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Abstract: Recycled post-consumer high-density polyethylene pipe plastic was agglomerated into
composite samples with wood, glass fiber, mineral wool, gypsum, and soapstone as recycled
particulate fillers. The tensile strength, tensile modulus, impact strength, and hardness were the
mechanical properties evaluated. Scanning electron microscopy was performed on the broken
surfaces of tensile strength samples to study the interfacial interactions between the composite
matrix and the filler materials. Heat build-up, water absorption, and thickness swelling were the
physical properties measured from the composites. The addition of particulate fillers demonstrated
the weakening of the tensile and impact strength but significantly improved the rigidity of the
post-consumer plastic. The composites filled with minerals had mechanical properties comparable to
compression molded wood plastic composites but higher resistance to moisture. A lack of hot-melt
mixing affected the mechanical properties adversely.
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1. Introduction

The addition of organic and inorganic fillers to polymers has been an important industrial method
in creating new materials with tailored properties for specific applications. The legislative pressure
pertaining to waste materials in Europe reinforces the need for identifying new uses for previously
discarded wastes as recycled materials. The use of selected recycled particulates from post-consumer
and industrial by-product waste currents as property changing fillers for polymers could be a way to
reuse such materials in the manufacturing of new products. Properties of polymers such as corrosion
resistance, light weight, and ease of processing into a variety of shapes can be combined with the unique
properties of fillers to form composites with modified appearance, cost, mechanical strength, thermal
and electrical conductivity, thermal stability, magnetic characteristics, flame retardant, electromagnetic
shielding, dielectric, and barrier properties [1,2]. Productivity can also be increased with particulate
fillers due to decreased specific heat and increased heat conductivity [3,4]. The filler addition affects
the composite system also by introducing new interfaces, imperfections, impurities, and flaws, which
in turn affect the thermal properties and can interfere the processability [5]. Particulate fillers have
traditionally benefitted polymers by decreasing the amount of costs of production, which can best be
achieved by using the largest amount of filler possible, while retaining the integrity of the polymer
matrix holding the product together. The most common fillers for thermoplastics are calcium carbonate,
talc, silica flour, clay and wood fiber. To change the properties of polymers, the use of high filler rates
is often required, which will lower most of the mechanical properties of the material, reducing the
possible field applications. If the filler content of the recycled particulates was high, the environmental,
cost, and property-changing effects would potentially be greater in the composite. The high filling rate
has often a negative effect on the impact strength, elongation to break, tensile strength, and flexural
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strength [2]. Improvements by particulate fillers are most likely to take place in the elastic modulus of
the composite. The use of low-cost filler content decreases the costs in thermoplastic composites when
the relatively virgin plastic is replaced [6]. It could also be an economical way to change the properties
of the recycled thermoplastics.

The main aim of this paper is to study mechanical, moisture resistance, and heat build-up
properties of compression molded high-density polyethylene (HDPE) composites filled with recycled
wood fiber, glass fiber, mineral wool, gypsum, and soapstone particles by empirical testing in order to
evaluate the effect of recycled low-cost fillers on the recycled plastic. The analytical methods presented
by Halpin-Tsai [7] or Mori-Tanaka [8], which are often used to evaluate the effects of filler geometry,
stiffness and orientation were not used in this study due to diverse types of materials used, expected
variance in the recycled material and the strong particle–particle interactions caused by the high filler
content. For more information about the issues related to analytical method the reader is referred
to the work of Fornes & Paul [9]. The comparison of composite properties achieved with different
recycled materials could help potential users to rate materials for a variety of open loop recycling
thermoplastic based applications such as plastic lumber [10], packaging material, pallets [11], green
space and outdoor construction, agriculture and livestock, public construction and traffic barriers [12].
Previously, the compression molding of recycled material composites with a high filler content has
been done using kinetic mixing to heat the material [13], a heated mold [14,15], and pressing extruded
re-heated composite sheets [16]. In this study, the material is heated in an oven without pressure
or mixing.

