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Abstract: India’s coal consumption is closely related to greenhouse gas emissions and the balance
of supply and demand in energy trading markets. Most existing research on India focuses on
total energy, renewable energy and energy intensity. To fill this gap, this study used two single
forecasting models: the metabolic grey model (MGM) and the Back-Pro-Pagation Network (BP) to
make predictions. In addition, based on these two single models, this study also developed the
ARIMA correction principle and derived two combined models: the metabolic grey model, the
Autoregressive Integrated Moving Average model (MGM-ARIMA) and Back-Pro-Pagation Network;
and the Autoregressive Integrated Moving Average model (BP-ARIMA). After fitting India’s coal
consumption during 1995–2017, the average relative errors of the four models were 2.28%, 1.53%,
1.50% and 1.42% respectively. The forecast results show that coal consumption in India will continue
to increase at an average annual rate of 2.5% during the period from 2018–2030.

Keywords: India’s coal consumption; Multiple forecasting models; ARIMA corrected principle;
MGM-ARIMA; BP-ARIMA

1. Introduction

India, with a total population of more than 1.3 billion, has become the world’s third-largest emitter
of greenhouse gases while rapidly industrializing and urbanizing. Coal is one of the most important
causes of this problem. As the world’s second largest coal consumer and importer, India’s future coal
changes will have a huge impact on the global coal trading market [1–3]. In addition, in terms of the
impact on the domestic energy market, in 2016, India relied on coal to produce three-quarters of its
electricity. This means that coal has an important supporting role in India, and that it impacts on the
balance of supply and demand in the domestic energy market. Based on this situation, accurately
predicting India’s future coal consumption is conducive to the formulation of both environmental and
energy policy. On the one hand, controlling coal trends is beneficial to controlling India’s greenhouse
gas emissions. On the other, determining changes in India’s relationship with coal plays an important
role in controlling the global coal trading market ahead of time and balancing domestic energy supply
and demand.

Most existing research focuses on the relationship between India’s energy intensity and economic
development [4–6], renewable energy [7–9], and total energy consumption [2,10,11]. Few existing
studies on Indian energy are focused on coal. For example, in terms of the relationship between energy
and the economy, Ahmad et al. [12] studied the relationship between carbon emissions [13], energy
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consumption and economic development, and concluded that all energy sources have a positive
impact on carbon emissions. Dasgupta et al. [14] derived and analyzed the energy intensity trends
of seven energy-intensive manufacturing industries in India in the past. The conclusions show that
structural changes have little effect on energy demand. In addition, there are also studies on the
overall state of energy [15–18]. Wang et al. [19] predicted the total energy consumption of China and
India. The research results show that India’s future energy growth rate will be 2–4 times that of China.
Singh et al. [20] evaluated the potential index of solar energy development and provided reasonable
suggestions for promoting solar energy development in India. Das et al. [21] constructed a modeling
framework for linear dynamics and estimated India’s energy demand and carbon dioxide emissions
for the cement industry in 2021. In terms of renewable energy [22–24], Sharma et al. [25] conducted
a comprehensive assessment of the availability, environmental impact and development prospects
of renewable energy in India. Sonal et al. [26] identified obstacles to solar energy development and
provided countermeasures for India’s adoption of solar technology. Mohanty et al. [27] developed a
new combination method based on statistical methods, fuzzy algorithms and neural networks, and
applied it to solar forecasting in India. The results show that India’s future solar energy will rise
to 35GW in 2020. Jiang et al. [28] developed and studied a multi-stage intelligent method based on
integrated learning to predict 5-day global horizontal radiation in four regions of India. The final
result confirms the effectiveness of the method. Bhattacharya and Ahmed [29] compared the return
prediction performance of the GARCH model with the GARCH-ANN model using the root mean
square error as a standard for crude oil prices in India. The results show that the hybrid model of
ANN and EGARCH has the best performance.

