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Abstract: The randomness and volatility of wind power poses a serious threat to the stability,
continuity, and adjustability of the power system when it is connected to the grid. Accurate short-term
wind power prediction methods have important practical value for achieving high-precision
prediction of wind farm power generation and safety and economic dispatch. Therefore,
this paper proposes a novel combined model to improve the accuracy of short-term wind power
prediction, which involves grey correlation degree analysis, ESMD (extreme-point symmetric mode
decomposition), sample entropy (SampEn) theory, and a hybrid prediction model based on three
prediction algorithms. The meteorological data at different times and altitudes is firstly selected as the
influencing factors of wind power. Then, the wind power sub-series obtained by the ESMD method
is reconstructed into three wind power characteristic components, namely PHC (high frequency
component of wind power), PMC (medium frequency component of wind power), and PLC (low
frequency component of wind power). Similarly, the wind speed sub-series obtained by the ESMD
method is reconstructed into three wind speed characteristic components, called SHC (high frequency
component of wind speed), SMC (medium frequency component of wind speed), and SLC (low
frequency component of wind speed). Subsequently, the Bat-BP model, Adaboost-ENN model,
and ENN (Elman neural network), which have high forecasting accuracy, are selected to predict
PHC, PMC, and PLC, respectively. Finally, the prediction results of three characteristic components
are aggregated into the final prediction values of the original wind power series. To evaluate the
prediction performance of the proposed combined model, 15-min wind power and meteorological
data from the wind farm in China are adopted as case studies. The prediction results show that the
combined model shows better performance in short-term wind power prediction compared with
other models.

Keywords: short-term wind power prediction; extreme-point symmetric mode decomposition;
sample entropy theory; combined model

1. Introduction

With energy shortage and environmental pollution’s further deterioration, the development
and utilization of renewable energy is receiving more and more attention from the whole world.
Wind power, one of the most promising renewable energy sources, has experienced the most growth
in the past several decades from a global perspective [1]. However, wind power generation is
characterized by volatility and intermittency, which has a seriously negative influence on the electrical
energy quality and the safe and stable operation of a power system [2]. Therefore, it is necessary to
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predict wind power accurately to reduce the negative influence of the integration of wind turbines
into power systems.

The increasing interest in the integration of wind power plants has heightened the need of
accurate wind power prediction methods, which mainly includes physical methods, statistical methods,
intelligent methods, and combined models. Physical methods, based on the meteorological and
geographical information [3], have higher prediction accuracy when the environment of the wind
power plant remains stable. For example, Wu et al. [4] developed a prediction system by combining
statistical models and physical models to test the data of the Wattle Point wind farm in Australia and
found that the system was effective for predicting the power output of wind farms. Cheng et al. [5]
assimilated anemometer wind speed observations from wind farm turbines into a numerical weather
forecast system, which can effectively improve the accuracy of wind power and wind speed
prediction. The statistical method is to establish a mapping relationship between the input of the
Numerical Weather Prediction (NWP) system and the wind power, mainly including the autoregressive
(AR) model [6], auto-regressive moving average (ARMA) approach [7], auto-regressive integrated
moving average (ARIMA) approach [8], and seasonal autoregressive integrated moving average
(SARIMA) model [9], and so forth. Liu et al. [10] used the autoregressive moving average-generalized
autoregressive conditional heteroscedasticity (ARMA-GARCH) method to simulate the mean and
volatility of wind speed at the observation site in Colorado, USA. The results showed that the method
can effectively capture the trend change of the mean and volatility of wind speed. Matallah et al. [11]
developed a new wind speed forecasting model by combining the Hammerstein model and an
autoregressive model, which reflects good prediction performance.

In addition, intelligent methods have good capabilities, such as a strong nonlinear fitting ability,
simple learning rules, and high robustness, and they have been extensively applied by researchers for
wind power forecasting. In [12], a least squares support vector machine (LSSVM) model optimized
by PSOSA was used to predict wind power, and actual calculation examples demonstrated that the
prediction method used in the article has high prediction precision. Wang et al. [13] used the support
vector machine (SVM) based on the structure risk minimization principle to predict the short-term
wind power. Zhang et al. [14] employed a radial basis function neural network (RBFNN) and a
multi-objective optimization method to perform interval forecasting of wind speed and ultimately
achieved a higher forecasting precision. The back propagation neural network (BPNN) has a long
history in prediction, and it has made outstanding contributions to forecasting, especially in the state
of uncovering nonlinearity between the inputs and outputs, even with a lack of sufficient information
about the relationship between them [15]. For instance, Wang et al. [16] proposed a wind power range
prediction model based on the multiple output property of BPNN. The simulation results of a practical
example showed that the proposed wind power range prediction model can effectively forecast the
output power interval. Sun et al. [17] developed a novel wind speed prediction model by combining
fast ensemble empirical mode decomposition (FEEMD), phase space reconstruction, and improved
BPNN, which ultimately obtained a higher forecasting accuracy. BPNN could approximate complex
nonlinear functions, but it easily falls into local minima, and often exhibits over-fitting. To overcome
the shortcomings of BPNN, some optimization algorithms are applied. Chao et al. [18] introduced a
method called IS-PSO-BP that combines PSO-BP with comprehensive parameter selection to predict
wind speed, and the experiment results clearly show that the proposed method achieves much a better
forecasting performance than the BPNN and ARIMA model. Wang et al. [19] proposed a forecasting
method based on improved empirical mode decomposition (EMD) and the GA-BP neural network
to the prediction of wind speed on a wind farm in Inner Mongolia, China. The simulation with
MATLAB shows that the proposed method can improve the forecasting accuracy and computational
efficiency. A novel hybrid forecasting model called E-SA-BP, which combines ensemble empirical
mode decomposition (EEMD), a simulated annealing (SA) algorithm, and BPNN, was developed
to perform wind speed forecasting in [20]. Although the optimization algorithm mentioned above
can improve the prediction performance of BPNN to a certain extent, they still have some defects of
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a slow convergence speed, they easily fall into a local optimum, and have a long training process.
Therefore, this paper uses the Bat algorithm to update the learning rule and network weights of BPNN.
Compared with the optimization algorithm mentioned above, the Bat algorithm has the advantages of
fewer parameters and better global optimization ability [21]. Additionally, the mathematical model
involved in the Bat algorithm is relatively simple and computationally efficient.

