
 

Sustainability 2019, 11, 652; doi:10.3390/su11030652 www.mdpi.com/journal/sustainability 

Article 

Short-Term Wind Speed Forecasting Based on 

Hybrid Variational Mode Decomposition and Least 

Squares Support Vector Machine Optimized by Bat 

Algorithm Model 

Qunli Wu 1,2 and Huaxing Lin 1,* 

1 Department of Economics and Management, North China Electric Power University, 689 Huadian Road, 

Baoding 071003, China; 51851220@ncepu.edu.cn  
2 Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power 

University, Beijing 102206, China 

* Correspondence: 2172218066@ncepu.edu.cn 

Received: 24 December 2018; Accepted: 23 January 2019; Published: 26 January 2019 

Abstract: With the integration of wind energy into electricity grids, wind speed forecasting plays 

an important role in energy generation planning, power grid integration and turbine maintenance 

scheduling. This study proposes a hybrid wind speed forecasting model to enhance prediction 

performance. Variational mode decomposition (VMD) was applied to decompose the original wind 

speed series into different sub-series with various frequencies. A least squares support vector 

machine (LSSVM) model with the pertinent parameters being optimized by a bat algorithm (BA) 

was established to forecast those sub-series extracted from VMD. The ultimate forecast of wind 

speed can be obtained by accumulating the prediction values of each sub-series. The results show 

that: (a) VMD-BA-LSSVM displays better capacity for the prediction of ultra short-term (15min)and 

short-term (1h) wind speed forecasting; (b) the proposed forecasting model was compared with 

wavelet decomposition (WD) and ensemble empirical mode decomposition (EEMD), and the results 

indicate that VMD has stronger decomposition ability than WD and EEMD, thus, significant 

improvements in forecasting accuracy were obtained with the proposed forecasting models 

compared with other forecasting methods. 

Keywords: Wind speed forecasting; variational mode decomposition (VMD); least squares support 

vector machine (LSSVM); bat algorithm (BA) 

1. Introduction 

Wind power has been recognized as one of the most major and efficient renewable energy and 

has been extensively applied throughout the world [1]. With the rapid development of wind power 

generation, wind speed forecasting has become a hot issue in the field of power generation research, 

due to its important role in energy generation planning, power grid integration and turbine 

maintenance scheduling [2]. For example, a 10% deviation in the expected wind speed leads to an 

approximate 30% deviation in the expected wind power generation because the power potential is 

proportional to the cubic power of the wind speed [3]. Therefore, it is of great importance to develop 

relatively accurate wind speed forecasting models. 

In the technical literature, the short-term wind speed forecasting methods can be classified into 

four categories: (a) the physical model; (b) the traditional statistical model; (c) the artificial intelligent 

(AI) model; and (d) the hybrid model [4]. 

The physical model relies on the information stated in the numerical weather forecast. [5]. This 

model was established with many complicated factors such as pressure, temperature, obstacles and 

roughness, which are usually difficult to utilize in practical applications [6]. The traditional statistical 
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model based on the mature statistical equations to obtain the potential evolution rule [7,8]. The most 

commonly used traditional statistical models for wind speed forecasting include the autoregressive 

model (AR) [9], autoregressive moving average (ARMA) [10] and autoregressive integrated moving 

average model (ARIMA) [11]. Liebl [12] proposed a new statistical perspective using a functional 

factor model for modeling and forecasting electricity spot prices that accounts for the merit order 

model. Statistical models have simple principles and high efficiencies. However, the prediction 

accuracy of low-order statistical models is relatively low, while high-order model parameters are 

tremendously difficult to obtain. As for the AI methods, artificial neural networks (ANN) [13], 

support vector regression (SVR) [14], regularized extreme learning machine (RELM) [15] and Least 

square support vector machines (LSSVM) [16] might be the most frequently used models for wind 

speed forecasting, and empirical analysis shows that they are superior to traditional linear models. 

Yeh [17] proposed a parameter-free simplified swarm optimization for ANN training for time-series 

prediction and demonstrated its robustness and efficiency. Santamaría-Bonfil et al. [18] employed the 

SVR model and their results showed that the proposed model was more accurate than the persistence 

and auto-regressive models in medium short-term wind speed and wind power forecasting. Zhou et 

al. [16] built a LSSVM based model for one-step ahead wind speed forecasting, and obtained 

relatively accurate results compared to the persistence approach. 

However, up until now, using only an artificial intelligence model does not provide satisfactory 

prediction accuracy due to the non-stationary nature of the original wind speed series for training 

the forecasting model [19]. To overcome this non-stationary problem and further improve the 

forecasting accuracy, many studies have proposed a hybrid model. One approach is to combine 

multiple intelligent algorithms to form a new hybrid model. The parameter optimization algorithms 

can improve the performance of the prediction algorithms by searching for the optimal parameters 

[20]. Amjady and Keynia [21] constructed a hybrid method composed of cascaded forecasters where 

each forecaster consists of a neural network (NN) and an evolutionary algorithms (EA). Wang et al. 