2. Materials and Methods

2.1. Materials

Recycled high-density polyethylene (rHDPE) from a construction waste sewer pipe was supplied
by the Destaclean company and used as matrix material with all the samples. The plastic was identified
by manual sorting and recycled mechanically, after which it was crushed to smaller fractions using
Untha LR 630. Spruce (Picea abies) was prepared into two particle sizes, fine wood flour of 20 mesh
(0.85 mm) and rough hammer milled wood flour of over 20 mesh (max 4.00 mm). The specific gravity
of wood flour is 1.3–1.4 g/cm3 [17]. The size of the wood was reduced with a chipper combined with a
hammer mill after which it was sieved to the designated size. Glass fiber was the by-product reject
from the glass fiber mat production of the Ahlstrom Corporation. The glass fiber reject was chopped
to a size of 25 mm with the density 2.5 g/cm3, which became even smaller in the agglomeration
phase. Recycled rock wool from construction waste was crushed and milled to powder. The Paroc
Group provided by-product grinding dust from rock wool manufacturing, which was collected with a
vacuum used in the process. Rock wool consists mainly of silicon dioxide (40–52%, SiO2, 2.65 g/cm3),
calcium oxide (10–12%, CaO, 3.35 g/cm3), magnesium oxide (8–15%, MgO, 3.58 g/cm3), and aluminum
oxide (8–13%, Al2O3, 3.95 g/cm3) [18]. Recycled construction and demolition waste gypsum was
provided by the material handling facility Etelä-Karjalan Jätehuolto. The gypsum waste was ground to
powder, and the powdered gypsum wall board specific gravity is 1.76 g/cm3 [19]. Tulikivi provided
the by-product soapstone powder from its stone sawing process. Soapstone consists primarily of
talc (40–50%, 2.98 g/cm3) Mg3Si4O10(OH)2 and magnesium carbonate (40–50%, 2.96 g/cm3) MgCO3

in almost equal quantities. In addition, there are small proportions of chlorite (2–10%, 2.42 g/cm3)
H4(Mg,Fe)2Al2SiO11 and magnetite (0–15%, 5.15 g/cm3) (Fe3O4) [20]. As a coupling agent, 3% of
DuPont™ Fusabond® E226 anhydride modified polyethylene was used with the density of 0.93 g/cm3,
the melt flow rate (190 ◦C/2.16kg) 1.75 g/10min, and the declared melting point 120 ◦C. Maleic
anhydride modified polyethylene has been used to improve the interfacial adhesion between the
organic fillers and polymer matrix [21–24]. Processing additive Struktol® TPW 113—a blend of
complex modified fatty acid ester—was used with all of the samples, with a density of 1.005 g/cm3

and a dropping point of 70–88 ◦C.



Sustainability 2019, 11, 631 3 of 17

2.2. Agglomeration of Composites

The filler material, recycled HDPE, coupling agent and processing additive were compounded
using a TRL 100/FV/W turbomixer combined with an RFV-200 cooler. The wood materials for NFF
and NFR recipes were not pre-dried. The composites were prepared into 14 different formulations.
Tables 1 and 2 present the composition of the prepared composite agglomerates. The density by rule of
mixture (RoM) was calculated according to the materials used. After the composites were produced,
the density was estimated using the weight and the molded volume of the samples.

Table 1. Composite formulations, part I (the proportion of material by weight).

REF NFR40 NFR60 NFF40 NFF60 GF40 GF60

HDPE, recycled 94% 54% 34% 54% 34% 54% 34%
Wood flour, rough recycled 0% 40% 60% 0% 0% 0% 0%
Wood flour, fine recycled 0% 0% 0% 40% 60% 0% 0%
Glass fiber, by-product 0% 0% 0% 0% 0% 40% 60%

Coupling agent 3% 3% 3% 3% 3% 3% 3%
Processing additive 3% 3% 3% 3% 3% 3% 3%

Density by Rule-of-mixture g/cm3 0.95 1.09 1.16 1.13 1.22 1.57 1.88
Measured density g/cm3 0.95 ± 0.00 1.02 ± 0.01 1.03 ± 0.02 1.02 ± 0.02 1.05 ± 0.01 1.21 ± 0.03 1.24 ± 0.10

Porosity 0.1% 6.5% 11.3% 9.8% 14.0% 23.0% 34.1%

Table 2. Composite formulations, part II (the proportion of material by weight).

