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Abstract: With the rapid development of industry, problems for the ecological environment are
increasing day by day, among which carbon pollution is particularly serious. Product carbon emission
accounting is the core of sustainable green design. In this paper, the beer fermentation cylinder is taken
as an example for low carbon design to get the best combination of design parameters when the carbon
emission is the smallest. The life cycle assessment method is used to calculate the carbon footprint of
products. In order to analyse the uncertainty and sensitivity of the method, an uncertainty analysis
method using data quality characteristics as input of Monte Carlo is proposed. Sensitivity analysis is
carried out by multivariate statistical regression and Extended Fourier Amplitude Sensitivity Test
(EFAST). The system boundary of fermentation cylinder is determined and the carbon emissions
of life cycle are calculated. The quality characteristics of life cycle inventory data (LCI) data are
analysed and Monte Carlo simulation is carried out to quantify the uncertainty of LCI. EFAST is used
to calculate the sensitivity of LCI and the results are compared with those of multivariate statistical
regression to verify the feasibility of the method. Finally, response surface methodology (RSM) is
used to optimize the design of parameters. It provides guidance for the establishment of product
carbon emission model and low carbon design.

Keywords: carbon footprint; LCA; uncertainty analysis; sensitivity analysis; fermentation cylinder

1. Introduction

Since the beginning of the 21st century, with the progress of society and the rapid development of
industry, a series of environmental problems have been brought about, especially carbon emissions.
“Carbon Footprint” is a clear method and technology to determine and measure the carbon equivalent
emissions of total greenhouse gas emissions in the supply chain process steps of each product or
activity [1]. Most scholars use LCA method to calculate this value [2]. LCA strictly adheres to ISO14010,
standards which provide the principles and scope of life cycle assessment and some methodological
requirements for LCA research [3]. But LCA method also has some shortcomings [4], among which
uncertainty is the main problem affecting the calculation results of carbon footprint, especially the
input list. As the original calculation data, due to the uncertainty of data time, source, technology and
other related factors, the calculation results bring certain errors.

At present, domestic and foreign scholars have made exploratory research on calculating carbon
footprint of products based on LCA. Scholars Heijungs [5] proposed LCI model based on matrix
and process and determined the propagation effect of multi-parameter uncertain fuzzy This is the
name of a Dutch authorinput. Sugiyama [6] used standard statistics to analyse the uncertainty of
industrial LCL database. Zhu [7] used linear regression to analyse the inventory data and got the
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influence of uncertainty on the final results and validated it with dishwasher as an example. Huang [8]
made a quantitative evaluation and proposed to control the data quality of LCA by the CLCD. She
conducted two simulation tests and then got the uncertainty of inventory data by Monte Carlo.
Through sensitivity analysis, she got the key data with high sensitivity. Chen [9] established the
analysis model of sensitivity and uncertainty of DQI-Monte Carlo and analysed the quality of carbon
footprint data. She selected the key data affecting the reliability of the evaluation results and put
forward suggestions to improve the quality of the data, optimized them and reduced the uncertainty
of the carbon footprint evaluation results. Domestic and foreign scholars have little research on the
carbon footprint of beer fermentation equipment. Cimini [10] analysed the carbon footprint of beer
with different packaging specifications in the industrial production process and its impact on the
environment and analysed the sensitivity of basic data. Alistair [11] simulated and optimized the
fermentation process of beer and realized the model calculation of industrial beer fermentation process.
Yang [12] calculates the carbon footprint of domestic beer from raw materials, factory production,
packaging and other aspects by life cycle assessment, which lays the foundation for establishing the
calculation model for the beer carbon footprint. Gao [13] systematically analysed the process of beer
brewing process and carbon equivalent emissions from auxiliary materials, utilities, sewage treatment
and internal logistics and obtained carbon equivalent emissions from beer production, packaging
and transportation. However, the quantitative values of uncertainty and sensitivity of LCI have not
been obtained from the above studies and little research has been done on the carbon footprint of beer
fermentation equipment.