In existing research on energy forecasting, most people use several single prediction methods.
Few studies use multiple combined methods to predict the research object at the same time.
For example, in the application of the grey model, Chen et al. [30] proposed two grey interval
prediction methods: the interval grey model (abbreviated as: GM (1,1)) and the interval nonlinear
grey Bernoulli model (NGBM (1,1)) for the problem of estimation range, which respectively predict
minority and uncertain time series data. Yuan et al. [31] also used the GM (1,1) model and the
Autoregressive Integrated Moving Average model (ARIMA) to predict the total energy consumption
in China. The results show that China’s future energy consumption will grow at a rate of 4%. In the
application of a neural network model, Jebaraj et al. [32] used a single neural network model to
simultaneously predict and validate various energy sources in India. The verification results confirm
that the neural network model can be make accurate predictions in most cases. Wang et al. [33]
used the linear ARIMA to correct NMGM residuals to forecast China’s dependency on foreign oil;
they reported that China’s dependency on foreign oil will exceed 80% of its energy expenditures by
2030. Hossain et al. [34] used artificial neural network models to simultaneously predict new solar
and wind energy and applies them to the climate of Queensland. In the application of the ARIMA
model, Oliveira et al. [35] used the bagging ARIMA model to predict medium- and long-term power
consumption. Wang et al. [36] applied hybrid ARIMA and the metabolic grey technique to forecast
shale gas output in the United States. Sen et al. [37] selected the correct ARIMA model and predicted
energy consumption and greenhouse gas emissions of Indian pig iron manufacturing institutions.
Li et al. [38] applied data mining and BP neural network models to the prediction of air pollution,
and found the applicability of BP model to atmospheric data. Wang et al. [39] adopted single- and
non-linear forecasting techniques to predict shale oil output in the United States. Xu et al. [40] adopted
two single models: the ARIMA model and the BP neural network model to predict the monthly
exchange rate of RMB. Through these applications, the study found that the average relative error of
the two single models was 15% and 16%, respectively. Ray et al. [41] also used genetic algorithms and
neural networks to predict electrical load, and found that genetic algorithms provide better prediction
results than backpropagation.

Through combing the above literature, the following points can be summarized: (1) Existing
forecasting literature on India is concentrated on renewable energy, carbon emissions and individual
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social issues. (2) The study of a single predictive model has been unable to meet the high-precision
prediction effect. (3) The combined model has a good performance and is valued in the field of
forecasting. Based on this, it can be observed that forecasting India’s coal consumption is a gap in
current research, and the combined model can provide a tool for analyzing and predicting this research.

In order to fill this gap, this study intends to use a variety of mixed time series forecasting models
to forecast India’s coal consumption in an all-round way. The innovations of this research are as
follows. (1) This study used a high-precision mixed time series model to predict coal consumption
in India. The forecast results will provide a reference for future energy planning and the economic
development of India. (2) The model selected in this study includes two traditional single models:
metabolic grey model (MGM) and Back-ProPagation Network (BP), and two newly-developed hybrid
models based on the error correction principle: the metabolic grey model, Autoregressive Integrated
Moving Average model (MGM-ARIMA) and Back-ProPagation Network, and the Autoregressive
Integrated Moving Average model (BP-ARIMA). The simultaneous use of multiple models can provide
exhaustive and comprehensive forecasting. It can also ensure the accuracy of forecasting and increase
the credibility of the predicted data, which can provide an accurate reference for the development of
follow-up policies.

The remainder of this paper is as follows: Section 2 categorizes the forecasting methods used.
The introduction of the forecasting process is presented in Section 3. Section 4 introduces the accuracy
and results of the predictions. A summary of the full text is given in Section 5.

2. Method

2.1. Metabolic Grey Model

The metabolic grey model (MGM) is an improvement to the traditional grey model (GM) by way
of adding an element replacement process. The traditional grey model theory, abbreviated as the GM
model, was developed in 1982 by Professor Deng Julong [42]. This theory mainly achieves an accurate
understanding of system behavior through some known information. During operation, the GM
model first accumulates or differentially processes a random sequence, making it regular: x1

k = ∑k
i=1 x0

i .

After that, a differential equation is established for this regular sequence: dx1

dt + ax1 = b. Through the

solution of the differential equation: x̂0
k+1 = (1− ea)

(
x̂0

1 −
b
a

)
e−ak, the prediction of the future data of

the system can be realized. However, the GM model has obvious requirements for the predicted data.
For example, the GM model is well suited to handle approximately 5–10 data. If the amount of data is
too large or is fluctuating, the effect predicted by the GM model will be unsatisfactory.