MWR40 MWR60 MWB40 MWB60 GYP40 GYP60 SS40 SS60

Mineral wool, recycled 40% 60% 0% 0% 0% 0% 0% 0%
Mineral wool, by-product 0% 0% 40% 60% 0% 0% 0% 0%

Gypsum, recycled 0% 0% 0% 0% 40% 60% 0% 0%
Soap-stone, by-product 0% 0% 0% 0% 0% 0% 40% 60%

Coupling agent 3% 3% 3% 3% 3% 3% 3% 3%
Processing additive 3% 3% 3% 3% 3% 3% 3% 3%

Density by rule-of-mixture
g/cm3 1.62 1.95 1.62 1.95 1.28 1.44 1.76 2.17

Measured density g/cm3 1.28 ± 0.02 1.37 ± 0.01 1.33 ± 0.01 1.57 ± 0.01 1.22 ± 0.01 1.37 ± 0.03 1.32 ± 0.01 1.62 ± 0.02
Porosity 20.8% 29.7% 17.7% 19.4% 4.3% 4.7% 25.1% 25.3%

2.3. Composite Manufacturing

A compression molding tool was used to make 110 × 110 × 10 mm square plates for the
manufacturing of impact strength and water absorption samples. The composite agglomerate was
heated in an oven to 165–200 ◦C, after which it was manually transferred to the compression molding
tool see Figure 1 for the set-up. A pressure of 24.3 MPa was applied for 60 s to mold the samples.
The temperature of the material inside the oven before compression and immediately before demolding
was measured with Mastercool Infrared Thermometer OUTPUT <1 mW AT 630~670 nm CLASS II
and documented. The tensile strength specimens were prepared with a compression molding tool see
Figure 2. The tool and the press had no heating or cooling capability. The mold had channels to regulate
overfilling caused by the manual transfer of heated material into the mold. The tools were mounted
on a hydraulic C-frame press made by Stenhøj A/S coupled with CA-1000 connector accessory with
VI Logger version 2.01 made by National Instruments. The processing of 110 × 110 × 10 mm plates
was successful with all the materials, but the thinner tensile strength specimens were not possible to
process with the GF60 composition as the specimens broke during demolding.
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Figure 2. A tool constructed for the compression molding of tensile strength samples.

2.4. Mechanical Property Measurements

The tensile properties strength and elastic modulus were measured with a Zwick Roell Z020
testing machine. The measurement of the tensile modulus was performed according to ISO 527-1 [25]
with a testing speed of 1 mm/min. The compression mold specimens were of the ISO 527-2/1A/1 type,
and 12 specimens were prepared for each sample see Figure 3. The samples for the Charpy impact
strength were sawn from molded 110 × 110 × 10 mm square plates (see Figure 4) into the length
80 ± 1 mm, width 10 ± 1 mm, and thickness 4 ± 1 mm; 12 samples of each material were prepared.
The Charpy impact strength was measured at 21 ◦C with the Zwick 5102 impact tester. The impact
velocity of the pendulum was 2.93 m/s, the pendulum length 225 mm, and the angle of deflection
160 degrees. Brinell hardness was tested with Zwick Roell indentation testing equipment. The diameter
for the pressing ball was 10 mm and the pressing force of 1 kN was applied for 25 s. The dent was
measured with a caliber after the minimum wait time of 2 min. The fracture morphology of the broken
tensile strength samples was studied with a Hitachi SU3500 scanning electron microscope (SEM).
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2.5. Moisture Absorption and Thickness Swelling

The moisture absorption and thickness swelling of the composites were determined according to
EN 317:1993 [26]. For each material, 12 samples were manufactured by compression molding see an
example in Figure 5. Moisture absorption (MA) and thickness swelling (TS) were calculated with the
following equations

MA =
mt − mo

mo
× 100% (1)

where mo and mt are the mass of the sample in grams before and after immersion.

TS =
Tt − To

To
× 100% (2)

where To and Tt are the thickness of the sample in millimeters before and after immersion.
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2.6. Heat Build-up and Color Measurements

The heat build-up of the composites was tested according to EN 15534-1 [27]. The samples with
dimensions 100 × 10 × 4 mm were tested. Three specimens for each type of composite were measured
with the black control specimen. An infrared heat lamp with 250 W nominal power was used to heat
up the samples. The distance from the lowest part of the lamp to the bottom of the box was 375 mm.
The method measured the relative value of heat build-up compared with a black control specimen
under the defined conditions and does not predict the application temperature in real situations.
The used black control specimen was made of the same material as the reference (REF) so that the test
results would show the possible changes caused by the application of filler materials.

A Minolta CM-2600d spectrophotometer was used to determine the colors of the composite
samples according to the CIE (Commission Internationale de l’Eclairage) L*a*b color system.