As the recurrent neural network, ENN has been proven to be helpful for the prediction of
discrete-time series, contributing to the advantage of modeling nonlinear dynamic systems and
learning time-varying patterns [22], which has an abundant application in the prediction field.
Zhang et al. [23] introduced a novel EMD–ENN approach to forecast wind speed, and the simulation
results show that the proposed approach consistently has the minimum statistical error. Liu et al. [24]
presented a novel hybrid model, with FEEMD and wavelet packet decomposition, and ENN, which had
a desirable performance in multi-step ahead wind speed forecasting. Yu et al. [25] designed a new
hybrid model combining improved wavelet transform (IWT) and ENN, which exhibited satisfactory
performance in wind speed forecasting. Although ENN has made many contributions in the field of
wind power and wind speed prediction, wind power has intermittent and volatility characteristics.
Therefore, based on ENN, the Adaboost algorithm is used to further enhance the prediction ability of
ENN for nonlinear, chaotic, and volatile data, which has quickly become a new research hotspot [26].
Liu and Tian et al. [27] applied the multilayer perceptron (MLP) neural networks optimized by
the Adaboost algorithm to predict wind speed, and the prediction results show that the Adaboost
algorithm has promoted the forecasting performance of MLP neural networks considerably and the
Adaboost-MLP model is effective for wind speed predictions. Shao et al. [28] proposed a novel solution
using the AdaBoost neural network in combination with wavelet decomposition to solve the defect of
lower accuracy and enhance model robustness, and the experimental evaluation demonstrates that the
proposed strategy can significantly enhance model robustness and effectively improve the prediction
accuracy. Xiao et al. [29] developed a reliable combination model for wind speed forecasting based on
an improved Adaboost algorithm named the time-vary-forecasting-effectiveness (TW-FE-Adaboost)
algorithm to improve the overall forecasting accuracy. The increasing application of the Adaboost
algorithm can be attributed to two aspects: One is that it can improve the prediction performance by
combining multiple predictor models; another aspect is that the Adaboost algorithm has the advantages
of simple calculation and small error. Therefore, ENN optimized by the Adaboost algorithm is applied
to predict short-term wind power, which can maximize the merit of Adaboost algorithms and enhance
prediction ability of ENN for nonlinear, chaotic, and volatile data.

Over the past few decades, numerous wind power forecasting approaches have been presented,
which have enhanced the prediction accuracy of wind power series. However, since the relatively
noisy and unstable characteristics of wind power data, wind power prediction by directly using
original data would lead to substantial forecasting errors and poor performance [30]. Hence, the signal
decomposition technique has been considered and applied for wind power forecasting to improve
prediction performance, especially EMD [31] and EEMD [32]. Although these two techniques have
improved the forecasting performance to a certain extent, they still have some disadvantages, such as
the mode mixing problem in EMD and the residual noise in EEMD [33]. To overcome these defects
of EMD and EEMD, a novel technique called ESMD, proposed by Wang et al. [34], is employed for
reducing the noise and uncertainty of wind speed and wind power series. Moreover, compared
with some classical time-frequency transform methods [35–37], the ESMD method proposes a “direct
difference (DI) method” for data, broking through the traditional concept of using integral changes.
Additionally, the ESMD method has been applied in many fields at present, such as climate change
issues [38] and seismology [39].

A review of the previous literature indicates that the prediction methods discussed above have
some inherent disadvantages. The shortcomings of these methods are summarized as follows:

(1) Physical methods are extremely weak in coping with short-term horizons; therefore,
these methods do not have accurate and effective results in short-term forecasting [33]. Moreover,
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physical methods are characterized by high cost and complexity. (2) Relative to physical methods,
statistical methods based on single data are a relatively simple method, however, its ability to handle
abrupt information is poor. Additionally, wind speed or wind power prediction is affected by
meteorological data, but statistical methods are usually applied to single data. (3) Different from
other methods, intelligent methods have been widely researched and applied to address complicated
relationships and effectively perform forecasting, which could successfully capture hidden non-linear
relationships among given historical data [40]. However, there are still many disadvantages and defects
with intelligence methods, for example, easily getting into a local optimum, over-fitting, and exhibiting
a relatively low convergence rate [41]. (4) The individual prediction model does not take into account
the necessity and importance of data preprocessing techniques, so it cannot achieve high prediction
accuracy and meet the requirements of time series prediction. Therefore, since each model has its
inevitable shortcomings, the above prediction method cannot always capture the wind speed or wind
power trend and cannot be applied in all cases. Consequently, a combined model has often been taken
into consideration, which is deemed as an excellent method that utilizes the advantages of individual
approaches to obtain a higher forecasting accuracy [42].

Based on the analysis above, this study introduces a novel combined model to improve
the accuracy of short-term wind power prediction. It combines meteorological data (humidity,
pressure, temperature, wind direction, and wind speed), the signal decomposition technique,
SampEn theory, and several forecasting algorithms, namely the Bat-BP model, Adaboost-ENN model,
and ENN. It successfully exploits the advantages of each prediction model for further improvement.
More specifically, considering that wind power is influenced by meteorological data at different
times and altitudes (10 m, 30 m, 50 m, 70 m, and 100 m), we use grey correlation degree analysis to
select meteorological data at different altitudes in the same location as part of the input variable to
the prediction model. Then, to deal with the randomness and instability of wind speed and wind
power time series, the ESMD method is employed to decompose the original wind speed and wind
power time series into several sub-series, called Intrinsic Mode Functions (IMFs) and a residue R,
respectively. Subsequently, SampEn theory is employed to calculate the complexity of each wind
power sub-series obtained by the ESMD method, and reconstruct them into three characteristic
components, namely PHC, PMC, and PLC. Similarly, wind speed sub-series are reconstructed into
SHC, SMC, and SLC. Then, the training samples of PHC, PMC, and PLC are determined by PACF
theory. Next, Bat-BP, Adaboost-ENN, and ENN, which have high prediction accuracy, are selected
as forecasting models to predict PHC, PMC, and PLC, respectively. Finally, the prediction results of
each characteristic component are aggregated into the final prediction values of the original wind
power series.