This paper makes up for the shortcomings of previous studies based on the above research. Firstly,
the uncertainty and sensitivity of LCI are quantified and the data quality characteristics of LCI are
also analysed. Then the analysis results are used as Monte Carlo input for simulation experiments.
Meanwhile, multivariate statistical regression and EFAST methods are used for sensitivity analysis
to obtain highly sensitive variables. In order to realize the low-carbon design of beer fermentation
cylinder and analyse the influence of design parameters on the carbon footprint, the RSM method is
used to carry out parameter optimization test and analysis and the optimal combination of design
parameters of the beer fermentation cylinder with the smallest carbon footprint is obtained.

2. Carbon Footprint Analysis of Beer Fermentation Cylinder

2.1. The Calculating Process of Carbon Footprint

Carbon footprint of products refers to carbon equivalent emissions from raw material acquisition
to the end of life throughout the life cycle [14]. The system boundary of beer fermentation cylinder
is shown in Figure 1. Other smaller parts have little influence on the calculation results of carbon
footprint, which can be neglected [15]. The 25-year service life can be selected as the functional unit
for calculating the carbon footprint of beer fermentation cylinder. Since the energy consumption of
beer fermentation stage cannot be distinguished from that of other stages, the energy consumption of
fermentation cylinder accessories is taken as the basis for calculating carbon footprint.

2.2. Analysis of Carbon Footprint Calculation Results

Based on the field survey and literature collection, the carbon equivalent emission factor and the
LCI of beer fermentation cylinder are obtained as shown in Table 1.

In this paper, LCA method is used to calculate the carbon footprint of products. PAS2050 is used
as the calculation standard of carbon footprint. The raw material and energy consumption of the
product, the direct emission of greenhouse gases in the manufacturing process and other factors are
taken into comprehensive consideration. The raw material and energy acquisition, manufacturing,
transportation, use, recycling and treatment stages of the product are quantitatively analysed and the
carbon equivalent emission calculation formula of each stage is established.
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Figure 1. Boundary diagram of fermentation cylinder system. 
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Figure 1. Boundary diagram of fermentation cylinder system.

Table 1. List of fermentation cylinder attachment data.

Tool Power Other The Attachment Power

Inverter welding
machine 4800 w Suitable electrode ϕ1.6-ϕ3.2 motor 1.5 w

The dryer 4–6 kw Control the temperature + 5 − 250 Yeast pump motor 2.2 kw
Air compressor 3300 w Displacement 300 L/min Feed pump motor 18.5 w

Polishing machine 3 kw Speed: 2800/min Mechanical and
electrical filter 3 kw

Cutting machine 7 kw No-load loss 40 w Additive motor 80 w
Rolling machine 5.5 kw Auxiliary motor power 3 kw Cold output pump 22 w

Vacuum pump 190 Frequency 50 Hz CO2 filter press
with motor 7.5 w

The carbon footprint of the raw material acquisition stage is expressed as GM, suppose that n kinds
of raw materials and m kinds of energy are consumed in this stage, then the carbon footprint model
of this stage is shown in formula (1). Since in the material recovery stage, the material recovery and
utilization can offset part of the carbon equivalent emissions in this stage, so the material utilization
rate σij is defined.

GM =
∑n

i=1 Mi ×MEFi + ∑m
j=1 Ej × EFj

σij
(1)

In the formula, Mi is the physical quantity of class i material, Ej is the physical quantity of class j
energy, MEFi is the production emission factor of class i material and EFj is the production emission
factor of class j energy.

The carbon footprint in the manufacturing and assembly stage is expressed as GP, which is mainly
composed of the energy consumption in the processing process and the direct emission of greenhouse
gases. It is assumed that the product consumes n kinds of energy and emits m kinds of greenhouse
gases in the manufacturing and assembly process. The carbon footprint model of this stage is shown
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in formula (2). Similarly, in the material recovery stage, the material recovery method has an offset
effect on the carbon footprint of this stage.

GP =
∑n

i=1 Ei · EFi + ∑m
j=1 Oj · GWPj

σij
(2)

In the formula, Ei is the physical quantity of class i energy consumed in the process of
manufacturing and assembly, Oj is the physical quantity of class j greenhouse gas emitted, EFi is the
energy emission factor and GWP is the global warming potential.

The carbon footprint of transportation stage is expressed as GT, l types of transport vehicles
produce different carbon equivalent emissions and the determinants of carbon equivalent emissions
are the choice of transport vehicles, load and transport distance. The final carbon footprint calculation
model of this stage is shown in formula (3).