[22] proposed the LSSVM model whose parameters are tuned by an artificial intelligence (PSOSA) 

model, and it was built to make forecasts. Liu et al. [23] developed a hybrid model for wind speed 

forecasting, where the CSO algorithm was used to optimize the parameters of the SVM model. It is 

recognized that these heuristic optimization algorithms can search the global optimal and obtain the 

optimal parameters [24]. Another approach is to add signal decomposition techniques to the hybrid 

model, which aims to further decompose the non-linear wind speed time series into more stationary 

and regular subseries. The signal decomposition techniques used in wind speed prediction mainly 

include wavelet decomposition (WD), wavelet packet decomposition (WPD), empirical mode 

decomposition (EMD), ensemble empirical model decomposition (EEMD), and variational mode 

decomposition (VMD). Niu et al. [25] developed a hybrid model based on the WD-SVM optimized 

by a genetic algorithm (GA). The WD was applied to reduce the high-frequency components, the GA 

was incorporated into SVM for parameter optimization. The results indicated that proposed method 

is more efficient than a SVM-GA model without WT. Wang et al. [26] proposed a wind speed 

forecasting method based upon EEMD and an optimized BP neural network (GA-BP) for on-line 

short term (1 h) and ultra-short term (10 min) wind speed forecasting, and computational results have 

shown good performance of EEMD. Zhou et al. [27] employed a new decomposition-optimization 

model created by integrating VMD, the backtracking search algorithm (BSA), and RELM to enhance 

forecasting accuracy. Liu et al. [28] built up a model which applied both a WT and EMD 

decomposition method. Wang et al. [29] presented a hybrid model based on the FEEMD (fast 

ensemble empirical mode decomposition), VMD, BP and FA (firefly algorithm). The FEEMD was 

used to decompose the original series into several sub-series, while the VMD was used to further 

decompose high frequency sub-series. The results showed that the proposed model excelled 

compared to the FEEMD-FA-BP model and the VMD-FA-BP model. 

The application of signal processing technology in wind speed prediction enhances the 

prediction performance. WD has good time-frequency localization characteristics, but the 

decomposition effect depends on the choice of the basis function, and the adaptability is poor. 

Besides, there are some problems in EMD, such as endpoint effect and over envelope. EEMD is an 
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improved method of EMD, which reduces the phenomenon of mode aliasing. Recently, VMD, which 

is a new signal decomposition technology has been proposed by [30]. Compared with the recursive 

element screening mode of EMD and EEMD, VMD decomposes the signal into non-recursive and 

variational mode. It has been stated that VMD has a better theoretical foundation compared to the 

sequential iterative sifting of EMD. It was also demonstrated that VMD has some advantages in tone 

separation and is less sensitive to noise and sampling [31].  

The principal purpose of this study was to investigate a more accurate forecasting method for 

wind speed. A hybrid model based on VMD-bat algorithm (BA)-LSSVM was employed to forecast 

wind speed. Noticeably, in this work the two parameters of LSSVM were fine-tuned by the BA to 

ensure the generalization and the learning ability of LSSVM. In addition, different models (EEMD-

BA-LSSVM, WD-BA-LSSVM, BA-LSSVM, PSO-LSSVM and LSSVM) were developed for 

comparative analysis. The proposed model is composed of three steps: (a) VMD is adopted to 

decompose the raw wind speed series into a discrete number of components with different 

frequencies; (b) LSSVM optimized by BA is employed to forecast each component; (c) the ultimate 

forecast result of wind speed can be obtained by accumulating the prediction values of each 

components. 

The main contributions of this study are as follows: (a) VMD, as a competitive signal 

decomposition method to decompose the nonlinear features of the wind speed signals, is firstly 

combined with LSSVM optimized by BA to forecast wind speed; and (b) The proposed forecasting 

model was compared with EEMD-BA-LSSVM and WD-BA-LSSVM, and VMD was found to be more 

thorough and stable than WD and EEMD in the high frequency decomposition of wind speed series, 

which enhanced the accuracy of wind speed prediction to a certain extent. Few papers have 

compared and analyzed the application of various signal processing techniques in wind speed 

prediction. This paper fills the gap. 

The rest of this paper is organized as follows: Section 2 describes the modelling approaches. In 

Section 3 a hybrid model is constructed that is designed to forecast wind speed. Then, in Section 4 

the proposed model is examined by experimental and comparative analysis. Finally, Section 5 

provides some conclusions of the entire research. 

2. Methods  

The research methodology used in this paper includes: variational mode decomposition, 

ensemble empirical mode decomposition, wavelet decomposition, least squares support vector 

machine and the bat algorithm. A brief description of those methods is outlined as follows. 

