confidence levels for SI (TI) index return as can be seen in
Table 5, Panel a (Panel b). Anyway, the results for the Pearson and Nass tests for 97.5%-ES displayed in
Table 3, which rejects the Student’s t model and shows that the normal and Stable models perform
well for both indexes, are also confirmed by the individual binomial tests.
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Table 5. Exceptions obtained for each VaR level for the Sustainable Index (SI) and the Traditional Oil
and Gas Index (TI).

Model 97.5%VaR 98.125%VaR 98.75%VaR 99.375%VaR

Panel a) Sustainable Index (SI):
[52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17

Normal 65 52 35 25
Student’s-t 51 42 21 11

Stable 78 57 38 22
GPD-POT 55 38 18 8

Panel b) Traditional Oil & Gas Industry (TI):
[52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17

Normal 61 52 35 21
Student’s-t 52 38 30 14

Stable 71 62 41 24
GPD-POT 49 36 23 14

EE stands for Expected Exceptions. 95% confidence interval in brackets for each expected number of exceptions.
Backtesting periods include 2709 days for the SI and the TI portfolios. Figures in red colour indicates bad
performance of the model.

Table 6 presents same results as Table 5 considering variance of unsustainable asset returns as
independent variables in the variance equation of the GARCH model. Only Student’s t model is
rejected when 98.75%-VaR is calculated for SI index returns. Once again, the risk model performance
is enhanced when the variances of stranded asset returns are included as regressors in the variance
equation to assess VaR at different confidence levels.

Table 6. Exceptions obtained for each VaR level for the Sustainable Index (SI) and the Traditional Oil
and Gas Index (TI). Considering external regressors in the variance equation of GARCH model.

Model 97.5%VaR 98.125%VaR 98.75%VaR 99.375%VaR

Panel a) Sustainable Index (SI):
[52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17

Normal 68 53 37 24
Student’s-t 54 42 21 11

Stable 76 57 40 23
GPD-POT 60 45 24 13

Panel b) Traditional Oil & Gas Industry (TI):
[52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17

Normal 66 55 37 23
Student’s-t 59 41 31 13

Stable 79 64 43 25
GPD-POT 54 40 30 19

EE stands for Expected Exceptions. 95% confidence interval in brackets for each expected number of exceptions.
Backtesting periods include 2709 days for the SI and the TI portfolios. Figures in red colour indicates bad
performance of the model.

Finally, Figure 7 shows the comparison of 99%-VaR and 97.5%-ES (with external regressors in
the variance equation) for each analysed model applied to SI returns (Similar results are obtained for
Portfolio TI returns and are available upon request and for both indexes when external regressors are
not included in the variance equation in GARCH model). As expected, 99%-VaR is similar to 97.5%-ES
for the Gaussian case; however, it is noted that 97.5%-ES is higher than 99%-VaR for stable and GPD
cases. This result corroborates one of the arguments used by the Basel Committee to defend the use of
ES to calculate the market risk of a financial institution.
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6. Discussion, Conclusions and Future Work

Energy assets have higher volatilities than other types of stocks and are affected by a trend towards
divestment caused by greater global awareness of the environmental and financial impact of climate
change. Nevertheless, portfolio managers and institutional investors in general have big interest on
energy assets due to their importance for diversification purposes and, in these days, the predominant
role of fuel-based industries in energy portfolios is clearly being replaced by sustainable alternatives.
This change in paradigm implies new challenges to policy makers and managers and they have to count
on trustable risk measures and accompanying backtesting procedures, that must be in agreement with
the recently proposed guidelines about financial investments proposed by the regulators. To address
this issue, as described in Section 4, we have constructed and analysed two very different indexes:
one formed by companies in the traditional energy industry (TI) and a second one of a sustainable
nature (SI). We have collected data from these portfolios during an extensive period of time. For these
datasets, in Section 5 we have performed a large experiment where we have utilized several proposed
probabilistic models from which we have computed a number of risk measures that we have tested
using two different backtesting methods.