GT =
l

∑
t=1

Mt × Dt × EFt +
l

∑
t=1

Ot × GWPt (3)

In the formula, Mt is the load of the transport product, Dt is the transport distance, EFt is the
carbon equivalent emission factor of the transport product and Ot is the direct greenhouse gas emission.

The carbon footprint in the use stage is expressed as GU and this process is mainly the energy
consumption and the direct emission of greenhouse gases in the use of the product. The carbon
footprint in the use stage is proportional to the actual daily power consumption E, the running time Tw

and the local power emission factor EF. Similarly, another part of carbon equivalent emission comes
from the direct emission of greenhouse gases in the use process. The carbon footprint calculation
model of this stage is shown in formula (4).

GU = E·Tw·365·EF +
m

∑
j=1

Oj·GWPj (4)

The carbon footprint of the recovery processing stage is expressed as GR, which mainly considers
the recovery of r kinds of materials and energy consumption. The material recovery can make up the
material consumption in the raw material acquisition stage, so the carbon footprint calculation model
is shown in formula (5).

GR =
r

∑
i=1

Ei·EFi −
r

∑
j=1

Mj·MEFj (5)

In conclusion, the quantitative model of product carbon footprint can be expressed as (6):

GSUM = GM + GP + GT + GU + GR (6)

The calculation results are shown in Table 2. It can be seen that the carbon equivalent emission in
the use stage of the fermentation cylinder is the largest, followed by the raw material acquisition stage,
manufacturing and assembly stage and transportation stage.

Table 2. Carbon footprint calculation results of beer fermentation cylinder.

Life Cycle Stage

Raw Material
Acquisition

Stage
GM

Manufacturing
and Assembly

Phases
GP

Trans-Port
Phase

GT

Use Phase
GU

Recovery and
Processing

Stage
GR

Total Carbon Footprint
per Unit Fermentation

Cylinder
Gsum

Carbon footprint
calculation

results/(kgCO2e)
1999.156 793.203 723.996 10,329.696 −1161.233 12,640.098
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3. Uncertainty Analysis of LCA

Product life cycle data spans the whole process from raw materials to end of life. The data is huge,
widely distributed, complex and difficult to collect. The results of carbon equivalent emissions directly
depend on the quality of input data, so it is necessary to analyse the uncertainty and sensitivity of LCI.

3.1. Uncertainty Analysis of Data List

According to ISO 14040, data quality should include the following aspects: integrity, applicability,
deviation, data distribution, consistency, accuracy of expert review, identification of anomalies,
uncertainty, data collection methods and limitations [16]. This paper evaluates the inventory data by
five indexes: data integrity, reliability, time, technical relevance and geographical relevance, each index
is divided into levels 1 to 5 quantitative, quantitative formula is (7).

R =
z−minzi

maxzi −minzi
× 100% (7)

In the formula, z is the accumulative sum of the index score value of each quality of data, minzi is
the accumulative sum of the minimum score value of data quality and maxzi is the accumulative sum
of the maximum score value of data quality.

According to the evaluation of formula (7), the data quality is within the range of (0,1) and the
data quality is converted into the form of probability and statistical distribution as a random variable.
In probability density function, the distribution of β has endpoint parameters a and b and the endpoint
parameters limit the range of values.

There are also two shape parameters α and β that determine where the probability may occur.
The shape parameters and range of different data distribution can simulate the function similar to the
distribution, so the distribution is adopted and the probability distribution of data quality indicators is
shown in Table 3.

Table 3. Probability distribution of data quality indicators.

Data Quality
Fraction

Comprehensive Data
Quality Index Values

Shape Parameter Range

a b α β

0 ≤ R ≤ 12.5 1 5 5 −10 +10
12.5 ≤ R ≤ 25 1.5 4 4 −15 +15
25 ≤ R ≤ 37.5 2 3 3 −20 +20
37.5 ≤ R ≤ 50 2.5 2 2 −25 +25
50 ≤ R ≤ 62.5 3 2 2 −30 +30
62.5 ≤ R ≤ 75 3.5 2 2 −35 +35
75 ≤ R ≤ 87.5 4 1 1 −40 +40

87.5 ≤ R ≤ 100 4.5 1 1 −45 +45
100 5 12 1 −50 +50

According to the characteristics of fermentation cylinder LCI, five indicators are selected as the
characteristics of data quality. They are integrity, reliability, time, geographical location and technical
relevance. the listing data is scored on a scale of 1–5. According to Table 3, the data quality of material
consumption, energy consumption and corresponding carbon equivalent emissions in the whole life
cycle of beer fermentation cylinder can be obtained, such as Table 4.
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Table 4. Data quality of fermentation cylinder life cycle list.