2.1. Variational Mode Decomposition 

VMD was proposed by Dragomiretskiy and Zosso in 2014 [30], and it is a newly developed 

multi-resolution for non-recursive signal processing. The VMD can adaptively decompose a real-

valued signal �(�) into a discrete number of band-limited intrinsic mode function (BIMF) �� with 

specific sparsity properties. Each BIMF ��  is compact around a center pulsation ��  which is 

determined along with the process of decomposition and its bandwidth is estimated by using the �� 

Gaussian smoothness of the shifted signal. Thus, the process of decomposition is implemented by 

settling a constrained variational problem:  

⎩
⎪
⎨

⎪
⎧min �� ��� ���(�) +

�

��
� × ��(�)� �

��� �
�
�

�

��

���

�

�.�.� ��

�

���

= �(�)

  (1) 

Making use of both a quadratic penalty term and Lagrangian multipliers � , the above 

constrained problem can be converted to the unconstrained one which is easier to address. The 

augmented Lagrangian is described as follows: 
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where �  denotes the balancing parameter of the data-fidelity constraint. The alternate direction 

method of multipliers (ADMM) can be used to solve Equation (1). Therefore, it is implied that 

updating ��, �� and �� in two directions is conducive for realizing the analysis process of VMD, 

and the solutions of �� , �� and  �� can be calculated as follows: 

���
���(�) =

��(�) − ∑ ���
�(�) + ���(�)/2 ��� �

1 + 2 �(� − ��)
�

  (3) 
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�

∫ |���
���(�)|���

�
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���
���(�) = ���

�(�) + � ���(�) − ����
���(�)

�� �

�  (5) 

where ��(�),���
�(�),��(�) and ���

���(�) represent the Fourier transforms of �(�), and � denotes the 

number of iterations. 

The termination condition of the VMD algorithm is presented as follows: 

∑ ‖���
��� − ���

�‖�
�

�

‖���
�‖�

� < �  (6) 

where � is tolerance of convergence criterion.  

BIMF ��  can be obtained from the entire decomposition process for VMD according to the 

following steps: 

Step 1: Initialize parameters for VMD method including {��
�},{��

�}, and �� , and set iteration 

number � = 1 . 

Step 2: Calculate ���
���(�) and ��

��� using the Equations (3) and (4). 

Step 3: Update the Lagrangian multiplier �� in terms of Equation (5). 

Step 4: Given the tolerance of the convergence criterion � > 0, if the convergence condition of 

Equations (6) is satisfied, the iteration is stopped, otherwise � increases to � + 1  and returns to step 

2. Then, the final BIMF can be obtained. The main variables of VMD are listed in Table 1. 

Table 1. Main variables involved in variational mode decomposition (VMD). 

Variable Meaning Variable Meaning 

�(�) real-valued signal �� center pulsation 

�� band-limited intrinsic mode function � Lagrangian multipliers 

2.2. Ensemble Empirical Mode Decomposition 

EMD, originally proposed by Huang [32], is a powerful signal decomposition technology that 

aims to decompose complicated signals into several intrinsic mode function (IMF) components. 

However, sometimes EMD cannot correctly decompose the raw data sequences. These IMFs 

extracted by EMD have lost their physical meanings and weaken the regularity. Compared with 

EMD, EEMD has good performance in non-stationary signal decomposition. EEMD adds a white 

noise series to the raw signal �(�) to eliminate the mode mixing, obtaining the IMFs through the 

EMD procedures. The computation steps of the EEMD algorithm are described as follows: 

Step 1: Calculate ��(�) = �(�) + ��(�), where ��(�)(i =  1 ,2 ,3...,N) represent the random white 

Gaussian noise series. 
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Step 2: Decompose the series ��(�) using the EMD technology to obtain IMF modes ����
�  (�  =

 1 ,2 ,3...,� ). 

Step 3: Compute the mean of the corresponding series ����
� (�) as follows: 

���� (�)�����������=
1

�
�����

� (�)

�

���

  (7) 

Step 4: Repeat the above mean procedure to complete the process of EEMD. The decomposed 

results of the original signal series �(�) will be obtained as follows: 

�(�) = � ���� (�)�����������+

�

� ��

��(�)  (8) 

where ���� (�)����������� , (�  =  1 ,2 ,3...,�) are the IMFs decomposed by EEMD, ��(�) denotes the 

corresponding residue. The main variables of EEMD are listed in Table 2. 

Table 2. Main variables involved in ensemble empirical mode decomposition (EEMD). 