3. Results and Discussion

3.1. Mechanical Properties of Composites

3.1.1. Impact Strength

The impact resistance of polymers depends on geometry, the mode of loading, the load application
rate, the loading environment, and polymer properties such as chain length, packing, chemical
arrangement units in the polymer chain, alignment, and bonding forces. Therefore, the strength is
the sum of properties that contribute to the dissipation of the forces of impact [28]. The effects of
a high fill rate on the Charpy impact strength of the recycled plastic were significant (see Figure 6).
The impact strength’s decreasing effect with an increased particle content [29] was found across the
studied materials, with an exception in SS40 (4.86 ± 1.31 kJ/m2) and SS60 (5.27 ± 2.59 kJ/m2), where
the mean value with a 60% fill rate was higher. Compared to the REF (72.31 ± 9.94 kJ/m2) material,
the drop-in impact strength was on average 90%, as Figure 6 shows. Glass fiber GF40 had the highest
impact strength of the measured composites with filler (12.71 ± 4.76 kJ/m2). According to previous
studies, the high impact test results with glass fiber thermoplastic composites have attributed to strong
interaction between the silanol groups of the glass surface and the anhydride group of the coupling
agent [30,31]. The standard deviation in GF40 results was the highest of all tested materials, which
was likely caused by the agglomeration phase where the fibers were broken into random lengths and
clustered heavily together, creating discontinuities and porosity in the thermoplastic matrix. This same
reason might be the cause of the higher results in GF40, as the clustering of fibers also created zones
where the tough thermoplastic was the dominant material. This seems to be supported by the SEM.
This effect was not as strong in the composite GF60 (5.72 ± 2.45 kJ/m2), which could be related to
the plastic zones being smaller with a higher glass fiber content. The use of rough or fine saw flour
did not seem to have a significant difference in the impact resistance properties in the wood plastic
composite samples NFR40 (6.87 ± 1.07 kJ/ m2) and NFF40 (6.77 ± 1.63 kJ/m2) with a 40% fill rate.
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Both of the particle types decreased the impact strength compared to unfilled REF, which is in line with
the previous studies [14,32]. The composite NFF60 (5.61 ± 0.89 kJ/m2) with fine wood flour performed
better than the sample with rough wood flour NFR60 (4.91 ± 0.65 kJ/m2). The variance in the impact
strength was generally higher in samples with a 60% fill rate. Without the bonding effect of the matrix,
the high aggregation of fillers leads to insufficient homogeneity, rigidity, and low impact strength, and
the aggregated particles act as crack initiation sites in impact [1]. The mineral wool composites with
recycled raw material MWR40 (11.04 ± 2.94 kJ/m2) and MWR60 (6.32 ± 1.53 kJ/m2) had higher impact
strength than the MWB40 (7.13 ± 1.59 kJ/m2) and MWB60 (4.86 ± 0.89 kJ/m2) made of by-product
mineral wool, which is surprising as the tensile properties in MWB cases were superior. However,
MWR40 had quite a high value for elongation at break 2.81%. The composite GYP40 performed well
in impact testing with a small deviation in results 8.86 ± 0.65 kJ/m2, but as the gypsum content was
increased, the results dropped as in other tested samples GYP60 6.32 ± 1.53 kJ/m2.
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3.1.2. Tensile Strength