List Data Variable Data Quality
Indicator Value

Composite
Data Quality

Indicator Value
(α,β) R Value Range

Material
consumption

Stainless
steel X1 (2,1,2,3,3) 2 (3,3) 30% (−20%,+20%)

Paint X2 (2,4,2,3,3) 2.5 (2,2) 45% (−25%,+25%)
Welding

wire X3 (2,4,2,3,3) 2.4 (2,2) 45% (−25%,+25%)

The energy
consumption

Electricity X4 (3,4,1,2,2) 2 (3,3) 35% (−20%,+20%)
Water X5 (3,5,1,2,1) 2 (3,3) 35% (−20%,+25%)

Carbon
equivalent
emissions

Stainless
steel X6 (2,1,3,5,2) 2.5 (2,2) 40% (−25%,+20%)

Paint X7 (2,1,3,5,2) 2.5 (2,2) 40% (−25%,+20%)
Welding

wire X8 (2,1,3,4,2) 2 (3,3) 35% (−20%,+20%)

Electricity X9 (1,2,2,2,1) 1.5 (4,4) 15% (−15%,+15%)
water X10 (1,2,2,2,1) 1.5 (4,4) 15% (−15%,+15%)

Monte-Carlo simulation is carried out by using Crystal-Ball software. The uncertainty of 10
variables X1, X2, X3, X4, X5, X6, X7, X8, X9, X10 is analyzed. The simulation results are shown in
Table 5.

Table 5. Uncertainty analysis results of fermentation cylinder data list.

Variable Mean
Standard Error Kurtosis Coefficient

of Variation Variance Skewness The Standard
Deviation

X1 0.01 4.67 0.0057 0 −2.64 0.03
X2 0.01 1.57 0.0014 0 −0.139 0.02
X3 0.01 1.63 0.0049 0 0.3244 0.06
X4 0.01 2.28 0.0039 0 0.0831 0.04
X5 0.01 2.61 0.0019 0 0.3129 0.05
X6 0.01 3.12 0.0005 0 0.4313 0.05
X7 0.01 3.27 0.0017 0 0.2617 0.03
X8 0.01 4.91 0.0006 0 −0.3402 0.04
X9 0.01 3.06 0.0012 0 0.291 0.04
X10 0.01 2.51 0.0009 0 0.5421 0.03

The mean standard error, kurtosis, coefficient of variation, variance, skewness and standard
deviation of each variable are presented from the Table 5 and coefficient of variation is an important
index reflecting the uncertainty of variables. It can be seen that the coefficient of variation of X1, X3

and X4 change obvious and the uncertainty is relatively large. The three variables correspond to the
raw material stainless steel, welding wire and electric energy respectively. In the whole life cycle of
beer fermentation cylinder, material consumption and energy consumption are relatively large, which
have a great impact on the carbon footprint calculation results. The error of these factors should be
taken into account when establishing the carbon equivalent emission model so as to calculate the
carbon footprint of beer fermentation cylinder more accurately.

3.2. Sensitivity Analysis of Data Lists

Sensitivity analysis is a method to quantitatively describe the degree to which the output factors
of the model are affected by the input factors [17].

In the process of calculating the carbon footprint of products, there are many data affecting the
result. Multivariate statistical regression method [18] is adopted to calculate the influence degree
of each input data on the calculation result of carbon footprint. The sensitivity index is calculated
with EFAST method [19] and compared with the results of multivariate statistical regression analysis
to verify the feasibility of the method. Taking the above beer fermentation cylinder list data as an
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example, 20 groups of data are extracted for stepwise regression analysis and the regression equation
is calculated by SPSS:

Y = 132.17 + 95.036X1 + 6.549X3 + 87.17X4 + 61.223X5 + 35.059X6 + 0.512X9 + 0.013X10

A significant level is α = 0.05 and stepwise regression analysis are shown in Table 6.