Variable Meaning Variable Meaning 

�(�) raw signal ��(�) residue 

 ����
�   intrinsic mode function ��(�) random white Gaussian noise series 

2.3. Wavelet Decomposition 

WD is a signal decomposition technique with more applications. The basic principle is to 

decompose the non-stationary discrete wind speed sequence �(�) into a high frequency detail 

sequence ���,��,… ,��� with different frequencies and a low frequency approximation sequence a� 

according to the multi-resolution idea proposed by Mallat [33]. � is the maximum number of 

decomposition layers. A 4-layer decomposition is usually performed using the db4 wavelet base. The 

decomposition process is: 

�
���� = �(��)

���� = �(��)
  (9) 

where ��, �� are the low frequency signal and high frequency signal, respectively, of the original 

signal at the resolution 2 ��, which are the components of the original signal on different adjacent 

frequency segments; H is the low pass filter; G is the high pass filter. The decomposition process 

utilizes two decimations so that each layer of the decomposition signal is half the pre-decomposition 

signal data, and two interpolation reconstructions are required to restore the signal length, as in 

equation (10). 

�
�� = (�∗)���

�� = (�∗)����∗��

  (10) 

�∗ and �∗ are the dual operators of H and G, respectively. After reconstructing �d �,��,… ,��� 

and a�, the detail sequence ��,��,… ,�� and the approximate sequence �� are obtained. The main 

variables of WD are listed in Table 3. 

Table 3. Main variables involved in wavelet decomposition (WD). 

Variable Meaning Variable Meaning 

�(�) raw signal �� approximate sequence 

�� detail sequence    

2.4. Least Squares Support Vector Machine 

The LSSVM, put forward by Suykens [34], is a variation of the standard support vector machine 

(SVM), adopting the loss function different from SVM and minimizing the square error. A quadratic 
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programming problem can be transformed into linear equations by replacing inequality constraints 

with equality constraints, greatly reducing the computational complexity. In the LSSVM model, for 

a given training sample set S = {(��,��)| �= 1 ,2 ,3,… ,�}, where �� is the ���  input of sample space 

������ , �� is the ���  output of sample space ������� , � is the size of the training sample. Then, the 

optimal decision function is framed by using the high dimensional feature space. The decision 

function can be expressed as follows: 

�(�) = ���(�) + �  (11) 

where �(�)  represents the nonlinear mapping function from input space to high dimensional 

feature space, � is weight, � is bias, and  �(�) is the prediction value. 

The structural risk minimization can be described as follows: 

R =
1

2
‖�‖� + �����   (12) 

where ‖�‖�  suggests the complex degree of the model, �  is the regularization parameter, 

controlling the degree of punishment beyond the error samples, ����  is the empirical risk function, 

the objective function of LSSVM is obtained as follows: 

minZ(�,�) =
1

2
‖�‖� + � ���

�

�

���

  (13) 

� .�.  �� = ��(��) + � + ��  �= 1 ,2 ,3,… ,�  

where �� is the error, the Lagrange function can be defined as follows: 

L(�,�,�,�) =
1

2
‖�‖� + � ���

�

�

���

− ���[��(��) + � + �� − ��]

�

���

  (14) 

where λ�(1 ,2 ,3,… ,�) are the Lagrange multipliers. 

According to the Karush-Kuhn-Tucker (KKT) conditions, Equation (11) is shown as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧ � − �����

�

�

���

= 0  

���

�

���

= 0,�� − ��� = 0 

  ��(��) + � + �� − �� = 0 

  (15) 

In the light of Equation (11), the optimization problem can be converted into the process of 

solving linear equations, which is presented as follows: 

�
0 ��

�  �+
1

�
  
��

�
�
�= �

0
�
�  (16) 

where �= [1 ,1 ,… ,1 ]�  is a � × 1  dimensional column vector, λ = [��,��,… ,��]
� , 

y = [��,��,… ,��]
� ， ��� = �(��)

������ = ����,��� , K  is the kernel function which satisfies the 

condition of Mercer, the final form of the LSSVM model emerges as follows: 

f(�) = ��� � ���,��� + � 

�

���

 (17) 

In this research, the radial basis function (RBF) is selected as the kernel function, as shown in 

Equation (18): 

����,��� = ����−
�������

�

2 ��
�  (18) 
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where �� is the parameter of the kernel function. 

Thus, there are two parameters, the regularization parameter � and the kernel parameter ��, 

determining the LSSVM model. In previous studies, experimental comparison, grid searching 

methods and cross validation methods were applied to optimize the two parameters, but they are all 

time-consuming and inefficient. Therefore, this paper adopts a BA to optimize the two parameters, 

which can enhance and further the adaptability of the model and effectively improve the forecasting 

accuracy. The main variables of the LSSVM are listed in Table 4. 

Table 4. Main variables involved in the least squares support vector machine (LSSVM). 

Variable Meaning Variable Meaning 

�(�) prediction value  ��  Error 

�� Input λ�  Lagrange multipliers 

��  Output ‖�‖� complex degree 

� regularization parameter �� parameter of the kernel function 

2.5. The Bat Algorithm (BA) 

The BA is a novel meta-heuristic algorithm inspired by the echolocation behavior of bats. The 

BA offers an excellent way to optimize and classify a selection of complicated problems [35]. The 

basic flow of the BA can be generalized by the pseudo code listed in Algorithm 1. 