The tensile strength decreased with the addition of filler material compared to fully plastic REF
(17.31 ± 0.48 MPa) due to weak interphase adhesion in the filler interface (see Figure 7). The calculated
specific strength shows that although the tensile properties of MWB, GYP, and SS filled composites
were similar, the GYP40 performs better when considering the material weight. The tensile strengths
of the compression molded wood plastic composite samples were significantly below the previously
reported values [14,33]. The composite NFF40 (11.29 ± 1.11 MPa) had 18% higher tensile strength than
the composite NFR40 (9.13 ± 1.47 MPa), which would seem to suggest some influence by the fiber size.
However, the wood plastic composite samples with a 60% fill rate demonstrated the opposite affect, and
the NFF60 (6.90 ± 2.24 MPa) had 18% smaller tensile strength compared with NFR60 (8.16 ± 1.81 MPa).
This seems to be in conflict with previous reports where the increased fiber size and fiber ratio has
improved both the modulus of elasticity and maximum strength although in these studies the fiber
size has previously been significantly smaller [33,34]. Wood plastic composite samples NFR40, NFR60,
NFF40, and NFF60 all had relatively high variance in results. In the NFF60 with 20 mesh natural fiber
filling of 60%, the deviation in results was over 30% of the results average. The measured densities in
NFR40, NFR60, NFF40, and NFF60 were close to each other despite the different fill rate, and while
NFF60 composite samples were the heaviest, NFR60 performed better both in strength and in the
modulus. The agglomerate heating method and relatively low (24.3 MPa) mold pressure might also
have affected the results of the tensile strength negatively in composites with a high natural fiber
content. The blanket created by the wood fibers in Figure 8 acted as insulation to the thermoplastic,
leading to a longer heating time and uneven temperature in the plastic matrix. The mineral filled
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composites performed better as group compared to the fiber filled composites; an exception to this are
the samples MWR40 (7.81 ± 0.86 MPa) and MWR60 (5.85 ± 0.73 MPa). The difference between recycled
and by-product mineral wool composites MWB40 (9.96 ± 0.73 MPa) and MWB60 (9.28 ± 1.79 MPa)
might be in the non-hardened resin component in the by-product material. The composites with
by-product mineral wool filling tensile properties are close to the previously reported 9.00 MPa with a
recycled HDPE matrix and 40% rock wool filling [35]. Wood plastic composites with 40% fiber fill have
previously had significantly higher tensile strengths [36]. Similarly, there was a significant variance
in the results of glass fiber composite GF40 (7.81 ± 2.84 MPa) with 40% filling. While processing
the GF60 tensile strength and elastic modulus samples the matrix was not able to hold the material
together and they broke during demolding. In this study, the cut glass fiber also reduced significantly
in size. In a study conducted in the same laboratory [37], the glass fiber was agglomerated with the
same method, and the size of processed glass fibers ranged from 20 to 460 µm with the mean size of
about 100 µm. Processing is known to affect the fiber length and distribution, and likewise, anisotropic
particle fillers cleave and experience considerable delamination in processing [1]. In both natural and
glass fiber composites, the aggregation of fibers created weak spots in the matrix leading to crack
propagation. In general, the mineral fillers with a small particle size performed better in the tensile
strength test, which suggests better dispersion in the matrix than with the fiber fillers. The tensile
strength of mineral wool composites MWR and MWB ranged between 5.85–9.96 MPa. The lowest
result was with MWR60 and the highest with MWB40. Both MWB samples performed better than
the samples with post-consumer recycled mineral wool. This could be due to the reinforcing effect
of the non-hardened resin in by-product mineral wool which was activated in the processing of the
composite. The materials with the least variation in the mineral filled composites group where the
samples with recycled gypsum GYP40 (10.07 ± 0.31 MPa) and GYP60 (10.48 ± 1.04), and a good
dispersion into the matrix is visible in the SEM analysis. The tensile strength SS40 (9.74 ± 0.68 MPa)
and SS60 (9.64 ± 2.62 MPa) were similar, but there was greater variation in the results of SS60 probably
caused by the higher probability of local concentrations of soapstone in the mixture with a 60% fill rate.
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Figure 7. Tensile strength of HDPE-based composites.
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3.1.3. Tensile Modulus

The addition of mineral and fiber fillers increased the tensile modulus of recycled HDPE in all
samples except in GYP40 (0.89 ± 0.05 GPa) (see Figure 9). The standard deviation in samples NFR60
(1.78 ± 0.28 GPa), NFF60 (1.58 ± 0.51 GPa), GF40 (1.39 ± 0.38 GPa), and MWR60 (1.37 ± 0.73 GPa)
was high due to the clustering of particulates to high concentrations in the tensile specimens. With the
60% recycled mineral wool fill MWR60 some individual tests resulted in a lower tensile modulus
than in the REF material (0.94 ± 0.04 GPa). Also, the tensile modulus of MWR40 (1.16 ± 0.16 GPa)
was quite close to the REF material. Mineral wool by-product MWB40 (1.38 ± 0.09 GPa) and
MWB60 (1.72 ± 0.07 GPa) performed generally better than the recycled mineral wool probably due
to the activated non-hardened resin in the by-product component. Wood plastic composites NFR40
(1.40 ± 0.17 GPa) and NFF40 (1.51 ± 0.10 GPa) had smaller variance in results than the other fiber
composites due to the good dispersion of wood particles into the plastic matrix and the effect of the
compatibilizer. Composites filled with by-product mineral wool (MWB40 and MWB60), gypsum
GYP40 and GYP60 (1.65 ± 0.11 GPa) and soapstone SS40 (1.17 ± 0.12 GPa) and SS60 (1.86 ± 0.10 GPa)
all had small variation in the results because of their relatively good dispersion in the matrix.
The particulate and fiber filling increased the stiffness of the composites with the exception of GYP40.
A great deal of variation is visible in the tensile modulus of NFR60, NFF60, GF40, and MWR60.
A common factor for all of these is the large amount of porosity revealed by the SEM analysis and the
calculated difference between the supposed and calculated density. Both GF40 and MWR60 exhibit
heavy clustering of small fibers without proper adhesion to the matrix, which explains the variation in
the tensile modulus.
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Figure 9. Tensile modulus of HDPE-based composites.