Table 6. Regression coefficient table.

Factors Unstandardized
Coefficients

Standardized
Coefficient t p

constant 132.17 2.255
X1 95.036 0.639 56.711 0.891
X3 6.549 0.325 13.336 0.456
X4 87.17 0.216 10.118 0.370
X5 61.223 0.069 6.549 0.275
X6 35.059 0.015 1.124 0.042
X9 0.512 0.018 2.217 0.131

X1− 0.013 0.042 4.649 0.275

From the Table 6, it can be seen that: X1, X3, X4, X5, X6, X8, X9 and X10 all have significant
influence on Y and the sensitivity is relatively large. 8 factors are included in the model and the partial
regression sum of squares of these factors accounted for a larger proportion compared with other
factors. The ranking is: X1 > X4 > X5 > X6 > X9 > X3 > X10 > X8.

EFAST is a global sensitivity analysis method based on variance decomposition. The model y =
f(x1, x2 . . . , xn) is converted into a function y = f(s) and the Fourier transform on f(s):

xi = 0.5 +
arcsin[sin](ωis + ϕi)

π
, s ∈ [−π,π], ωi(i = 1, 2 . . . , m) (8)

y = f(s) =
∞

∑
i=∞

[Ai cos(is) + Bi sin(is)] (9)

In the formula, i is the Fourier transform parameter, Ai and Bi is the Fourier amplitude:

Ai =
1

Ns

Ni

∑
k=1

f (sk) cos(ωisk) (10)

Bi =
1

Ns

Ni

∑
k=1

f (sk)SIN(ωisk) (11)

In the formula, Ns is the sample number, i ∈ Z =
{
−NS−1

2 , . . . ,−1, 0, 1, . . . , NS−1
2

}
. The spectrum

of Fourier series is defined as ∆i = Ai + Bi, the frequency ωi is calculated, the model output variance
Vi caused by the change of parameter xi can be obtained:

Vi = 2
+∞

∑
i=1

∆iωi (12)

The total variance of the model V(Y) results can be decomposed into:

VY =
m

∑
i=1

Vi + ∑
1≤i≤j≤m

Vij + ∑
1≤i≤j≤m

V1,2,...,m (13)
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In the formula, Vij, V1,2,...,m is the variance of the interaction of m parameter. The direct
contribution of parameters xi to the total variance of the model output can be expressed by the
first-order sensitivity index Si.

Si =
Vi

V(Y)
(14)

The total sensitivity index STi is:

STi =
VY−Vi

V(Y)
(15)

The EFAST method is used to calculate the sensitivity index of each variable. The results of
MATLAB programming are shown in Table 7.

Table 7. Sensitivity coefficients of variables in inventory data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0.9524 0.086 0.2297 0.7259 0.7122 0.5781 0.0570 0.6627 0.4769 0.1521

According to the Table 7, the first-order sensitivity coefficient of each parameter is: S1 > S4 >

S5 > S6 > S9 > S3 > S10 > S8 > S2 > S7, the results of the three variables with higher sensitivity
are the same as those of the multivariate statistical regression method, which proves the feasibility of
the method.

4. Optimization Design of Fermentation Cylinder Design Parameters

4.1. Experiment Design of Fermentation Cylinder Parameter Optimization

In the process of calculating the carbon footprint of products mentioned above, the carbon
equivalent emissions mainly comes from the material consumption and energy consumption at each
stage. In the raw material acquisition stage, the fermentation cylinder material consumption mainly
depends on the design parameters: ratio of diameter and height, cone angle, wall thickness and
material density. Based on industry standards and the existing literature [20], the ratio of diameter
and height of the fermentation cylinder ranges from 1:1.5 to 1:6 (0.17 to 0.67), the scope of cone angle
from 60◦ to 90◦, the maximum material density of the stainless steel is 8.03 t/m3, the minimum value
is 7.5 t/m3 and the wall thickness ranges from 6 mm to 12 mm. Different design parameters result in
different fermentation cylinder quality, which indirectly leads to different carbon footprint. The design
parameters of the fermentation cylinder are optimized to minimize the carbon equivalent emission in
the raw material acquisition stage.