On the whole, the novelty of this study can be described as follows:
(1) Based on the historical wind power data, the meteorological data at different times and

altitudes are selected as the input variables of the wind power prediction to improve the forecasting
accuracy. The grey correlation degree analysis is used to determine the influencing factors of wind
power, which can more fully consider the influence of the external environment on wind power.

(2) The ESMD method, based on the direct difference (DI) method, is adopted to handle the
complexity and volatility of wind speed and wind power series for the first time, which can smooth the
data and extract the main characteristics of the data. The original wind power and wind speed series
are decomposed and reconstructed into three characteristic components to decrease the instability of
wind power and wind speed series.

(3) The proposed combined model based on three prediction algorithms improves the accuracy
of wind power prediction to a certain extent. The proposed combined model utilizes the advantages
of each individual model and overcomes the limitation of the low accuracy and instability of a
single model.

The remainder of this paper is structured as follows. Section 2 describes the specific prediction
model, including the Bat-BP model, Adaboost-ENN model, and ENN. The framework of this paper



Sustainability 2019, 11, 650 5 of 23

can be seen in Section 3. Section 4 discusses the prediction results and prediction performance of the
proposed combined model. Finally, Section 5 concludes the results of this study.

2. Methodology

This section aims to provide a brief introduction to the methods used in this study, including the
ESMD method, Bat-BP model, and Adaboost-ENN model.

2.1. Extreme-Point Symmetric Mode Decomposition

ESMD, a data processing method, was proposed by Wang and Li et al., which is a new
development of the Hilbert-Huang transform (HHT) method [34]. The ESMD method is similar
to the EMD method, which can smooth the complex signals and obtain several IMFs and a residue R.
The basic idea of ESMD draws on the EMD method, which changes a cubic spline interpolant of the
upper and lower envelopes in EMD to the internal pole symmetric interpolation. At the same time,
the ESMD method uses the least squares method to optimize R as the “adaptive global average” of the
entire data to determine the optimal number of filters. The specific algorithm of ESMD is as follows:

Step 1: Find all the poles that exist in the original data, Yt, and record them as Ei(i = 1, 2, · · · , n).
Step 2: Connect the adjacent poles, Ei, with line segments and mark the midpoint of each line

segment as Fi(i = 1, 2, · · · , n− 1).
Step 3: Use the linear interpolation method to set midpoints of the left and right borders to F0 and

Fn, respectively.
Step 4: Construct p interpolation curves, L1, L2, · · · , Lp(p ≥ 1), using n + 1 midpoints, and an

average curve can be obtained, L∗ = (L1 + L2 + · · ·+ Lp)/p.
Step 5: Calculate Yt − L∗ by repeating step 1-step 4 until |L∗| ≤ ε is satisfied or the number of

screenings reaches the preset maximum value, K, then the first IMF1 is obtained. In general, the set of
permitted error, ε, for 0.001σ0, and σ0 is the standard deviation of the original data, Yt.

Step 6: Repeat steps 1 to 5 for Yt − IMF1 to obtain IMF2, · · · , IMFn and a residual R (The number
of poles of R is set as at least 4 poles).

Step 7: Make K vary between Kmin and Kmax and repeat steps 1 to 6. Then, calculate the relative
standard deviation, σ, of Yt − R when K takes different values.

Step 8: Find the K0 corresponding to the minimum variance ratio, v = σ/σ0 (where R is the best
fit curve of the data), and the output decomposition results of steps 1 to 6 are repeated again.

It is worth noting that in step 4, ESMD mainly includes three forms according to the difference of
the P number, which are called ESMD_I, ESMD_I I, and ESMD_I I I. It has been proven by practice
that ESMD_I I shows better signal decomposition characteristics [43]. Therefore, this paper chooses
ESMD_I I as a signal decomposition method. In step 8, the minimum variance ratio, v, reflects the
trend change of the trend term and the original signal. The value is smaller, the decomposition result
is better.

2.2. Bat-BP Neural Networks

As a multi-layer forward network, BPNN is trained by the error back propagation algorithm,
whose network topology mainly consists of an input layer, hidden layer, and output layer [44,45].
In the BPNN algorithm, the weight and threshold of the network are usually adjusted along the
negative gradient direction of the network error change, and finally the network error reaches a
minimum value. Although BPNN is widely used, it has the disadvantages of a poor global search
ability, slow convergence rate, and it easily falls into local minimum values. In order to overcome the
shortcomings of BPNN, the bat optimization algorithm is used to optimize the parameters of BPNN to
further improve its prediction performance.

The bat algorithm is a new type of bionic algorithm. It is very suitable for the excellent selection
of complex problems for simplicity and robustness, and it is widely used in various fields, such as
optimization and classification. The main principle of the bat algorithm is to simulate the process
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of bats searching for prey. The updated formula of frequency, velocity, and position is shown in
Equations (1)–(3):

fi = fmin + ( fmax − fmin)α. (1)

Vi
t+1 = Vi

t + (Xi
t − X∗) fi. (2)

Xi
t+1 = Xi

t + Vi
t+1. (3)

where α ∈ [0, 1] is a random number subjecting to uniform distribution; fi represents the update
frequency of bat i in the range [ fmin, fmax]; X∗ indicates the current global best location; Vi

t+1 and Vi
t

are the velocity values of the bat i at time step t + 1 and t; Xi
t+1 and Xi

t represent the specific location
of the bat i at time step t + 1 and t, respectively.