3.1.4. Brinell Hardness

Hardness is the degree of permanent deformation of a material under an applied force. Figure 10
displays the results for the measured Brinell and the hardness in relation to density. There was a small
increase in the Brinell hardness in the composites MWR60 (6.0 ± 0.5 HB), GYP60 (6.1 ± 0.3 HB), and
SS60 (6.1 ± 0.2 HB) compared with the REF (5.6 ± 0.5 HB) material. However, when the increase in
density is taken into consideration, soapstone is not a very efficient filler for increasing the surface
hardness of the composite. In a previous study, the addition of mineral wool (40 wt %) to the recycled
HDPE increased the Brinell hardness by 37% [35]. Another study reported that composites with 20,
30, and 40% of recycled mineral had 10.5, 16.5, and 20.6% lower Brinell hardness, respectively, than
the reference [18]. The smaller content of the filler and better interfacial adhesion of particles to the
polymer matrix was used to explain the greater hardness in the lower filler content [18]. Here, the
filling effect of mineral wool lowered the Brinell hardness in MWR40 (4.7 ± 0.8 HB) by 16% and in
MWB60 (5.2 ± 0.5 HB) by 7%. However, in the MWB40 (5.7 ± 0.3 HB) and MWR60 samples, the
hardness increased by 1% and 7%, respectively. It would seem that the influence of mineral wool
filling on hardness is not completely predictable with high fill rates. The highest hardness value was
obtained in the SS60 composite; it had the least amount of variation in results. This is surprising,
as soapstone mainly consists of talc, of which the Mohs hardness is lower than that of gypsum or
silicon dioxide, which is one of the main components in mineral wool [38]. The composite SS40
(4.9 ± 0.4 HB) had a significantly lower hardness than SS60 and REF. This could be due to the fill rate
decreasing the elastic properties of plastic but not creating highly packed zones of mineral material.
GYP60 (6.1±0.3 HB) had the same hardness value as SS60 and the result for GYP40 (4.9 ± 0.4 HB) was
higher than for SS40, which might be due to better packing of material, as the density comparison in
Table 1 shows. Composites that had natural fiber filling demonstrated elastic behavior and spring-back,
which explains the rather high values for hardness compared with the composites with mineral fillers.
Both glass fiber samples GF40 (4.7 ± 0.5 HB) and GF60 (2.6 ± 0.3 HB) had the poorest results for
hardness due to their soft fiber bundles on the surface of the material that gave way during the
indentation test. In the GF60 samples, there was an approximately 1 mm layer of loose and soft fiber
material. Previously, when glass fiber has been added as reinforcement to a wood plastic composite, a
small increase in hardness has been reported [37]. However, the previous studies used only 10% of
glass fiber, which dispersed more homogenously into the matrix and did not create soft fiber bundles.
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The hardness for wood plastic composite samples NFF40 (5.4 ± 0.8 HB), NFF60 (5.2 ± 0.5 HB), NFR40
(5.8 ± 0.9 HB), and NFR60 (5.1 ± 0.6 HB) was lower than in the REF material, probably because of
the wood fibers close to the surface that gave way under pressure. When taking into consideration
the increase in density and the lowering effect of the tested fillers, it can be stated that they are
not advantageous for hardening the plastic. The reference material HDPE is better protected from
permanent deformation by its uncompromised elasticity.
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3.2. Morphology of Fractured Surfaces