In order to solve this problem, data replacement can be added as a solution for the GM model. This
improved model is called the metabolic grey model (abbreviated as the MGM model) [43]. The MGM
model usually continues the calculation of the GM model in general. Specifically, the data processing
method and the differential equation construction method of the MGM model are the same as the
GM model. The difference is that the MGM model divides the prediction process of GM model into a
number of prediction rounds, and the data used for each round of prediction is different. To illustrate
the differences between the two models, Figure 1 shows the corresponding prediction processes of GM
model and MGM model. Each colored circle represents a known block of data, while the open circle
represents a block of data that needs to be predicted in the future.

As shown in Figure 1, the GM model uses only five pieces of data to predict all the unknown data.
For MGM model, only one unknown piece of data is predicted per round. Furthermore, the data used
by the GM model for prediction is invariant, and the data used for each round of the MGM model
is different. The specific alternative principle is in line with the physiological process of metabolism.
Assume the number of data used for grey prediction is five. After the first round of MGM model,
the initial data is rejected, and the latest data reflecting the characteristics of the system is added.
By analogy, each round of data sets used for MGM prediction is the one that best reflects system
dynamics. This model overcomes a series of shortcomings of the traditional grey model for inaccurate
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prediction of large fluctuations in data. After this improvement, the MGM model can be applied to the
prediction of large and volatile data sequences. The accuracy of the prediction is also greatly improved.

1 
 

 

Figure 1 

  

Figure 1. Improvement of MGM Model based on GM Model. (Note: Each circle represents a single
piece of data.)

2.2. Back-ProPagation Network Forecasting Model

The Back-ProPagation Network, also known as the Back Propagation Neural Network,
continuously corrects the network weights and thresholds by training the sample data to make
the error function fall in the direction of the negative gradient and approach the desired output.
It is a widely used neural network model, which is mostly used for function approximation, model
recognition classification, data compression and time series prediction. The calculation process is
as follows.

Step 1: Data preprocessing. In this step, the training data and test data are preprocessed using a
normalized approach. After the model is established, the inverse normalization method can be used to
restore the predicted data into meaningful data.

Step 2: Select the number of hidden layer neurons. Empirical formulas are often used as tools for
this step: n =

√
a + b + c, n =

√
ab, n = log2 a. Here, ‘a’ is assumed to be the number of neurons in

the input layer, ‘n’ is the number of neurons in the hidden layer, and ‘b’ is the number of neurons in
the output layer. After that, let ‘c’ take values from 1 to 10, constantly change ‘n’, and compare the
models one by one to achieve the most accurate.

Step 3: Set parameters. In order to get the most effective model, it is often necessary to define the
model during the training process. In this paper, the minimum training error is 1 × e−7, the number of
training is 1000, and the learning rate is 0.01 (as shown in Figure 2).

Step 4: Model prediction and testing. In order to obtain a reasonably usable BP neural network
model, it is necessary to judge the model by prediction and calculation error.



Sustainability 2019, 11, 695 5 of 19
 

2 

 

 

Figure 2 

  

Figure 2. The parameters set by the BP model.

2.3. The Autoregressive Integrated Moving Average model

For time series predictions, the ARIMA model is one of the most commonly-used statistical
models [44]. The principle of its prediction is to first convert a non-stationary time series into a
stationary time series. Then, the dependent variable will be described as a model that only returns its
lag value and the current and lag values of the random error term. It can be seen that the advantage
of the ARIMA model is that the prediction process only requires endogenous variables and does not
need other exogenous variables. However, the ARIMA model requires that the sequence be stable after
being differentiated.

Specifically, the prediction process includes the following steps [39].
Step 1: Smooth the timing data with a differential tool. Stationarity serves to ensure that the fitted

curve obtained by sampling time series can continue inertially along the existing form in a short time in
the future, that is, the mean and variance of the data should not be excessively changed, theoretically.