The local search is proposed to improve the performance of the bat algorithm. Each bat gets a
partial new solution by random walks when a solution is selected in the current best solutions:

Xi
t = X∗ + εAt. (4)

where ε ∈ [0, 1] is a random number, At is the average loudness of all bats in the same time period.
Further, the loudness, Ai, is strong and the rate, ri, pulse emission is low, contributing to expand

the search space. After the prey is discovered, the loudness is gradually reduced and the rate of pulse
emission is increased, which helps to accurately grasp the spatial position of the prey. This search
feature is shown by Equations (5)–(6):

Ai
t+1 = α•Ai

t. (5)

ri
t+1 = ri

0[1− exp(−γt)]. (6)

where, Ai
t+1 and Ai

t are the loudness of the bat i at time step t + 1 and t; α ∈ [0, 1] is the attenuation
coefficient of loudness. Here, ri

t+1 indicates the rate of the pulse emission of the bat i at time step t + 1;
ri

0 represents the maximum rate of pulse emission of the bat, i; γ > 0 is the increasing coefficient of
the rate of the pulse emission.

This specific algorithm of Bat-BP is briefly described as follows:
Step 1: Construct the BPNN model and experiment repeatedly to determine its structure.
Step 2: Produce the number of bat, n, and form an initial population size of bats. Initialize bat

position, xi, velocity, vi, loudness, Ai, and pulse rates, ri.
Step 3: Contact the location of each individual bat to the fitness function f (X).
Step 4: Determine whether the algorithm reaches the maximum number of iterations. If yes,

the algorithm ends and the best solution is output; otherwise, go to step 5.
Step 5: Update the velocity and location of the bat by Equations (1)–(3).
Step 6: Generate a random number, rand1. If rand1 > ri, a new solution will be obtained by

Equation (4).
Step 7: Evaluate the quality of the solution.
Step 8: Generate a random number, rand2. If rand2 < Ai and f (Xi

t) < f (X∗), the bat individual
will be updated. Ai will be reduced by Equation (5) and ri will be enlarged by Equation (6), respectively.

Step 9: Output target value if the termination condition is met, and the termination program is
executed. Otherwise, return to step 3.

Step 10: Use the weights and thresholds obtained by the bat algorithm to train the established
BPNN model.

2.3. Adaboost-ENN Model

ENN is a recurrent neural network, with local memory units and feedback connections. Compared
with the forward networks, ENN not only has an input layer, a hidden layer, and an output layer,
but also has a context layer. The neurons in the input layer only play the role of signal transmission,
and the output layer applying purelin function is linearly weighted. The hidden layer, a single-layer
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network structure, adopts the tansig function, which can reduce the running time by improving
the convergence speed of the ENN model. Compared with the forward networks, ENN adds a
special layer, called the context layer. The context layer acts as a one-step delay operator to achieve
the purpose of memory, so that the system has the ability to adapt to time-varying characteristics.
Moreover, it can directly reflect the characteristics of the dynamic process system. Although ENN has
been improved on the basis of the forward networks, there are still deficiencies due to its inherent
characteristics. For example, ENN uses the gradient descent method to modify weights and thresholds
between neurons in each layer, which reduces the convergence accuracy of the network [46]. For the
inherent defects of ENN, the Adaboost algorithm is applied to optimize ENN to improve the prediction
performance of the model.

The Adaboost algorithm was developed by Schapire for regression with time series data, which is
a typical example of the boosting algorithm [47]. The Adaboost algorithm can generate different
weak learners by repeatedly training the same data set, and then combines these weak learners into
powerful learners to improve the prediction accuracy and generalization ability of the weak learners.
The core idea of the Adaboost algorithm is to value the samples with large prediction error and the
weak learners with good performance, that is, to improve the sample weights with a poor training
effect and the weak learner weights with a strong learning ability. On the contrary, it reduces the
sample weights with a good training effect and the weak learner weights with a weak learning ability.

According to Wang et al. [48], this detailed prediction process of the Adaboost-ENN model is
as follows:

Step 1: Preprocess original data by data quantification and normalization.
Step 2: Assume training set, X = (x1, y1), · · · , (xm, ym), i = 1, 2, · · · , m, and the initial distribution

weight of the sample on the training set is initialized: D1(i) = 1/m. The neural network structure is
determined by the input and output dimensions, and the weights and thresholds of ENN are initialized.

Step 3: Find the weak predictor, hj(j = 1, 2, · · · , T). When the jth weak predictor is trained,
the ENN is trained with the training set and the prediction results are output. Then, the sum of
prediction error, ε j, of the prediction series, h(j), can be obtained, which can be expressed as follows:

ε j =
m

∑
i=1

Dt(xi), i = 1, 2, · · · , m(hj(xi) 6= yi). (7)

where hj(xi) is the prediction results, and yi is the expected values.
Step 4: Update weight. According to the ε j, the weight of the series is calculated as:

αj = 1/2 ∗ ln
[
(1− ε j)/ε j

]
. (8)

Then, the weight of the next training sample is adjusted, the adjustment formula is:

Dj+1(i) =
Dj(i) exp

[
−αjyihj(xi)

]
Zj

, i = 1, 2, · · · , m. (9)

where Zj is the normalization factor, and
N
∑

i=1
Dj+1(xi) = 1.

Step 5: Obtain T strong prediction functions, hj(x)(j = 1, 2, · · · , T), through T-round training.
A strong prediction function is formed:

H f inal(x) = sign(
T

∑
j=1

αjhj(x)). (10)
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3. The Framework of the Combined Model

In this study, a novel combined model is successfully developed to improve the wind power
prediction effectiveness. The main operational steps of the combined model proposed in this paper are
as follows. In addition, we also plotted the corresponding flow chart, as shown in Figure 1.

(1) Use the grey correlation degree analysis to screen meteorological data at different times and
altitudes to determine the influencing factors of the original wind power series.

(2) Adopt the ESMD method to decompose the wind speed and wind power series into several
sub-series, called wind power sub-series and wind speed sub-series, respectively.

(3) Utilize sample entropy theory to calculate the complexity of each wind power sub-series
obtained by the ESMD method, and reconstruct them into three wind power characteristic components
of reduced order of complexities, namely PHC, PMC, and PLC. Meanwhile, the complexity of each
wind speed sub-series is calculated by sample entropy theory, and they also are reconstructed into
SHC, SHC, and SLC.