Algorithm 1. Pseudo code of the Bat Algorithm. 

(1) Initialize the position of bat population �� = (1 ,2 ,… ,�) and �� 

(2) Initialize pulse frequency �� at ��, pulse rates ri and the loudness �� 

(3) While (t< maximum number of iterations) 

(4) Generate new solutions by adjusting frequency 

(5) Update the velocities and solutions 

(6) If (rand >  ��) 

(7) Select a solution among the best solutions 

(8) Generate a local solution around the selected best solution 

(9) End if 

(10) Generate a new solution by flying randomly 

(11) If (���� <  ��& �(��)  <  �(�∗)) 

(12) Accept the new solutions 

(13) Increase �� and reduce �� 

(14) End if 

(15) Rank the bats and find the current best �∗ 

(16) End while 

3. Wind Speed Forecasting Models 

In this section, the proposed model (VMD-BA-LSSVM) is described in detail. The flowchart of 

the presented model is given in Figure 1. The following three parts constitute the hybrid model. 
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Figure 1. The structure of the VMD-BA-LSSVM model. 

Part one: Data preprocessing. The VMD approach is employed to decompose the original wind 

speed series into a discrete number of components with different frequencies that are respectively 

denoted by BIMF1, BIMF2, …, BIMFN. The aim of this technique is to diminish the non-stationary 

character of the series for the high precision short-term forecast. 

Part two: Training and validation of the model. In this study, forecasting for each component is 

in the light of LSSVM-BA model, the basic steps can be described as follows: 

Step 1: Parameter setting 

The main parameters of BA are initial population size �, maximum iteration number � , original 

loudness � , pulse rate �, location vector �, and speed vector �. 

Step 2: Initialize population 

Initialize the bat population’s position, each bat location strategy is a component of (�,��), 

which can be defined as follows: 

� = ���� + ����(1 ,�) × (���� − �� ��)  (19) 

where the dimension of the bat population: d = 2. 

Step 3: Update parameters 

Calculate the fitness value of population, find the current optimal solution and update the pulse 

frequency, velocity and position of bats as follows: 

�� = ���� + (���� − ���� ) × �  (20) 

��
� = ��

��� + (��
� − �∗) × ��  (21) 

��
� = ��

��� + ��
�  (22) 
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where � denotes uniformly random numbers, � ∈ [0,1 ]; �� is the search pulse frequency of the bat �, 

�� ∈ [���� ,���� ]; ��
� and ��

��� are the velocities of the bat � at time � and � −  1 , respectively; further, 

��
� and ��

��� represent the location of the bat � at time � and � −  1 , respectively; �∗ is the present 

optimal solution for all bats. 

Step 4: Update loudness and pulse frequency 

Produce a uniformly random number ���� , if ���� >  �� , disturb the optimal strategy 

randomly and acquire a new strategy; if ���� <  �� and � (�)  >  � (�∗), then the new strategy can 

be accepted, the �� and �� of the bat are updated as follows: 

��
��� = ���

�  (23) 

��
��� = ��

�[1 − ���(− ��)]  (24) 

where � and � are constants. 

Step 5: Output the global optimal solution 

The current optimal solution can be obtained by relying on the rank of all fitness values of the 

bat population. Repeat the steps from Equation (20) to Equation (22) until the maximum iterations 

are completed and output the global optimal solution. Therefore, a wind speed forecasting model can 

be generated. In addition, the LSSVM approach is adopted to model the training set, and the mean 

square errors of the true values and forecasting values are adopted as the fitness functions of the BA. 

Then, the group of parameters of LSSVM is optimized by BA for the minimum fitness value. Finally, 

the LSSVM model with optimal parameters can be developed to predict the wind speed. 

Part three: Wind speed forecasting. In this part, the LSSVM approach with the parameters 

optimized by the BA is employed to predict each BIMF decomposed by VMD. Then, the ultimate 

forecast result of wind speed can be obtained by accumulating the prediction values of each BIMF.  

4. Experimental Results and Comparative Analysis 

Experimental results are analyzed in this section to illustrate the effectiveness of the proposed 

method in a comparative analysis. Case 1 utilizes the proposed method for ultra-short term (15 min) 

wind speed forecasting, and in Case 2, a short term (1 h) wind speed forecasting is discussed to verify 

the generalization ability of the model. 

4.1. Study Area and Data Set 

Two case studies are analyzed in this section to illustrate the effectiveness of the proposed 

method. The actual wind speed series of a real wind farm with installed capacity of 33.25 MW in 

Jiangsu Province of China were chosen as the research object. Fifteen-minute wind speed data from 

00:00 November 1, 2013 to 23:45 November 7, 2013 were chosen as the Case I study. One-hour wind 

speed data from 1:00 December 3, 2013 to 00:00 December 31, 2013 were chosen as the Case 2 study 

to discuss its generalization ability. In each Case, the 1st–576th observation and 577st–672th observations 

are respectively adopted as the training and test data. Training data corresponds to input � in 

Equation (1), the predicted value �(�) obtained in Equation (1) was compared with the test data. 