In this paper, Box-Behnken of RSM method is used for experimental design and the relationship
between the parameters is analysed. The quadratic polynomial equation obtained by the least square
fitting is shown in formula (16).

Y = β0 +
n

∑
i=1

βiXi +
n−1

∑
i = 1
i < j

n

∑
j=2

βijXiXj +
n

∑
i=1

βiiX2
i + ε (16)

Xn is the independent variable, β0, βi, βii and βij are the coefficients of intercept, linear, quadratic
and interactive terms, n is the number of independent variables and ε is the error of variance.

4.2. Regression Model of Fermentation Cylinder Parameters

The carbon footprint at the raw material acquisition stage obtained by the above calculation
is taken as the response value for the experimental design and the Design Expert 8.0.5 software
(Stat-Ease, Inc, Minneapolis, American) is used for analysis. The regression formula of carbon footprint
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of fermentation cylinders at the stage of raw material production with design parameters A (ratio of
diameter and height), B (cone angle), C (thickness) and D (material density) is obtained as follows:

Y = 1811.768+ 9.482×A + 36.748× B + 17.860×C + 58.577×D + 26.963×AB
−40.678×AC + 3.620×AD + 15.153× BC + 87.270× BD− 29.005×CD
−38.292× A2 − 116.850× B2 + 3.338× C2 − 112.257× D2

The coefficients of interaction AB, AD, BC and BD are positive, AC and CD are negative. It shows
that the interaction between A with B, D on output results is the synergistic effect, while the interaction
between A with C and C with D on output results is an antagonistic effect.

The results of the confidence analysis of the quadratic regression model are shown in Table 8.
The correlation coefficient is 92.90% and correlation coefficients for calibration is 85.80% and the
variation coefficient is 4.89% < 10%. The signal to noise ratio is 5.882 > 4, indicating that the correlation
between the predicted value and the experimental value was good and the reliability was high.

Table 8. Results of model reliability analysis.

Standard
Deviation Mean Value Coefficient of

Variation/%
Correlation
Coefficient

Correlation
Coefficients for

Calibration

Prediction
Correlation
Coefficient

SNR

83.28 1705.50 4.89 0.9290 0.8580 −0.0371 5.882

Table 9 is the variance analysis of carbon footprint in raw material production stage of fermentation
cylinder. Model F value is 2.69, Pro > F is less than 0.05. It shows that the model has high reliability.
The model is significant in 95% confidence interval. It is suitable to analyse the influence of fermentation
cylinder design parameters on carbon footprint in raw material acquisition stage. According to the
analysis, A, D and D2 are significant influence factors and the rest have no significant influence on
the model. The influence of factors on the response value is A > D > B > C; The order of impact of the
interaction terms is: BD > AD > AC > AC > CD > BC; and the influence of the quadratic term is: D2

> A2 > B2 > C2. In conclusion, the ratio of diameter and height has the most significant effect on the
carbon footprint of the raw materials in the life cycle of the fermentation cylinder, followed by the
material density and wall thickness and the cone Angle was the least significant.

Table 9. Analysis of variance of quadratic regression model of carbon footprint response surface.

Item Sum of Squares Freedom Sum of
Mean Squares F Value Pro > F

The regression model 261,200 14 18,653.75 2.69 <0.05
Ratio of diameter and

height A 1078.82 1 1078.82 0.16 <0.05

Cone Angle B 16,205.28 1 16,205.28 2.34 0.1486
Wall thickness C 3827.76 1 3827.76 0.55 0.4698

Density D 41,174.71 1 41,174.71 5.94 <0.05
AB 2907.91 1 2907.91 0.42 0.5278
AC 6618.64 1 6618.64 0.95 0.3452
AD 52.42 1 52.42 0.0076 0.1320
BC 918.39 1 918.39 0.13 0.7214
BD 30,464.21 1 30,464.21 4.39 0.0547
CD 3365.16 1 3365.16 0.49 0.4975
A2 9510.95 1 9510.95 1.37 0.2611
B2 88,565.10 1 88,565.10 12.77 0.3228
C2 72.28 1 72.28 0.010 0.9201
D2 81,740.21 1 81,740.21 11.79 <0.05

residual 97,092.41 14 6935.17 2.69 0.0372
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4.3. Response Surface Analysis