The scanning electronic microscopy can be used to analyze the topography of the broken tensile
strength samples to determine fracture mechanisms and the dispersion of filler materials in the matrix.
Figure 11 displays the SEM images for selected specimens. The broken surface of the REF material
shows small impurities. It is unlikely that these small particles would have had a major effect on the
mechanical properties, as they seem to be just on the surface of the material. Small bits of unmelted
plastic of different colors were visible on the surface of processed HDPE samples. Small quantities
of impurities are often carried to the plastic material from the recycling process. The wood fibers
seem to have been clustered in some parts of the broken surface; the concentrations of wood without
the plastic matrix are weak points in the composite. Signs of fiber pullouts are visible in parts of the
wood plastic composite. Debonding and fiber pullouts are dominant deformation processes when
adhesion between the fiber and the matrix is poor [1]. The GF40 sample shows a small amount of
plastic material on the glass fiber surface suggesting weak bonding between the matrix and the fiber.
The scanning electron microscopy indicates the heavy clustering of glass fibers, which has probably
impeded the flow of plastic during molding, likely causing the relatively high variation in the GF40
tensile strength results. Surprisingly, the impact strength results of GF40 were the second highest after
REF. The glass fiber samples with 40% and 60% had both relatively high fill rates, and it is likely that
with a smaller fill rate, the matrix would have a more heterogeneous structure and better processing
quality. The fiber surface in MWR40 is clean of plastic material, suggesting weak bonding of the filler
to the thermoplastic matrix. In the mineral wool based MWB40 and MWB60, the broken surfaces of the
composite samples show the dislocations of the filler from the matrix. The matrix in both MWB40 and
MWB60 shows signs of a tear by stretching; there are also grooves which show signs of fiber pull-outs.
In the GYP60, the gypsum particulates have dispersed well into the material, which is demonstrated
also by smaller deviation in the test results for mechanical properties in the samples. The gypsum filler
in GYP40 and GYP60 displays clean surfaces without plastic to create proper adhesion in the points
of break. The porosity and dislocation of the particulates from the matrix can be seen in the fracture
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scans of SS40 and SS60, but more in SS60. The large deviation in the tensile strength results of SS60
samples is related to the strong cavity formation around the soapstone particles.Sustainability 2018, 10, x FOR PEER REVIEW  12 of 17 
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3.3. Effects of Porosity in Mechanical Properties

The porosity for the tested composites is presented in Tables 1 and 2. The strength of the
particulate filled composite depend strongly on the stress transfer between the filler and the matrix [39].
The void content and their shape, size, and location effect on the mechanical properties and to the
mechanisms leading to mechanical failure stress/strain concentration effects [40]. This phenomenon is
visible in the strain curves of composite SS60 which had relatively high porosity (25.3%) see Figure 12.
Similar behavior could be seen in the composites with lower volume of porosity suggesting also
irregularity in the dispersion of filler material. The presence of both resin and interlaminar voids is
verified in the SEM of broken tensile samples see Figure 11. The influence of high porosity is most
clearly seen in the soapstone filled composites SS40 and SS60. Both SS40 and SS60 had high variance
in impact and tensile strength properties, whereas GYP40 and GYP60 had little porosity and small
variance. The lack of heating in the mold probably affected adversely the properties of the composite as
the trapped air had not enough time to move through the channel before the solidification of material.
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Figure 12. Strain curve of SS60 composite samples.

3.4. Moisture Absorption and Thickness Swelling

Moisture absorption and thickness swelling divided the tested materials into two distinct
categories by performance: fiber and particle filled composites (see Table 3). The reference material REF
did not absorb water during the immersion time of 28 days. The wood plastic composites NFR60 and
NFF60 absorbed approximately 13 wt % of water during the test period. The difference in performance
between the 40% and 60% mixture was considerable as the NFR40 and NFF40 absorbed 5 wt % of
water. The thickness swelling in wood plastic composites NFR60 and NFF60 was 4%, while the NFR40
and NFF40 had only 1%. The fiber mesh size had only a minimal effect on the moisture absorption,
as shown also in previous studies [33]. It is notable that the wood plastic composite samples with
both mesh sizes had significantly smaller thickness swelling than reported previously for compression
molded wood plastics [41]. This can be attributed to the used coupling agent maleic anhydride
modified polyethylene, which has been shown to improve the water absorption resistance of wood
plastic composites [42]. The glass fiber 60% composite GF60 absorbed approximately 10 wt % of water
during the immersion, performing more weakly than the hydrophilic wood plastic composites NFR40
and NFF40. In both of the glass fiber compositions, the poor surface quality, lack of plastic film on
the surface, clustering of fibers and weak bonding formed pathways for the water to enter into the
composite increasing the water absorption to a relatively high level considering the hydrophobicity of
the materials used. The poor quality of the glass fiber samples was evident also in the thickness swelling
measurement as the material was actually separated from the samples during the immersion period.

Table 3. Moisture absorption and thickness swelling after immersion of 28 days.