Step 2: Establish an autoregressive model (AR). The autoregressive model is a model that describes
the relationship between current value and historical value, and is a method of predicting itself by
using the historical event data of the variable itself. Its formula is as follows:

yt = µ + ∑p
i=1 γiyt−i + εt (1)

where, yt is the current value; µ is constant term; p is the order; γi is the autocorrelation coefficient; εt

is the errors.
Step 3: Establish a moving average model (MA). The moving average model focuses on the

accumulation of error terms in the autoregressive model. It can effectively eliminate random
fluctuations in predictions. Its formula is as follows:

yt = µ + ∑q
i=1 θiεt−i + εt (2)

Among them, the meaning of each letter is the same as (1), and θi is the correlation coefficient of
the MA formula.
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Step 4: Combine AR and MA, and construct an autoregressive moving average model (ARMA).
The specific formula is as follows. In this formula, p and q are the orders of the autoregressive model
and the moving average model, respectively. γi and θi are the correlation coefficients of the two models,
respectively, and need to be solved.

yt = µ + ∑p
i=1 γiyt−i + εt + ∑q

i=1 θiεt−i (3)

2.4. Two Combined Linear Modified Linear (MGM-ARIMA) and Linear Modified Nonlinear
(BP-ARIMA) Models

Although each single model has its own applicability, some inevitable flaws exist. In this case,
the combined model comes out. A combined model can minimize the shortcomings of each single
model and allow them to complement each other with the advantages of the two single models
(as shown in Table 1) [45]. Generally speaking, common combinations of models: the equal weight
method, minimum variance method, and so on. The predicted values produced by these methods are
the results of combining individual prediction results after weighting based on precision.

Table 1. Comparison of advantages and disadvantages between combined model and single model.

Type of Model Advantage Disadvantage

Single
model

MGM Easy to operate and dynamic Unable to react to fluctuations
ARIMA Only need endogenous variables Unable to react to nonlinear relationships

BP Self-learning and adaptability Unpredictable prediction ability

Combined
model

MGM-ARIMA
Only need endogenous

variables, dynamic, can reflect
nonlinear fluctuation data

Low fault tolerance

BP-ARIMA
Good fault tolerance and can

reflect nonlinear dynamic
fluctuation data

General stability

Different from the traditional combinations, the approach used in this study is a combination of
prediction steps [33]. Assume that the combined model includes two single models. The first model is
called the base model, and the second is the modified model. The combined principle adopted in this
study is to use the base model to make the prediction, and then use the modified model to recalibrate
the error, i.e., in order to reduce the error. The specific steps are as follows.

Step 1: Use the base model to predict the original data sequence Xt. The prediction is done in
the same way as the base model prediction step. At the end of this step, preliminary predictions X∗t
are obtained.

Step 2: Calculate the predicted initial error. By comparing the prediction result with the real value,
the prediction error of the base model can be obtained, and is called the initial error. The relevant
formula is: Yt = X∗t − Xt, (t = 1, 2, · · · , n). Where Yt is the error value corresponding to the response
time point ‘t’, X∗t is the predicted value, and Xt is the true value.

Step 3: The initial error sequence Yt is predicted by using modified model and a new error
sequence Y∗t is obtained. Again, the modified model has the same processing steps as before. The error
sequence obtained at this stage is called the new error sequence.

Step 4: Combine the preliminary predictions X∗t and the new error sequence Y∗t , and obtain the
final predictions based on this formula: X∗∗t = X∗t + Y∗t , (t = 1, 2, · · · , n).

In this study, two combined linear modified linear (MGM-ARIMA) and linear modified nonlinear
(BP-ARIMA) models were developed to predict India’s coal consumption. The similarity between the
two models is that the modified models are all part of the ARIMA model. However, the difference is
that the MGM-ARIMA model uses the MGM model as the base model, and the BP-ARIMA model
uses the BP model as the base model. Since the principles of the three single models involved have
already been explained before, Figure 3 will briefly introduce the main combination methods.



Sustainability 2019, 11, 695 7 of 19
 

3 

 

 

Figure 3 

  

Figure 3. The combination mode and operation flow of the MGM-ARIMA and BP-ARIMA model.

3. Forecasting Process and Empirical Results

The forecasting work of this study adopts the principle of “multi-model comparative prediction”.
The forecasting tools used include two single models (MGM and BP model) and two combined models
(MGM-ARIMA and BP-ARIMA). In conjunction with methods described in Section 2, a detailed
forecast of coal consumption in India will be developed in this part.

