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Abstract: Green Gross Domestic Product (GDP) is an important indicator to reflect the trade-off
between the ecosystem and economic system. Substantial research has mapped historical green
GDP spatially. But few studies have concerned future variations of green GDP. In this study, we
have calculated and mapped the spatial distribution of the green GDP by summing the ecosystem
service value (ESV) and GDP for China from 1990 to 2015. The pattern of land use change simulated
by a CA-Markov model was used in the process of ESV prediction (with an average accuracy of
86%). On the other hand, based on the increasing trend of GDP during the period of 1990 to 2015, a
regression model was built up to present time-series increases in GDP at prefecture-level cities, having
an average value of R square (R2) of approximately 0.85 and significance level less than 0.05. The
results indicated that (1) from 1990 to 2015, green GDP was increased, with a huge growth rate of 78%.
Specifically, the ESV value was decreased slightly, while the GDP value was increased substantially.
(2) Forecasted green GDP would increase by 194,978.29 billion yuan in 2050. Specifically, the future
ESV will decline, while the rapidly increased GDP leads to the final increase in future green GDP. (3)
According to our results, the spatial differences in green GDP for regions became more significant
from 1990 to 2050.
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1. Introduction

China’s economic development has improved people’s living standards. The GDP in China
increased from 367.87 billion yuan to 74 trillion yuan during the period of 1978 to 2016 [1]. With the
rapid economic growth, ecosystem degradation has been aggravated and has severely affected the
ecosystem function. The contradiction between economic growth and ecosystem carrying capacity has
become an important limiting factor for sustainable development [2]. Therefore, a set of evaluation
indicators was proposed and supposed to properly reveal the relationship between socio-economic
development and ecosystem services. Those indicators provided a basis for the formulation of human
social and economic sustainable development decisions. Among all of those indicators, green GDP is
the most popular.
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The United Nations first proposed the concept of green GDP in 1993 and released the system
of ecosystem and economic accounting to reflect the relationship between economic development
and preservation of natural resources [3,4]. Based on the concept proposed by the United Nations,
numerous academic studies have been carried out to measure, evaluate and display green GDP for
different regions at varying scales. For example, Sutton and Costanza [5] first attempted to map the
ESV including green GDP accounting and estimated global market and non-market economic value
and presented an integrated indicator called the subtotal ecological-economic product (SEP) that
includes ecosystem services products (ESPs) and GDP. Kultida et al. [6] calculated the green GDP for
Thailand from 2015 to 2020 by considering three types of environmental costs. Lin et al. [7] calculated
the green GDP for China from 2006 to 2010 by considering energy intensity and pollution intensity.
Talberth and Bohara [8] compared the gaps between green GDP increase and GDP increase. Li and
Lang [9] implemented green GDP accounting for China with the purpose of illustrating the ongoing
conflict between environmental preservation goals and economic growth goals. Li and Fang [10]
mapped and estimated national green GDP globally by considering the economic value of ecosystem
services and GDP. Yang and Poon [11] calculated the green GDP for China in 2007 and found that once
considering green GDP, China’s geography of income inequality is much less obvious.

It is obvious that green GDP accounting has become increasingly popular. Green GDP can be
calculated by various methods concerning energy intensity, pollution intensity [7], environmental
costs [6] and ecosystem service value [9,12,13]. Until now, using different methods to measure green
GDP, comparing differences between green GDP and GDP and mapping the spatial distribution of
green GDP have been widely studied concerning the historical value of green GDP. However, even if
substantial studies have focused on the temporal trends of GDP [14], due to the difficulties in predicting
spatial variation of environmental cost or value by statistical models, few studies have predicted the
future changes in green GDP, especially the spatial change. Being aware of the future green GDP in
space is significant for government to control local economic development and ecological preservation.