(4) Apply PACF theory to determine the input–output samples of PHC, PMC, and PLC to improve
the accuracy of wind power prediction.

(5) Do a group of trial experiments to select the best training algorithm for PHC, PMC,
and PLC, respectively.

(6) Employ the Bat-BP model, Adaboost-ENN model, and ENN to do one-step rolling prediction
of PHC, PMC, and PLC, respectively, to forecast wind power in the next 24 h.

(7) Conduct aggregate calculation for the one-step rolling prediction results in PHC, PMC, and PLC
to obtain the final prediction values of the original wind power series.

(8) To compare the prediction performance, the proposed combined prediction model
will be compared with other models through four sets of comparative experiments, such as
NMD-ESMD-Bat-BP model, ESMD-Adaboost-Elman model, EMD, and ENN, etc.
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4. Experimental Design, Results, and Discussion

4.1. Datasets

To validate the prediction performance of the proposed combined prediction model, 15-min wind
power and meteorological data were collected from wind farm in China, which were generated from
09:00 24 April 2016 to 09:00 9 May 2016, a total of 15 days. Among them, meteorological data were
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measured at heights of 10 m, 30 m, 50 m, 70 m, and 100 m from the ground. The rated installed capacity
of the wind farm is 49.5 MW. Each dataset was divided into a training set and testing set, in which the
data of the first 14 days was used as the training set to train the prediction model, and the data of the
last day were used as the testing set to estimate the prediction performance of the model [49]. The data
statistical description of the wind power and meteorological data is shown in Table A1. Meanwhile,
the description of the training set and testing set is presented in Table A2. Although the wind power
and meteorological data for the 15 days are continuous without missing data points, there are still a
small number of outliers. Therefore, we used fractal interpolation to process the outliers that were
rejected [50].

4.2. Evaluation Criteria

In this paper, three error metrics were used to evaluate the prediction performance of the proposed
model, namely MAPE (mean absolute percent error), NMAE (normalized mean absolute error),
and NRMSE (normalized root mean square error). The specific formula of each error metric is
as follows:

MAPE =
1
N

N

∑
t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣ ∗ 100%. (11)

NMAE =
1

PinstN

N

∑
t=1
|ŷt − yt| ∗ 100%. (12)

NRMSE =
1

Pinst

√√√√ 1
N

N

∑
t=1

[ŷt − yt]
2 ∗ 100%. (13)

where yt is the real wind power, ŷt represents the predicted wind power, Pinst is the rated installed
capacity of wind farm, and N indicates the test samples number for the prediction model.

Moreover, we used three percentage error indices to compare the prediction performance of
the built model, called PMAPE (promoting percentages of mean absolute percentage error), PNMAE
(promoting percentages of normalized mean absolute error), and PNRMSE (promoting percentages of
normalized root mean square error). Their detailed formulas are as follows.

PMAPE =

∣∣∣∣MAPE1 −MAPE2

MAPE1

∣∣∣∣. (14)

PNMAE =

∣∣∣∣NMAE1 − NMAE2

NMAE1

∣∣∣∣. (15)

PNRMSE =

∣∣∣∣NRMSE1 − NRMSE2

NRMSE1

∣∣∣∣. (16)

4.3. Simulation

4.3.1. Grey Correlation Degree Analysis

To determine the influencing factors of wind power, we used grey correlation degree analysis to
measure the relatedness between the wind power series and meteorological data at different times
and altitudes. As a multi-factor statistical analysis method, the grey correlation degree analysis is
used to describe the relationship between variables. The gray relational degree changes in the range
of 0 to 1, generally believed that greater than 0.5 has a strong correlation. As illustrated in Table 1,
the grey relational degree between the meteorological data and wind power series exceeds 0.6 at
different times and altitudes, which indicates that the correlation between the meteorological data
and wind power is significant. Among the five types of meteorological data, the correlation between
wind speed and wind power is the strongest, especially the wind speed (50 m). Additionally, humidity
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(30 m) and temperature (100 m) are also strongly correlated with wind power. In addition, pressure at
different times and altitudes are parallel and direction series at different times and altitudes are the
same, so the correlation between the two types of meteorological data and wind power at different
times and altitudes is 0.60583 and 0.63686, respectively. In view of the above analysis, we selected
humidity (30 m), pressure (50 m), temperature (100 m), wind direction (50 m), and wind speed (50 m),
respectively, as the influencing factors of wind power.

Table 1. The grey correlation degree between wind power series and meteorological data at different
times and altitudes.

Meteorological Data

Humidity Pressure Temperature Wind Direction Wind Speed

10 m 0.62561 0.60583 0.66530 0.63686 0.70173
30 m 0.62564 0.60583 0.66538 0.63686 0.70175
50 m 0.62562 0.60583 0.66545 0.63686 0.70181
70 m 0.62559 0.60583 0.66550 0.63686 0.70152
100 m 0.62561 0.60583 0.66562 0.63686 0.70163

4.3.2. ESMD Decomposition

Through the analysis of the grey correlation degree, it can be seen that wind power is mainly
affected by wind speed, which has the characteristics of instability and intermittentency. Therefore,
the ESMD method was employed to decompose original wind power and wind speed series
(50 m). Before decomposing the original time series, we determined the number of screening times
corresponding to the minimum variance ratio, v, by repeatedly adjusting the number of residual
component extreme points and the number of iterations. Therefore, the number of residual component
extreme points of wind power is 20 and the number of iterations is 56 after repeated tests and
comparisons. Similarly, the number of residual component extreme points of wind speed is 20 and the
number of iterations is 73. The number of iterations corresponding to the variance ratio of wind speed
and wind power is presented in Figure 2.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 24 
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It can be seen from Figure 2 that the variance ratio is the smallest when the number of iterations
of the wind speed is the 72nd time, so the best screening times for wind speed is 72. Similarly,
the best screening times for wind power is 13, which corresponds to the minimum variance ratio.
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After determining the best number of screening times, the wind speed and wind power series were
decomposed into six IMFs and a residue, respectively. The specific decomposition results of the wind
power and wind speed series are shown in Figure 3.
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Figure 3. The decomposed results of wind power and wind speed series using the ESMD method:
(A) Wind power series is decomposed by the ESMD method into six IMFs and a residue R (from top
to bottom); (B) wind speed series is decomposed by the ESMD method into six IMFs and a residue R
(from top to bottom).