Figure 4 shows the trends in coal consumption in India in the period from 1995–2017. As seen in
the figure, since 2000, India’s coal consumption has shown a steady upward trend. In the past three
years, the growth rate has slowed down in 2014–2016, but a faster growth rate appeared again in 2017.
This set of data is also used as raw data for multiple model predictions.
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Figure 4. Raw data on coal consumption in India (Unit: Mtoe). (Source: BP Statistical Review of World
Energy 2018 [3]).
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3.1. The Application of Metabolic Grey Model (MGM) in Forecasting India’s Coal Consumption

This study used five data blocks as the basis for each round of the MGM model prediction.
According to the principle of metabolism, every five data used for calculation will produce a predicted
result, and then five data blocks will be updated. Although the data blocks are constantly changing,
each round of differential equation solving process is the same. The differential equation is as follows:
dx(1)

dt + ax(1) = b. In order to get the predicted value, the unknown parameters ‘a’ and ‘b’ in this
equation need to be solved. The number of groups obtained by the unknown parameter is the same as
the number of rounds of data replacement.

Since the data interval used for prediction is 1995–2017, if based on five pieces of data, through
software calculation, a total of 19 sets of parameters and 19 prediction results will be obtained (shown
in Table 2).

Table 2. The solution of parameters and predictions during MGM forecasting.

Forecasting
Process Solution of ‘a’ Solution of ‘b’ Forecasting

Value
True

Value
Relative

Error

1995~1999→2000 −0.0233 141.2396 160.4866 164.384 2.371%
1996~2000→2001 −0.0249 145.2078 166.4489 165.755 0.419%
1997~2001→2002 −0.0245 148.7493 170.2216 173.126 1.678%
1998~2002→2003 −0.0346 147.9085 179.1436 181.326 1.203%
1999~2003→2004 −0.0343 154.3718 186.3309 192.908 3.410%
2000~2004→2005 −0.0505 152.534 201.8930 211.187 4.401%
2001~2005→2006 −0.067 154.1881 223.4998 219.297 1.917%
2002~2006→2007 −0.0654 164.6131 236.1804 240.032 1.604%
2003~2007→2008 −0.0694 174.6375 255.9016 259.271 1.299%
2004~2008→2009 −0.0716 186.8359 276.9859 280.832 1.369%
2005~2009→2010 −0.0815 193.9743 304.8337 290.382 4.977%
2006~2010→2011 −0.064 220.7369 313.1822 304.628 2.808%
2007~2011→2012 −0.051 243.497 321.7466 329.988 2.497%
2008~2012→2013 −0.0542 255.8387 344.4818 352.782 2.353%
2009~2013→2014 −0.0668 259.7517 376.2465 387.544 2.915%
2010~2014→2015 −0.0793 268.8488 417.1481 395.273 5.534%
2011~2015→2016 −0.0624 303.4909 427.1197 405.644 5.294%
2012~2016→2017 −0.0426 339.3002 428.0570 423.967 0.965%

According to the parameters of the second column and the third column in Table 2, the solution
of the differential equation, that is, the predicted value, is obtained here. Comparing the predicted
results of the metabolic grey model with the original true values, the relative error values indicate that
the prediction effect of the MGM model is good.

3.2. The Application of Back-ProPagation Network Model (BP) in Forecasting India’s Coal Consumption

According to the method descripted above, the BP model needs to standardize the data before
the operation. After that, a one-layer BP network was built [30]. The one-layer network includes an
input layer, a hidden layer, and an output layer. For the number of neurons included in each layer
of the network, the input layer contains 4 neurons, and both the hidden layer and the output layer
contain 1 neuron. The settings of each aspect are as follows: the network hidden layer neuron transfer
function uses ‘tansig’, the output layer neuron transfer function is ‘logsig’. The training function
adopts ‘trainlm’, the minimum training error is 1 × e−7 and the number of training is 1000. After
repeated training, the results of the final idealized model are shown in Figure 5. The error renderings
in Figure 5 reflects the better model run results.
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Figure 5. Prediction effect of BP model derived from Matlab software.