On the other hand, the method used to predict future ecosystem service value in response to
land use change has been well developed and fully implemented. For example, Arowolo et al. [15]
evaluated changes in ESV in response to land-use/land-cover dynamics in Nigeria. Xu and Ding [16]
focused on the desertification in North China and its impact on the regional ESV from 1981 to 2010.
Anderson et al. [17] calculated the ESV for South Africa according to land use datasets. Numerous
studies have been carried out to evaluate ESV changes by considering land use changes. Obviously,
the response of ESV to land use change has been proved and applied in calculating ESV. In addition,
among all these studies, the cellular automata (CA) approach integrated with the Markov model
(CA-Markov) is the most popular for simulating land use [18,19]. To be specific, CA is a spatiotemporal
dynamic simulation model with discretization in time, space and state [20,21]. It focuses mainly on
the local interactions of cells with distinct temporal and spatial coupling features. It has been widely
used in simulating pedestrian dynamics [22,23], traffic flow [24] and fire spreading [25]. CA was
first proposed in geographical modeling by Tobler [26]. Now, CA has become a popular method
to simulate spatial distribution of urban sprawl for urban planning [27,28]. On the other hand, the
Markov method is commonly used in predicting geographical characteristics lacking after-effect events.
The integration of CA and Markov can provide a reasonable approach for future land use pattern
prediction. For example, Etemadi et al. [29] used CA-Markov algorithms to monitor and predict future
land use changes in coastal mangrove forests in Iran; Kamusoko [21] and Moghadam and Helbich [30]
simulated the spatiotemporal urbanization process of one megacity in India using CA-Markov.

In response to the gaps in green GDP prediction and significance of being aware of future green
GDP and given the advantages of CA-Markov in land use change simulation, this study attempted
to account for the green GDP for the entirety of China from 1990 to 2015 at the prefectural level
and combined the land use simulating approach, CA-Markov, to the green GDP prediction model to
predict the future variations of ESV in China. In the second part, our study area and data sources are
introduced and the third part carefully presents the methods for green GDP accounting and prediction.
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The fourth part presents the spatial results of green GDP from 1990 to 2050. The last part is the
conclusions and discussion section.

2. Study Area and Data Sources

2.1. Study Area

With an approximately 9.6 million square kilometer territory, China accommodated a population
of 1374.62 million in 2015, with an annual population growth rate of 0.9676% from 1978 to 2015 [1].
Due to the reform and opening up policy, China has experienced drastic economic growth, with the
GDP value increasing from 367.87 billion yuan to 74,114 billion yuan from 1978 to 2016 [1]. However,
along with the rapid development of the economy and population, the ecological environment
has been depressed [31]. Therefore, it is essential to evaluate the economic growth along with the
environmental degradation.

2.2. Data Sources

The land use dataset with a spatial resolution of 1 km for the mainland China for the period of
1990 to 2015 was downloaded from the Data Center of the Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences (http://www.resdc.cn/). Six land use types are
included: cultivated land, forest land, grassland, waterbody, construction land and unused land.

The national GDP values at the prefectural level from 1990 to 2015 were obtained from provincial
and prefectural statistical yearbooks. Some of the regional data were missing due to the change in
administrative boundaries at the prefectural level and the missing data were set to Nodata. Meanwhile,
Taiwan, Hong Kong and Macao were not considered in this study.

The outputs of major crops used as coefficients in ESV evaluation were obtained from the China
statistical yearbook of 2016 [1]. The major crops in China include rice, wheat, corn and soybeans. The
average purchase prices of major crops were provided by the China agricultural product price survey
yearbook of 2016 [32]. A summary of all the datasets used in this study is presented in Table 1.

Table 1. Description of the datasets used in this study.

Data Time Scale/Form/Resolution Source

Land use From 1990 to 2015 National, 1 km
resolution

Institute of Geographic Sciences
and Natural Resources Research

Chinese Academy of Sciences
(http://www.resdc.cn/)

GDP From 1990 to 2015 National, spreadsheet National, provincial and
prefectural Statistical Yearbook

Outputs of major crops 2015 National, spreadsheet National Statistical Yearbook
Crops purchase price 2015 National, spreadsheet National Statistical Yearbook

Administrative
Boundaries 2007 National, vector

shapefile

Institute of Geographic Sciences
and Natural Resources Research

Chinese Academy of Sciences
(http://www.resdc.cn/)