The original wind speed series for the two cases are shown in Figure 2. Table 5 demonstrates the 

descriptive statistics for the wind speed series. 
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Figure 2. Two original wind speed series. (a) Wind speed series for 15min; (b) Wind speed series for 

1h. 

Table 5. Descriptive statistics of wind speed series. 

Case Data set Statistics         

  Minimum 

(m/s) 

Maximum 

(m/s) 

Mean 

(m/s) 

Median 

(m/s) 

Standard Deviation 

(m/s) 

15 min Training data 0.11 8.8 4.278 4.35 1.978 
 Test data 1.85 7.73 5.016 5.335 1.455 

1 hour Training data 0 12.31 5.594 5.476 2.5 

  Test data 3.4 11.36 6.81 6.902 1.617 

4.2. Performance Criteria of Prediction Accuracy 

In this paper, the root mean square error (RMSE), mean absolute error (MAE) and mean absolute 

percentage error (MAPE) were employed as evaluation criteria to quantitatively assess the 

forecasting performance of the proposed model: 

���� = �
1

�
�(�� − ���)�
�

���

  (25) 

��� =
1

�
�|�� − ���|

�

���

  (26) 

���� =
1

�
��

�� − ���

��

� × 100%  

�

���

 (27) 

where �� is the actual data at �, and ���  is the corresponding predictive data. �= 1 ,2 ,… ,�. 

4.3. Original Wind Speed Series Decomposition Results 

In order to improve the forecasting performance of wind speed series, this paper firstly adopts 

signal decomposition technique to decompose the original wind speed series into several 

components, and the data decomposition results of these two wind speed series (15 min and 1 h) are 

listed in Figure 3 and Figure 4. Figure 3(a) and Figure 4(a) are wind speed sequences decomposed by 

VMD; it is obvious that each wind speed series is decomposed into 8 components, which are 

respectively denoted by BIMF1, BIMF2, …, BIMF8. α = 2000 and τ =  0.3 to ensure the fidelity of 

the data decomposition. For the comparative analysis, EEMD and WD were also used to decompose 

the wind speed series. The number of decompositions is automatically generated in the recursive 
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process with the decomposition process using EEMD, and wind speed series is decomposed into 8 

intrinsic mode functions (IMF) components and 1 residual (RES). The results of EEMD are shown in 

Figure 3(b) and Figure 4(b). Figure 3(c) and Figure 4(c) show the results of WD with 4-layer 

decomposition and reconstruction using db 4 wavelet base. The wind speed series are decomposed 

into an approximation component A1 and 4 detail components, which are denoted by D1, D2, D3, 

D4. 

Observing the component characteristics after signal decomposition, the components of VMD, 

EEMD and WD range in order from higher frequency to lower frequency. It is generally believed that 

the high frequency component is the random part of wind speed. Some lower frequency components 

have strong sinusoidal fluctuation characteristics and can be considered as periodic components of 

wind speed. The last low frequency part is the trend term of wind speed, which reflects the trend of 

the wind speed series. From Figure 3, we can see that the amplitude fluctuation of the high frequency 

component obtained by VMD is approximately between [−1,1]. The amplitude of the high frequency 

component of EEMD fluctuates greatly, and it ranges from [−2,2]. The fluctuation of the high 

frequency component of WD is the largest, which is [−5.5]. This shows that VMD decomposes the 

high frequency part more thoroughly than EEMD and WD. 

 

Figure 3. VMD, EEMD and WD for wind speed series for 15 min. (a) Wind speed sequences 

decomposed by VMD; (b) Wind speed sequences decomposed by EEMD; (c) Wind speed sequences 

decomposed by WD. 
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Figure 4. VMD, EEMD and WD for wind speed series for 1h. (a) Wind speed sequences decomposed 

by VMD; (b) Wind speed sequences decomposed by EEMD; (c) Wind speed sequences decomposed 

by WD. 

4.4. Parameter Settings 

Previous studies based on the LSSVM model for forecasting have indicated that the performance 

of the LSSVM approach depends on its parameters and the kernel function. The BA is a population 

intelligent optimization algorithm that is used to search the optimal parameters of LSSVM. In this 

paper, RBF was chosen as the kernel function of the LSSVM algorithm, which decreases the 

complexity of the model and improves the training speed. Thus, the regularization parameter � and 

kernel parameter �� can obtain the optimal values using the reliable, automatic searching ability of 

BA. The main parameters of the BA are listed in Table 6. Table 7 shows the optimal parameters (�,��) 

of each sub-series in the LSSVM models obtained using the BA approach for VMD, EEMD, and WD. 