Due to the large volatility of the BP neural network itself, repeated training is required to achieve
the desired result. After obtaining the desired results, inverse normalization is performed. The final
predicted values are shown in Table 3. The results in Table 3 show that, except for the relative error of
individual years (such as 1999, 2003, 2009), the relative errors of the other years are less than 3%. This
result proves that the prediction results obtained by the BP model are accurate.

Table 3. Comparison of prediction results of BP model with real values.

Year Forecasting Value True Value Relative Error

1999 154.5413 146.7572 5.037%
2000 164.3845 164.2484 0.083%
2001 165.7545 165.6686 0.052%
2002 173.1261 169.7080 1.974%
2003 181.3257 196.4610 8.347%
2004 192.9084 192.5092 0.207%
2005 211.1874 210.6085 0.274%
2006 219.2968 218.6137 0.311%
2007 240.0316 243.9196 1.620%
2008 259.2707 258.4555 0.314%
2009 280.8317 259.4844 7.601%
2010 290.3818 290.1657 0.074%
2011 304.6283 304.3510 0.091%
2012 329.9878 329.6839 0.092%
2013 352.7818 352.4987 0.080%
2014 387.5440 377.0672 2.703%
2015 395.2728 394.8589 0.105%
2016 405.6443 405.4386 0.051%
2017 423.8183 423.9675 0.035%
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3.3. The Application of Combined MGM-ARIMA Model in Forecasting India’s Coal Consumption

The combined MGM-ARIMA model uses the MGM model as the base model and uses the ARIMA
model as the modified model. The forecasting process is a recalibration of the predicted results of
the MGM model by the ARIMA model [36]. Combined with the predictions of the metabolic grey
model in Section 3.1, the corresponding residual sequence is calculated and used to calculate modified
ARIMA model.

Figure 6 shows the distribution of the residual sequence. The premise of processing with the
ARIMA model is that the sequence is stationary. Obviously, the residual sequence in this figure is
unstable, so a differential tool is needed to smooth the subsequence [46].
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Figure 6. The prediction error derived from the MGM model.

Figure 7 shows the results of first-order difference of this sequence. Two points of information
can be drawn in this figure. First, the value of T-statistic is less than 1% test critical value, which is
consistent with the inspection range. Second, the value of ‘P’ is 0.0006 < 0.01, which is also within the
1% confidence interval. The above two points prove that the sequence after the first order difference is
stable, and that it satisfies the conditions of the next ARIMA model operation. That is, d = 1.

Next, the correlation coefficient map of the sequence after the difference is plotted. According to
Figure 7, the case of the truncation determines the order of the autocorrelation coefficient and the partial
autocorrelation coefficient. According to the relevant statistical principle, the autocorrelation coefficient
graph represents the value of ‘q’, and the partial autocorrelation coefficient graph represents the value
of ‘p’. The specific model types are determined as follows. When the autocorrelation coefficient graph
is truncated and the autocorrelation graph is tailed, the model type is MA(q). When the autocorrelation
coefficient graph is tailed and the autocorrelation graph is truncated, the model type is AR(p). When
both are truncated, the model is ARMA(p,q). The autocorrelation coefficient map in Figure 7 suddenly
shrinks to zero after the fifth order. At the same time, the partial autocorrelation coefficient graph
suddenly shrinks to within two standard deviations after the fourth order. After repeated experiments,
it was finally determined that the autocorrelation coefficient graph was truncated after the fifth order,
and the partial autocorrelation coefficient graph was truncated after the fourth order. That is, p = 4,
q = 5.
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7 

Figure 7 
Figure 7. First-order difference results and correlation coefficient graph of MGM residual sequence.

Since the order has been determined, ARIMA (4, 1, 5) is the final model for predicting the
residual sequence. This model was run on the data in Figure 6 using SPSS software. After the
operation, the corrected error results were obtained. Figure 8 compares the error curves before and
after correction. Among them, the red curve is the corrected error, and the blue is the original error.
As can be seen from the comparison chart, the red curve is usually more gradual than the blue curve.
In other words, the correction effect of the ARIMA model does work.
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Figure 8. A comparison of the MGM residuals before and after ARIMA correction.

After the preliminary prediction of the MGM model and the residual correction of the ARIMA
model, the prediction results of the MGM-ARIMA model are shown in Table 4. In addition, Table 4
compares the ture values at the same time. By calculating the error formula, the relative error of the
MGM-ARIMA model is maintained at about 1% on average.
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Table 4. Comparison of prediction results of MGM-ARIMA model with real values.