4.3.3. Sample Entropy Theory

As a method for measuring the complexity of time series, sample entropy was proposed by
Richman in 2000, which has been widely used in many fields [51]. Specifically, the sample entropy
has an anti-noise ability and anti-interference ability, and is suitable for mixed signals composed
of random components [52]. However, the wind power series are characterized by instability and
volatility. Therefore, we used the sample entropy method to calculate the sample entropy values of
each wind power sub-series decomposed by the ESMD method, and grouped them into PHC, PMC,
and PLC. According to [53], the specific grouping rules are as follows:

Step 1: Calculate the sample entropy values of the original wind power series and each wind
power sub-series, denoted as SampEndata and SampEnsub-series.

Step 2: Record the SampEndata as the initial threshold. If SampEndata > SampEnsub-series,
SampEnsub-series is grouped into a characteristic component; otherwise, SampEnsub-series is grouped
into another characteristic component.

Step 3: Set a special threshold, u, and an upper bound line (SampEnsub-series − SampEndata = u)
and a lower bound line (SampEndata − SampEnsub-series = u) will form.

Step 4: According to the results of Step 2 and Step 3, the wind power sub-series with similar
sample entropy values can be grouped into PHC, PMC, and PLC.

This paper set the u value as 0.3, and the detailed grouping process is shown in Figure 4. At the
same time, the composition of the IMF number in each characteristic component is given in Table 2.
After the sample entropy values of each wind power sub-series were calculated, the sub-series were
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reconstructed by aggregating the sub-series in each characteristic component, respectively, as shown
in Figure 5. It can be seen that the original wind power series was reconstructed into three new wind
power components, which contributes to improving the prediction performance. Similarly, we used
the sample entropy method to calculate the complexity of each wind speed sub-series obtained by the
ESMD method, and reconstructed them into SHC, SMC, and SLC, as shown in Table 2 and Figure 5.
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Table 2. The composition of the sub-series number in different characteristic components.
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Wind power sub-series IMF1 IMFs 2–4 1 IMFs 5–6 & R 2
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4.3.4. PACF Theory

The input–output samples in each wind power component were determined by PACF (Partial
autocorrelation function) theory, which is a useful tool for analyzing the correlation between candidate
variables and historical datasets [54]. Therefore, PACF theory was used to determine the input vector
for each wind power characteristic component. After normalizing the training samples, the PACF
values of each wind power characteristic component were calculated and shown in Figure 6. It can be
seen from Figure 6 that the dimension values of each wind power characteristic component are seven,
five, and eight, respectively.

Once the input–output samples of each wind power component were determined,
the corresponding data format of PHC can be defined in Figure 7. Moreover, the corresponding data
format of PMC and PLC were omitted due to a restriction of space. It is worth noting that the training
set and testing set both use the same rolling prediction mechanism. Therefore, the rolling prediction
mechanism was adopted for wind power prediction of one day based on one-step prediction results.
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4.3.5. The Parameter Setting of the Prediction Models

In this paper, the main procedures were performed in a Windows 7 PC with a 32-bit, 2.60 GHz Intel
Core i5-3230M CPU, and 4 GB of memory. The wind power prediction experiments were employed in
MATLAB R2014a. The experimental parameters are shown in Table 3.

Table 3. Setting the experimental parameters.

Experimental Parameters Default Value

Bat-BP

initial population size 10–20
loudness 0.25
pulse rate 0.25

minimum frequency 0
maximum frequency 2

max- iteration number 200
maximum number of convergences 100

learning rate 0.0001

Adaboost-ENN

weak predictors 8–20
hidden layer 10-30

maximum number of convergences 530
learning rate 0.00001

ENN
neuron number of the hidden layer 10–30
maximum number of convergences 1500

display interval 2

4.4. Analysis of Forecast Results and Comparisons of Different Models

In this study, wind power sub-series obtained by the ESMD method were reconstructed into
PHC, PMC, and PLC, and the data characteristics of each characteristic component are different.
Among them, PHC is a nonlinear system whose fluctuations are nonlinear and abrupt; the fluctuation
of PMC is nonlinear and chaotic and its volatility is relatively moderate; and the fluctuation of
PLC is relatively flat and nonlinear [55]. However, Bat-BP, Adaboost-ENN, and ENN are all
suitable for dealing with nonlinear, fluctuating, abrupt, and chaotic data, and have made great
contributions to wind power prediction. Therefore, to select the best prediction model for each wind
power characteristic component, we performed a set of comparative experiments by using Bat-BP,
Adaboost-ENN, and ENN in each characteristic component, with the prediction results shown in
Table 4. It can be seen from Table 4 that the Bat-BP model is the best for PHC prediction. Similarly,
the Adaboost-ENN model and ENN model are suitable for PMC and PLC prediction, respectively.

To estimate the prediction accuracy of the proposed combined model, we set up four different
experiments. The comparisons of MAPE for different prediction models and specific results of four
groups of experiments are shown in Figure 8, part A and B. It can be seen from Figure 8 that wind
power prediction results of the proposed model are superior to others in wind power forecasting.
Additionally, the prediction error is lower than others in terms of MAPE. The specific purpose of each
experiment and corresponding analysis are as follows.

The first group of experiments was built to validate that meteorological data at different times
and altitudes has an influence on the accuracy of wind power prediction, which was compared to other
prediction models that did not consider meteorological data (NMD), which were the NMD combined
model, NMD-ESMD-Bat-BP, NMD-ESMD-Adaboost-ENN, and NMD-ESDM-ENN. From Table 5, in all
prediction results, the proposed model is superior to other models that do not consider meteorological
data, with MAPE values of 5.60%, 6.76%, 8.29%, and 8.84%, respectively. In addition, the NMD
combined model has a better prediction performance among the remaining four methods, with NMAE
values of 2.96%. The prediction results obtained by the NMD combined model can further illustrate
that although the meteorological data has not been considered, the combined model based on three
prediction models has significantly improved the accuracy of wind power prediction. However,
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NMD-ESDM-ENN achieves the worst wind power prediction accuracy with a maximum NRMSE of
6.23%, which shows that individual model has lower prediction performance.