Table 6. Main parameters of the bat algorithm (BA). 

Parameters Values Parameters Values 

Initial population size 10 Minimum frequency 0 

Initial loudness 0.25 Maximum frequency 5 

Pulse rate 0.5 Max-iteration number 50 
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Table 7. The optimal parameters in the LSSVM model for VMD, EEMD and WD. 

VMD EEMD WD 

Components �   �� Components �   �� Components �   �� 

BIMF1 0.1898 14.8432 IMF1 0.098 9.5004 A1 0.1696 10.1624 

BIMF2 12.3084 1.0987 IMF2 0.2118 0.0239 D1 0.0014 8.1789 

BIMF3 1.3475 0.4603 IMF3 0.2942 0.0532 D2 13.6794 10.1307 

BIMF4 5.6934 2.2004 IMF4 24.51 2.4311 D3 4.5363 0.4641 

BIMF5 8.4486 4.7532 IMF5 1983.8 0.1635 D4 0.0092 11.1173 

BIMF6 0.811 6.835 IMF6 28.3727 0.303    

BIMF7 9.1664 0.8689 IMF7 80.9834 0.3148    

BIMF8 8.8698 9.4069 IMF8 3.87 0.5182    

   RES 0.728 0.0892    

4.5. Comparative Analysis of Different Models 

In order to demonstrate the advantages of the VMD-BA-LSSVM model, LSSVM, PSO-LSSVM, 

BA-LSSVM, WD-BA-LSSVM, EEMD-BA-LSSVM models are taken as the comparison models. 

4.5.1. Case 1: Ultra Short-Term (15 min) Wind Speed Forecasting 

The values for MAPE, MAE and RMSE of the proposed and various comparison models are 

presented in Table 8. Compared with other forecasting models, the proposed model displays better 

prediction of wind speed, and achieves good forecasting performance. This conclusion can be further 

verified by the results shown in Figure 5, which present the fit and absolute error between the 

predicted wind speed and actual wind speed. To further analyze the performance and differences 

between the models, the specific analysis is shown below. 

Table 8. Error comparison among different forecasting models in Case 1I. 

Case 1 Error 

Model           

LSSVM 
PSO-

LSSVM 

BA-

LSSVM 

WD-BA-

LSSVM 

EEMD-BA-

LSSVM 

VMD-BA-

LSSVM 

Fifteen 

Minutes 

MAPE 20.99% 19.69% 15.44% 14.93% 3.42% 1.03% 

MAE 0.92 0.8708 0.6873 0.6972 0.1538 0.0427 

RMSE 1.0866 0.9858 0.8764 0.8094 0.2035 0.0543 

(1) Optimal parameters. Figure 5 (a) (b) (c) shows that the prediction accuracy of BA-LSSVM and 

PSO-LSSVM is higher than LSSVM, and the predicted wind speed series is consistent with the 

variation trend of the original wind speed. It shows that the prediction accuracy of the LSSVM model 

can be improved by optimizing the kernel parameters. Table 8 shows that the prediction accuracy of 

BA-LSSVM is higher than that of PSO-LSSVM. It shows that the BA algorithm has better search ability 

and convergence speed than the PSO algorithm, and the prediction accuracy of LSSVM kernel 

parameters optimized by BA algorithm is higher. The improved LSSVM models have better 

performance than a single LSSVM approach. The primary reason for this may be that the process of 

automatic searching is added to the improved LSSVM model, which equips the LSSVM model with 

better learning and generalization ability so that it easily acquires the global optimal solution. 
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Figure 5. The forecasting results from various models (15 min). (a) LSSVM model; (b) PSO-LSSVM 

model; (c) BA-LSSVM model; (d) WD-BA-LSSVM model; (e) EEMD-BA-LSSVM; (f) VMD-BA-LSSVM. 

(2) Absolute error. From the error distribution in Figure 5, the error value of VMD-BA-LSSVM 

fluctuates very little near zero. Although EEMD-BA-LSSVM fluctuates less than WD-BA-LSSVM, BA-

LSSVM, PSO-LSSVM and LSSVM, and gets better prediction results, it was found that VMD-BA-

LSSVM has better follow up to the original wind speed series than EEMD-BA-LSSVM, and the error 

value is also the smallest among all the models. This fully shows that the proposed algorithm has 

high accuracy and great advantages in wind speed prediction.  