Year Forecasting Value True Value Relative Error

1995 140.2935 140.2935 0.000%
1996 144.1402 144.3235 0.127%
1997 152.7814 150.9822 1.192%
1998 153.4794 156.0052 1.619%
1999 152.0138 154.5413 1.635%
2000 165.9502 164.3845 0.952%
2001 164.7521 165.7545 0.605%
2002 171.5114 173.1261 0.933%
2003 182.0662 181.3257 0.408%
2004 191.9705 192.9084 0.486%
2005 207.6826 211.1874 1.660%
2006 222.4951 219.2968 1.458%
2007 245.3305 240.0316 2.208%
2008 259.2062 259.2707 0.025%
2009 277.4428 280.8317 1.207%
2010 294.6178 290.3818 1.459%
2011 315.7451 304.6283 3.649%
2012 319.1577 329.9878 3.282%
2013 347.3834 352.7818 1.530%
2014 382.6215 387.5440 1.270%
2015 408.2039 395.2728 3.271%
2016 422.6563 405.6443 4.194%
2017 429.8295 423.9675 1.383%

3.4. The Application of Combined BP-ARIMA Model in Forecasting India’s Coal Consumption

Based on Section 3.2, the combined BP-ARIMA uses ARIMA model to correct the predicted
residuals of BP model. Subtracting the predicted values in Table 3 from the true values yields BP
model’s residual sequence. Figure 9 depicts the trend of the residual sequence, and it is clear that this
sequence is unstable.
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Figure 9. The prediction error derived from the BP model.

In order to smooth this residual sequence, it is necessary to implement the associated differential
processing. Figure 10 shows the results of the first order difference of the residual sequence. As can be
seen from the values in the figure, the t-statistic is less than 5% and greater than 1%. Therefore, a 95%
confidence interval has been passed. This proves that the residual sequence is stationary after the first
order difference and d = 1.
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10 

Figure 10 

Figure 10. First-order difference results and correlation coefficient graph of BP residual sequence.

According to the judgment principle of ARIMA model parameters [38], a correlation diagram
of the stationary sequence can be used to determine the values of ‘p’ and ‘q’. The autocorrelation
coefficient graph in Figure 10 is suddenly censored around the sixth order. At the same time, the partial
autocorrelation coefficient graph is truncated after the 1st order. After repeated verification, it is finally
confirmed that the model with p = 1 and q = 6 has the highest accuracy.

Combine the BP prediction values in Table 3 with the ARIMA residual values run by the software.
The predicted values of the BP-ARIMA model are shown in Table 5. The relative error (a measure of
prediction accuracy) is also listed in the table after comparison with actual values.

Table 5. Comparison of prediction results of BP-ARIMA model with real values.

Year Forecasting Value True Value Relative Error

1999 146.7572 154.5413 5.037%
2000 157.7795 164.3845 4.018%
2001 164.2612 165.7545 0.901%
2002 172.2478 173.1261 0.507%
2003 181.4857 181.3257 0.088%
2004 201.4915 192.9084 4.449%
2005 214.4971 211.1874 1.567%
2006 224.9321 219.2968 2.570%
2007 240.5080 240.0316 0.198%
2008 261.0766 259.2707 0.697%
2009 277.7586 280.8317 1.094%
2010 287.2930 290.3818 1.064%
2011 302.9228 304.6283 0.560%
2012 325.5480 329.9878 1.345%
2013 352.4511 352.7818 0.094%
2014 391.7261 387.5440 1.079%
2015 398.4748 395.2728 0.810%
2016 405.4416 405.6443 0.050%
2017 419.9612 423.9675 0.945%
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4. Analysis and Discussion

4.1. Comparison of Prediction Goodness of Four Models

The forecasting process and results of each single model has been clearly shown in the previous
section. However, by comparing the prediction results of the four models, the effects and differences
between the model and the model can be reflected. Figure 11 illustrates the proximity of the predicted
and actual values for each model using four sets of curves. This figure contains the following
information. First, the predictions of the four models are all close to the real data. This usually
reflects a good predictive effect. Second, by comparison with the naked eye, the combined model
modified by the ARIMA model is closer to the true value than the uncorrected single model.