REF NFR40 NFR60 NFF40 NFF60 GF40 GF60 MWR40 MWR60 MWB40 MWB60 GYP40 GYP60 SS40 SS60

MA wt % 0.4 5.0 13.5 5.0 12.9 2.3 9.7 0.3 0.8 0.3 0.3 0.2 1.1 0.3 0.1
TS % 0.0 1.2 4.4 1.2 4.3 −0.3 −1.1 −0.4 1.2 −0.1 −1.2 0.0 1.0 −0.2 −0.4

The water absorption and thickness swelling of the particle based composites was negligible.
The highest value for thickness swelling in particle-filled composites was approximately 1% in the
MWR60 and GYP60 composites. A small amount of filler material was separated during the immersion
time, which would seem to suggest an incomplete covering of the particulates by the matrix on the
surface of the composite samples. This could be seen from the visible mineral particles in the water
container after drying the tested samples.

3.5. Evaluation of Heat Build-Up and Color Measurements

The rise of temperature in the composite material exposed to thermal radiation is related to the
optical properties [43]. Figure 13 presents the measured CIE L*, a*, and b* color values, with specular
component included (SCI) and specular component excluded (SCE). The lightness *L represents the
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darkest black at *L = 0, and bright white at *L = 100. The measured values for a* and b* represent the
true neutral grey value at a* = 0 and b* = 0. The green color is represented at negative a* values and
red at positive a* values. The b* negative values represent blue and the positive b* values represent
yellow color. The composite CIE-LAB values were estimated using Colorizer [44]. The black reference
sample REF had an *L value of 25.20, whereas the results for the mineral filled samples were in the
range 25.50–28.26. The exception to this was MWR60 with *L 32.61. For the wood plastic samples, the
*L value ranged between 44.01 and 51.06, resulting in decreased heat build-up. The composites with
the mineral fill rate 40% increased the heat build-up by 4.5% compared with the reference material REF.
The samples with a 60% mineral fill rate had no significant change in heat build-up compared with REF.
The addition of wood fibers had on average a 10% decrease in heat build-up. The use of wood particles
resulted in lighter colors than the black REF material. The results for wood plastic composite samples
were close to previously reported ones with recycled materials [14]. Both wood and glass fiber filling
had the greatest impact on the optical properties compared with the reference material. The mineral
filled composites had relatively low values for reflectance compared with wood plastic and glass fiber
samples. This can lead to higher heat build-up values, as Figure 14 shows. The carbon black originally
used to color the recycled sewer pipe plastic had the greatest influence on the optical properties of the
composite. The addition of mineral and fiber fillers, however, decreased the reflectance of the plastic,
giving it more of a dull type appearance. The filler particulate size could also have affected the results
of the color measurements, as the wood fibers were several times larger than any of the other filler
type particles that were milled into dust in the agglomerating stage. The importance of color depends
on the application and market trends; therefore, the effect of filler on the visual look of the product
should be assessed case by case.
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4. Conclusions

In this study, compression-molded composites were made of recycled materials, and their
mechanical properties were examined. The morphology of the HDPE/recycled material composites
was analyzed by observing the tensile pull-fracture surface. The recycled filler materials were able
to significantly improve the tensile modulus of the recycled HDPE but had a decreasing effect on
impact strength, tensile strength and elasticity. The Brinell hardness of the plastic did not improve with
the addition of mineral fillers even with 60% fill rates, and most of the composites had lower values
for hardness with the exception of MWR60 and GYP60. The measured densities of the composites
did not follow the rule-of-mixture, which would seem to suggest uneven mixing in the processing
phase and porosity in the samples. This was supported by voids and clustered particles found in the
SEM analysis and in the variance in the tensile strength and tensile modulus properties especially in
composites with fiber filling. Porosity and clustering of filler material were identified as major causes
for variance in mechanical properties. The lack of hot-melt mixing during material processing probably
had a negative effect on the final composite mechanical properties. The hot-melt mixing would have
improved the dispersion of the filler materials into the matrix. The tested mineral particle filled
composites could be used in a variety of compression molded products previously made of recycled
plastic, especially where a large volume of material is needed. The composites with mineral fillers
had better resistance to moisture compared to wood plastic composites, which would be beneficial
especially in outdoor applications. The heat built-up in composites with mineral fillers was higher
than in the ones with wood, which suggest that natural fibers are still a better option for producing
decking products. The recycled glass fiber did not function optimally with the used recycled plastic
as it did not mix properly into the matrix, therefore, the combination as such is not advisable due
to the risk of fiber separation. The use of filler type specific coupling agents and improved mixing
during processing could further improve the properties throughout the tested material range. Future
studies on the methodology of designing products with recycled material composites are required.
Furthermore, the economics and carbon footprint of such production should be verified to better
understand the potential of the recycled materials in composites.
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