Our results show that, in general, sustainable investments statistically behave similarly to
traditional assets but in terms of returns these are outperforming traditional ones in the last decade.
Nevertheless and quite interestingly, the situation is the reverse in periods of crisis when additionally,
returns of both portfolios show low or even negative correlation. These findings suggest that
investments on sustainable industries may assume the role of traditional fuel-based energy industries
in designing well diversified portfolios. Also, our results point out that a combination of both could
be interesting trying to anticipate structural changes on investments during turmoil periods. All this
would imply that, by incorporating traditional energy industry stocks into portfolios of sustainable
companies, the financing of these latter companies can be improved and, therefore, they can enjoy
better financing of their sustainable development projects. In summary, our findings on proper risk
measurement are potentially beneficial for sustainable development. Investors and portfolio managers
may perceive investment in sustainable companies as more desirable if they can diversify or reduce
the inherent market risk.

From a modeler perspective and in terms of methods to implement VaR but especially ES,
our experiment provides several interesting conclusions and recommendations. In particular results
of VaR and (implicit) ES backtesting seem to indicate that external regressors should be considered
in the GARCH equation. In particular, we have found evidence that the variances of unsustainable
assets (i.e., the exogenous regressors) help to improve the variance estimation of the TI and SI returns
and therefore the backtesting performance. These results are in line with [61–64]. Gaussian and
Stable distributions perform comparatively better in all situations and hence these are the statistical
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models we recommend for constructing risk measure methodologies in applications with substantial
energy-based investments.

Obviously and not less important particularly to policy-makers is the question of ES backtesting.
To the best of our knowledge, our paper is the first time that multinomial tests have been applied to SI
and TI assets and that exogenous variables are included to improve the performance of the forecast
volatility model. The backtesting procedure we implement is based on multinomial tests for different
VaR levels rather than performing a binomial test for each VaR level, since ES can be approximated in
terms of multiple VaRs [59]. We obtain evidence that the multinomial test is an adequate and simple
method to validate ES models as presented in this paper. This simple approach leads to an implicit
manner for ES backtesting and it is suggested for regulatory purposes.

Future research can be conducted to compare other ES tests such as those proposed by [58].
A possible limitation of our work is that ES is approximated by just four terms of VaR levels. Though
more VaR figures employed in the ES approximation can provide a more accurate ES measure, [2] show
that employing four VaR levels produce good results regarding size and power of the multinomial test
and it is more powerful than a single binomial test. Then future research can be focused on employing
eight VaR levels, which also performs well according to [2], for the multinomial test. In addition, other
ES tests proposed in the future can be compared with the multinomial test employed in this paper.
Another limitation is the window size (250 days), suggested by Basel Committee, may be not enough
when calculating VaR at high probability levels and this is also noted by [2]. Parameter estimation
of GARCH models can be biased in small samples and a window of 500 days is recommended
when this type of models is employed [65]. Moreover, parameter estimates of generalized Pareto
distribution exhibits high variance in small samples when peaks-over-threshold method is utilized
and risk measures may be wrongly assessed. This was evidenced in our empirical application and
several window sizes can be tested in future research. This paper analysed the risk quantification for
individual assets. Further research may be focused on ES testing of traditional energy and sustainable
investment portfolios, where multivariate models (such as DCC, BEKK, copula, among others) can
be employed to analyse the correlation and dependence structure of different assets. Finally, a main
concern is to quantify the economic loss caused by climate change. A first attempt of climate VaR
estimation is developed by the [39]. Future work could be the estimation of losses once those losses
have exceeded climate VaR by employing some of the techniques in our paper.
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The following abbreviations are used in this manuscript:

VaR Value-at-Risk
ES Expected Shortfall
CVaR Conditional Value-at-Risk
TI Traditional Index
SI Sustainability Index
ARMA Autoregressive Moving Average
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GARCH Generalized Autoregressive Conditional Heteroskedasticity
S&P Standard and Poor’s
FTSE Financial Times Stock Exchange
CDF Cumulative Distribution Function
PDF Probability Distribution Function
QML Quasi Maximum Likelihood
EVT Extreme Value Theory
GPD Generalized Pareto Distribution
POT Peaks-Over-Threshold
MN Multinomial distribution
ESG Environmental, Social and Governance
CAGR Compound Annual Growth Rate
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