The second group of experiments was conducted to evaluate the accuracy of the proposed
combined model compared with the other three ESMD-based models, namely ESMD-Bat-BP,
ESMD-Adaboost-ENN, and ESDM-ENN. It can be seen from Table 5 that the proposed model has the
best MAPE, NMAE, and NEMSE at 3.73%, 1.91%, and 2.51%, respectively. In addition, the models
from highest to lowest based on the prediction accuracy are ESMD-Adaboost-ENN, ESMD-Bat-BP,
and ESMD-ENN, with MAPE values of 6.64%, 6.76%, and 7.21%, respectively. Moreover, although
ESMD-Adaboost-ENN has a lower MAPE value than ESMD-Bat-BP, its NMAE and NRMSE are
higher than ESMD-Bat-BP, indicating that the prediction performance of ESMD-Bat-BP is better
than ESMD-Adaboost-ENN.

The third group of experiments illustrates the prediction performance of the wind power series by
comparing the combined model with models using different signal preprocessing methods, called EMD
and EEMD. The comparison results are presented in Table 5. According to the evaluation criteria,
the performance metric values calculated from the proposed combined model are evidently lower than
those calculated from the models using other data preprocessing methods. In addition, models using
three prediction methods after signal preprocessing are always superior relative to the models using
the individual prediction method (including ENN, Adaboost-ENN, and Bat-BP), with NMAE values
of 2.68% and 2.18%, respectively.

The fourth group of experiments presents a comparison between the proposed combined
model and some classic individual models without signal preprocessing methods, namely ENN,
Adaboost-ENN, and Bat-BP. The detailed prediction performances are shown in Table 5. Compared
with three other individual models, the developed combined model achieves the best prediction
performance with an NMAE value of 1.91%. However, the other individual models have fairly
lower NMAE values of 5.19%, 4.59%, and 4.41%. Based on the MAPE values in Table 4, among the
remaining three models, Bat-BP is ranked as the second most effective model in wind power prediction,
with lower MAPE values at 8.08%. Meanwhile, the ENN has the highest MAPE values at 9.51%,
which illuminates its poor prediction accuracy.

More analyses are shown as follows. First, in general, individual models do not achieve good
performance compared to all remaining models. Specifically, the prediction performance of the three
classic individual models in the fourth group of experiments is relatively poor, especially the ENN.
Then, the classic individual model was used to predict the short-term wind power based on the signal
preprocessing. A comparison between the model considering meteorological data with the model not
considering meteorological data shows that the wind power time series is affected by the external
environment, as the model considering the meteorological data can effectively identify external factors,
thus obtaining a more precise prediction. The exception is that the NMD-ESMD-Adaboost-ENN
model’s three error metrics are lower than the ESMD-ENN model, indicating that the Adaboost
algorithm effectively integrates single ENN to form a strong predictor. Finally, comparisons among the
combined model, EMD, and EEMD models reveal that the combined models based on meteorological
data are very effective in enhancing the forecasting accuracy, and the proposed combined model
adequately makes use of the advantages of the external influence factors, decomposition method,
sample entropy method, and hybrid prediction algorithm, and integrates them well.

Furthermore, to compare performance differences between the proposed model and the other
models considering meteorological data, we used three indexes (including PMAPE, PNMAE,
and PNRMSE) to measure the difference between these models, as shown in Table 6. When comparing
the single ENN model with the ESMD-ENN model, the latter has improved the performance of
the former considerably. For instance, the MAPE promoting percentages by the ESMD is 31.90%;
the NMAE promoting percentages by the ESMD is 35.86%; the NRMSE promoting percentages by
the ESMD is 42.76%. When comparing the proposed model with the ESMD-ENN model, the hybrid
prediction model has improved the performance of the ESMD-ENN model significantly. Similarly,
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the prediction performance of the ESMD-Adaboost-ENN model (or ESMD-Bat-BP model) is better
than the Adaboost-ENN model (or Bat-BP model), and the prediction performance of the proposed
model is further improved. Compared with the EMD model, the EEMD method effectively improves
the prediction performance. However, the prediction accuracy and stability of the proposed model is
better than that of the EEMD model. For instance, the MAPE promoting percentages by the ESMD
method is 17.69%; the NMAE promoting percentages by the ESMD method is 14.14%; the NRMSE
promoting percentages by the ESMD is 11.95%.

Table 4. The results of the prediction model experiment.

Model

PHC PMC PLC

MAPE
(%)

NMAE
(%)

NRMSE
(%)

MAPE
(%)

NMAE
(%)

NRMSE
(%)

MAPE
(%)

NMAE
(%)

NRMSE
(%)

Bat-BP 154.12 1.09 1.41 70.98 1.70 2.21 1.91 0.71 0.96
Adaboost-ENN 160.07 1.12 1.45 59.63 1.32 1.84 1.57 0.62 0.74

ENN 168.23 1.18 1.53 74.76 1.76 2.28 1.31 0.51 0.69

Table 5. The prediction performances for three different experiments.

Model MAPE (%) NMAE (%) NRMSE (%)

ENN 9.51 5.19 6.21
Adaboost-ENN 8.71 4.59 5.53

Bat-BP 8.08 4.41 5.65
NMD-ESDM-ENN 8.29 4.65 6.23

NMD-ESMD-Adaboost-ENN 6.96 3.42 4.34
NMD-ESMD-Bat-BP 8.84 4.33 5.06

ESMD-ENN 7.21 3.82 4.35
ESMD-Adaboost-ENN 6.64 3.40 4.06

ESMD-Bat-BP 6.76 3.16 3.64
NMD combined model 5.60 2.96 3.87

EMD 5.11 2.68 3.30
EEMD 4.39 2.18 2.81

Proposed model 3.73 1.91 2.51

Table 6. The promoting percentages for three different experiments.