The effects of diameter-height ratio, cone angle, wall thickness and material density of beer
fermentation cylinder on carbon footprint are shown in Figures 2–7. Figure 2 shows the effect of
diameter-height ratio and cone angle of beer fermentation cylinder and their interaction on carbon
equivalent emissions. When the cone angle is 75◦, the carbon equivalent emission in the initial stage
increases with the aspect ratio. When the ratio of diameter and height is 0.42 (about 1:2.4), the carbon
equivalent emission decreases with the increase of the two factors. Figure 3 shows the effect of the
aspect ratio, thickness and their interaction on carbon equivalent emissions. When the wall thickness
of fermentation cylinder is 9 mm, the carbon equivalent emission in the initial stage increases with the
aspect ratio. When the aspect ratio is 0.42 (about 1:2.4), the carbon equivalent emissions decrease as the
two factors increase. Figure 4 shows the effect of aspect ratio, material density and their interaction on
carbon equivalent emissions. When the material density is 7.77 t/m3, the carbon equivalent emissions
in the initial stage increase with the aspect ratio. When the aspect ratio is 0.42 (about 1:2.4), the carbon
equivalent emissions decrease as the two factors increase. Figure 5 shows the effect of cone angle and
thickness on carbon equivalent emissions. When the wall thickness is 9 mm, the carbon equivalent
emissions in the initial stage increase with the cone angle. When the cone angle is 75◦, the carbon
equivalent emissions decrease as the two factors increase. Figure 6 shows the effect of cone angle and
material density on carbon equivalent emissions. When the material density is 7.77 t/m3, the carbon
equivalent emissions in the initial stage increase with the cone angle. When the cone angle is 75◦,
the carbon equivalent emissions decrease as the two factors increase. Figure 7 shows the effect of wall
thickness and material density on carbon equivalent emissions. When the material density is 7.77 t/m3

the carbon equivalent emissions in the initial stage increase with the wall thickness. When the wall
thickness is 9 mm, the carbon equivalent emissions decreases as the two factors increase.

Response surface methodology is used to design and analyse the influence of parameter design
of beer fermentation cylinder on its carbon footprint and the optimal value of carbon equivalent
emissions is obtained. Therefore, the designed fermentation cylinder raw material acquisition stage
has the lowest carbon equivalent emissions of about 1650.00 kgCO2e, when the diameter ratio is
about 1:2.4, the cone angle is 75◦, the wall thickness is 9.00 mm and the material density is 7.77 t/m3.
However, according to industry standards, there is no stainless steel with material density of 7.77 t/m3.
So stainless steel with a material density of 7.76 t/m3 and a model of 4Cr13 is selected as the material of
the fermentation cylinder. Through the analysis of the parameter design of beer fermentation cylinder,
it is found that under the optimal combination of parameters, the carbon footprint of raw materials
required for fermentation cylinder’s whole life cycle is reduced by 349.16 kgCO2e compared with that
before optimization.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 15 
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5. Conclusions

In this paper, the LCA is used to calculate the carbon footprint of the product. The beer
fermentation cylinder is taken as an example, the system boundary is determined and the carbon
equivalent emissions from the raw material acquisition to the end of life stage are calculated. Due
to the uncertainty of the LCI, the error is caused to the calculation results. The quality of LCI data is
analysed to determine its probability distribution and then the results are simulated as Monte-Carlo
input function to obtain variables with greater uncertainty. EFAST is used for sensitivity analysis and
compared with multivariate statistical regression method, the sensitivity of data variables is obtained.
In order to realize the low-carbon design of fermentation cylinder, the influence of parameters on
carbon equivalent emissions is analysed. The optimum design of parameters is carried out by RSM.
When the diameter-height ratio of fermentation cylinder is about 1:2.4, the cone angle is 75◦, the wall
thickness is 9 mm and the material density is 7.77 t/m3, the minimum carbon equivalent emissions
of fermentation cylinder is obtained. It is 1650.00 kgCO2e, which is 349.16 kgCO2e less than before
optimization. With the development of the actual production and research of products, the neglected
problems in LCA have attracted more and more attention of scholars. These problems deserve our
in-depth discussion and further study on the basis of this paper.
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