If measured by numerical values, the mean relative error can be used as the main indicator for
judging the accuracy of prediction. Assume that the prediction accuracy is equal to 1 minus the relative
error. Figure 12 compares the prediction accuracy of the four models per year. From the results shown
in the figure, the minimum accuracy is higher than 90%. The accuracy is around 95%. The accuracy of
this series shows that the predictions of the four models are all perfect.

A simultaneous comparison of prediction errors for single and combined models can reflect the
relative prediction difference between the model and the model. If averaging the relative error of each
year, the mean absolute percent error (MAPE) of each model can be calculated and used to reflect the
predicted effect. Table 6 provides a comprehensive display of these values and reflects the following
information. First, all MAPE values are within 5, which proves that the prediction data of all models
is very reliable. Second, the average relative error of the combined model corrected by the ARIMA
model is smaller than that of the uncorrected single model. In other words, the combined model does
improve the single model. This means that the principle of error correction is feasible.
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Figure 11. Comparison of four model fitting effects.
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Table 6. The mean absolute percentage error of four models.

Type of Model MAPE Type of Model MAPE

MGM 2.28% BP 1.53%
MGM-ARIMA 1.50%

√
BP-ARIMA 1.42%

√

4.2. Forecasting Results of India’s Coal Consumption Period 2018–2030

The fitting phase is used to test the prediction error. The forecasting phase will be used to provide
an outlook for future coal development. Table 7 summarizes the forecast data for the next 2018–2030.
From the data shown in Table 7, although the results given by different models are different, the coal
consumption in India still shows a clear upward trend in the future.

Table 7. Future predictions obtained by the above four models.

Year MGM BP MGM-ARIMA BP-ARIMA

2018 433.968 426.264 449.667 428.918
2019 449.372 450.350 457.491 453.022
2020 464.568 451.690 443.763 437.731
2021 478.276 479.591 460.390 470.885
2022 494.675 479.698 480.468 462.969
2023 510.219 508.512 515.785 493.949
2024 526.441 509.129 523.187 497.852
2025 543.507 528.979 527.645 527.389
2026 560.707 539.927 541.423 534.732
2027 578.673 535.765 558.826 531.436
2028 597.185 559.112 592.722 554.876
2029 616.113 537.763 602.183 534.165
2030 635.731 542.302 620.357 539.110

On the one hand, in terms of increments, in 2030, India’s coal consumption will increase by
150 million tons of oil equivalent compared to 2017. On the other, in terms of growth rate, India’s coal
consumption will grow at an annual rate of 2.5% over the period of 2018–2030. This result is consistent
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with the future trend of Indian coal, as calculated by the International Energy Agency. According to
the forecast of the International Energy Agency, coal consumption in India will grow at an annual
rate of 3.9% in the future [47]. The growth rate predicted by this study is smaller than the value of the
International Energy Agency. The reason for this difference is that India does not take into account the
use of renewable energy in the future.

5. Conclusions

This study used a variety of models to fit the coal consumption of India during the period
1995–2017. After calculating the average relative error, the accuracy indicates that all four models are
suitable for the prediction work done in this study. On this basis, the study used these four models
to predict coal consumption in India from 2018–2030. Over all, this study has drawn the following
conclusions in total.

(1) After predicting two single models in the fitting stage, the average relative errors of the MGM
and BP models were 2.28% and 1.53%, respectively, compared with the actual values.

(2) Based on two single models of MGM and BP, the ARIMA correction principle was added to
the development of the combined model. The MGM-ARIMA and BP-ARIMA models were
developed and derived.

(3) After the fitting stage is calculated, the average relative errors of the two combined models of
MGM-ARIMA and BP-ARIMA are 1.50% and 1.42%, respectively. Comparing these two errors
with 2.28% and 1.53%, this study found that the average relative error of each combined model is
smaller than that of each single model. This proves that the combined model has an improved
effect on a single model.

(4) The study also applied the MGM, BP, MGM-ARIMA and BP-ARIMA models to predict coal
consumption in India in the period from 2018–2030. The forecast results prove that India’s coal
consumption will continue to grow at an average annual rate of 2.5%.
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