PMAPE (%) PNMAE (%) PNRMSE (%)

ESMD-ENN vs. ENN 31.90 35.86 42.76
Proposed Model vs. ESMD-ENN 93.30 98.53 73.31

ESMD-Adaboost-ENN vs. Adaboost-ENN 31.17 35.00 36.21
Proposed Model vs. ESMD-Adaboost-ENN 78.02 78.01 61.75

ESMD-Bat-BP vs. Bat-BP 19.53 39.56 55.22
Proposed Model vs. ESMD-Bat-BP 81.23 65.45 45.02

EEMD vs. EMD 16.40 22.94 17.44
Proposed Model vs. EEMD 17.69 14.14 11.95
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Figure 8. Forecast results and comparison of MAPE between different models: (A) Comparison of MAPE (100%) in different models from four different experiments
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forecasts by four different experiments (from top to bottom in part B; first group of experiment, second group of experiment, third group of experiment, fourth group
of experiment).
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5. Conclusions

In this paper, a novel combined model was proposed, which is based on grey correlation degree
analysis, the ESMD method, sample entropy theory, and hybrid prediction models combining Bat-BP,
Adaboost-ENN, and ENN. The grey correlation degree analysis was used to screen meteorological
data at different times and altitudes to determine the influencing factors of original wind power series.
The ESMD method was employed to decompose the original wind power and wind speed series (50 m)
into several sub-series, including IMFs and a residue R, respectively. On this basis, the sample entropy
theory was adopted to calculate the complexity of each wind power sub-series, and to reconstruct
them into PHC, PMC, and PLC, respectively. Similarly, wind speed sub-series were reconstructed
into SHC, SMC, and SLC. Subsequently, the input–output samples in PHC, PMC, and PLC were
determined by PACF theory. Next, the hybrid prediction model was utilized to predict PHC, PMC,
and PLC respectively, and the prediction results were aggregated to obtain the final prediction results
of the original wind power series. To evaluate the prediction performance of the proposed model,
the proposed model was compared with other models by the wind power and meteorological data
collected from a wind farm of China.

The experimental results demonstrate that: (1) Wind power has volatile and intermittent
characteristics and is easily affected by the external environment. However, a large number of
studies on wind power prediction do not take into account meteorological data or simply consider the
wind speed time series, which may cause the wind power predictions to deviate from the true values.
Therefore, this article performed a set of comparative experiments and found that the prediction
performance of wind power considering meteorological data is better than that of wind power not
considering meteorological data. (2) To improve prediction accuracy, many signal decomposition
techniques were applied to wind speed prediction or wind power prediction, especially EMD and
EEMD. These two methods can decompose the time series into several IMFs and R. Among these, a set
of experiments was performed and the prediction accuracy of the ESMD-type was higher than that of
the EMD-type and EEMD-type. (3) According to different data characteristics, different prediction
models were constructed by combining multidisciplinary knowledge and cross domain research.
The prediction performance of the developed combined model was evidently superior compared to all
the other models.

Although the proposed model achieved good prediction performance in short-term wind power
prediction, there are still some problems that need to be solved. The prediction of short-term wind
power in this paper involves not only the wind power series, but also the corresponding meteorological
data. Therefore, the requirements for data are relatively high, which also means the study only uses
data from a wind farm. In future studies, the data from other wind farms can be used to validate this
model if the data is available. Moreover, this study only made one-step prediction, and multi-step
prediction can be tried in the next work.
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Appendix A

Table A1. The statistical descriptions of wind power and meteorological data.

Data Size Mean Std Max Min

Wind power 1441 22887.3 11520.2 46566.7 588.9

Humidity

10 m 1441 57.7 18.5 98.3 23.0
30 m 1441 57.1 18.3 97.3 22.8
50 m 1441 56.6 18.1 96.4 22.6
70 m 1441 56.0 17.9 95.4 22.3

100 m 1441 55.2 17.7 94.0 22.0

Pressure

10 m 1441 782.1 1.6 784.8 776.8
30 m 1441 779.7 1.6 782.4 774.4
50 m 1441 777.3 1.6 780.0 772.0
70 m 1441 774.9 1.6 777.6 769.6
100 m 1441 771.3 1.6 774.0 766.0

Temperature

10 m 1441 18.1 4.0 26.2 11.1
30 m 1441 18.0 4.0 26.1 11.0
50 m 1441 17.9 4.0 26.0 10.9
70 m 1441 17.8 4.0 25.9 10.8

100 m 1441 17.6 4.0 25.7 10.6

Wind direction

10 m 1441 235.6 12.2 265.0 185.0
30 m 1441 235.6 12.2 265.0 185.0
50 m 1441 235.6 12.2 265.0 185.0
70 m 1441 235.6 12.2 265.0 185.0

100 m 1441 235.6 12.2 265.0 185.0

Wind speed

10 m 1441 4.8 1.1 7.3 2.7
30 m 1441 5.6 1.2 8.5 3.1
50 m 1441 6.0 1.3 9.0 3.3
70 m 1441 6.3 1.4 9.4 3.5
100 m 1441 6.5 1.4 9.8 3.6

Table A2. The statistical descriptions of the training set and testing set.

Label Size Mean Std Max Min

Training set

wind power 1345 22605.7 11673.8 46566.7 588.9
humidity (30 m) 1345 57.5 18.5 97.3 22.8
pressure (50 m) 1345 777.2 1.6 780.0 772.0

temperature (100 m) 1345 17.4 4.0 25.6 10.6
wind direction (50 m) 1345 235.2 12.4 265.0 185.0

wind speed (50 m) 1345 6.0 1.3 9.0 3.3

Testing set

wind power 96 26833.1 8178.1 42477.8 11522.2
humidity (30 m) 96 52.1 14.9 73.6 31.1
pressure (50 m) 96 778.1 1.3 780.0 776.0

temperature (100 m) 96 19.7 4.0 25.7 14.6
wind direction (50 m) 96 241.2 6.4 253.0 231.0

wind speed (50 m) 96 6.8 1.0 8.8 4.8
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