(3) Signal decomposition technique. From Table 8 and Figure 5(c–f), the prediction accuracy of 

VMD-BA-LSSVM, EEMD-BA-LSSVM and WD-BA-LSSVM based on signal decomposition is better 

than that of traditional prediction models without signal decomposition. It shows that signal 

decomposition technology can effectively reduce the non-stationary characteristics of wind speed 

series. Among the three signal decomposition models, VMD-BA-LSSVM is better than WD-BA-

LSSVM and EEMD-BA-LSSVM, and the prediction accuracy evaluation index is the best in each 

comparison model. This is because the decomposition ability of the three signal decomposition 

techniques differs when the high frequency part of the wind speed series is decomposed. In WD-BA-
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LSSVM, the high-frequency variation of each component is the largest, which affects the prediction 

accuracy of the model to a certain extent. The MAPE value is 14.93%. The high frequency range of 

each component in EEMD-BA-LSSVM is smoother than that in WD, thus, the prediction accuracy of 

EEMD-BA-LSSVM is higher than that of WD-BA-LSSVM, and the MAPE value is 3.42%. The wind 

speed sequence in VMD-BA-LSSVM changes steadily after decomposition, which makes the 

prediction accuracy of each component better, thereby, the integrated results can further improve the 

prediction accuracy of the model. The MAPE value of VMD-BA-LSSVM is only 1.03%. 

The above analysis shows the superiority of the proposed method in ultra short-term wind 

speed forecasting. 

4.5.2. Case 2: Short-Term (1h) Wind Speed Forecasting 

In order to further verify the generalization ability of the forecasting method proposed in this 

paper, short-term (1 h) wind speed forecasting was conducted and is discussed in this section. On the 

basis of Case 1, BA-LSSVM, WD-BA-LSSVM, EEMD-BA-LSSVM and VMD-BA-LSSVM were used to 

predict wind speed. By comparing Figure 6(a–d), the forecasting results of VMD-BA-LSSVM are 

better than that of EEMD-BA-LSSVM, WD-BA-LSSVM and BA-LSSVM. It is obvious that signal 

processing technology can significantly improve the accuracy of wind speed prediction. The results 

of the proposed hybrid VMD and BA-LSSVM model is much better than that of the hybrid EEMD or 

WD and BA-LSSVM model most of the time. The improved BA-LSSVM model is able to forecast the 

trend in the wind speed series, but the prediction accuracy is unsatisfactory. Table 9 presents the 

results of the four models, and similar conclusion as that in Case 1 can be made here, that is, the 

proposed model is also suitable for short-term (1h) wind speed forecasting.  

 

Figure 6. The forecasting results from various models (1h). (a) BA-LSSVM model; (b) WD-BA-LSSVM 

model; (c) EEMD-BA-LSSVM; (d) VMD-BA-LSSVM. 
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Table 9. Error comparison among different forecasting models in Case 2. 

Case 2 Error 
Model   

BA-LSSVM WD-BA-LSSVM EEMD-BA-LSSVM VMD-BA-LSSVM 

One hour 

MAPE 14.42% 9.50% 2.23% 1.56% 

MAE 0.9283 0.6463 0.1585 0.1015 

RMSE 1.1309 0.8026 0.2715 0.1367 

5. Conclusion 

In order to enhance the efficient and accurate prediction of wind speed, a hybrid model is 

proposed in this paper. First, the VMD technique was employed to decompose the original wind 

speed series. Then, the relevant parameters of the proposed model were optimized by a BA. Finally, 

the hybrid VMD and BA-LSSVM model with excellent learning and generating abilities was 

developed to forecast wind speed. EEMD and WD were also employed to compare the application 

of various signal processing techniques in wind speed forecasting models. In Case 1, the MAPE, MAE 

and RMSE of the proposed model were 1.03%, 0.0427 and 0.0543, respectively. In Case 2, the MAPE, 

MAE and RMSE of the proposed model were 1.56%, 0.1015 and 0.1367, respectively. The hybrid VMD 

and BA-LSSVM model is much better than the traditional LSSVM, PSO-LSSVM, BA-LSSVM models 

and the hybrid EEMD, WD and BA-LSSVM model. 

The superiority of the proposed hybrid model over other models may be accounted for by the 

following aspects: (a) Signal decomposition technique plays an essential role in wind speed 

forecasting. Therefore, VMD was employed to decompose the original wind speed series. Besides, 

the decomposition effects of VMD, EEMD and WD were also analyzed in this paper, and we found 

that the forecasting performance of wind speed series can be greatly augmented by using an VMD 

technique; (b) The parameters of the LSSVM models play an important role in wind speed forecasting. 

Therefore, the BA algorithm was employed to optimize the parameters of the LSSVM model, and it 

was concluded that BA-LSSVM is better than PSO-LSSVM and LSSVM in learning and generalization 

ability; (c) The hybrid model comprehensively captures the characteristics of the original wind speed 

series, whilst the single models only reflect the trend of the wind speed series with limited prediction 

accuracy.  

Therefore,, the proposed hybrid model clearly performs better than the other single or hybrid 

models as shown by the MAE, RMSE and MAPE criteria, and it is suitable for ultra short-term（15 

min）and short-term (1 h) wind speed forecasting. 
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