3. Methods

We first used the coefficient method proposed by Costanza et al. [33] to evaluate the ESV in
response to land use changes for China from 1990 to 2015 and meanwhile, the GDP at the prefectural
level was obtained from provincial and prefectural statistic yearbooks. After accounting for the green
GDP for China, we used the CA-Markov model to simulate the land use changes from 2015 to 2050 and
the increasing trend of GDP was built by linear regression. The framework of this study is presented
in Figure 1.

http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
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3.1. Estimation of the Ecosystem Service Value

This study referred to the coefficient method proposed by Costanza et al. [33] to calculate the ESV
at the prefectural level for the entirety of China (see Equation (1)):

ESV =
n

∑
i=1

Ai × Ei, (1)

where ESV is the total value of the regional ecosystem service value; Ai is the area of the i-th land-use;
Ei is the ESV coefficient for the i-th land use, which indicate the ESV per unit area of the i-th land-use
type (yuan/hm2); and n is the number of land use types. Ei is vital in ESV calculations and can be
determined by Equation (2).

Ei = ei × Ea (2)

ei is the equivalent factor of the unit price of the ESV of the i-th land-use type (see Table 2),
which can be determined according to the estimation method of the ecosystem service function value
coefficient proposed by Constanza et al. [33] and Xie et al. [34]. Ea represents the economic value of
the food production function for per unit area of farmland and can be determined using Equation (3).

Ea =
1
7

k

∑
j=1

mj pjqj

M
, (i = 1, · · · , k) (3)

Table 2. Equivalent factor of the unit price of the ecosystem service value (ESV) for land use types in
2015 (Units: yuan/hm2).

Land Use Types ei

Cultivated land 16,538.88 × 108

Forest land 108,095.26 × 108

Grass land 86,873.69 × 108

Waterbody 54,264.14 × 108

Unused land 7357.97 × 108
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j is the j-th type of crop and k is the number of crop types. Pj is the national average price of
crops in the j-th crop (yuan/ton) and qj is the yield of the j-th crop (ton/hm2). mj is the planting area
of the j-th crop (hm2). M is the total crop area of all crops (hm2) and 1/7 refers to one-seventh of
the economic value of the function of farmland providing food production unit area. According to
the status of the main crops in China, wheat, corn, rice and cotton were selected as the major crops.
In addition, the Pj can be achieved from a China Yearbook of Agricultural Price Survey [31] for each
major crop, and, on the other hand, qj and mj can be achieved from the provincial statistical yearbook
of 2016. The ESVs from 1990 to 2015 were calculated based on the Ea evaluated by Equation (3) and
were expressed in national average prices of crops for 2015 and can reflect the variation in ecosystem
service caused by land use change directly.

Since the ESV is a total index for the whole city, we defined the UESV as the ESV in a unit area for
a specific city (see Equation (4)).

UESVm =
ESVm

Aream
(4)

UESVm is the value of the ecological services of the m-th city on its per unit area (yuan/hm2) and
Aream is the area of the m-th city (hm2).

3.2. Estimation of Green GDP

Green GDP was proposed to reflect the development of economy and ecological preservation
simultaneously and it can be measured as Equation (5) shows.

Gm = TESVm + GDPm (5)

Gm refers to the value of green GDP for the m-th city. TESVm is the ecological service value for
the m-th city. GDPm is the gross domestic product for the m-th city.

3.3. ESV Forecasting Based on the CA-Markov Model

Because ESV is measured according to land use pattern, we simulated the future land use pattern
by the CA-Markov model first and then forecasted the ESV in the future. CA can be expressed by
Equation (6).

δi + 1 = f (St, N) (6)

δ is a finite and discrete set of states of the cell. N is the neighborhood of the cell, t and t + 1 refer
to a different time of iteration. f is the transformation rule of the state of the local space cell [35].

The Markov method uses Markov chain theory and probability theory to analyze the law of
random event changes. This method was used to predict a long-term prediction method in the future
state of change in each period [36].

S(t+1) = Pij × S(t) (7)

S(t + 1) is the state of the land use system at time t + 1. Pij is the state of the land use system at
time t. S(t) is the transfer matrix.

Both the CA model and the Markov model are dynamic models with discrete states. The
CA-Markov model combines the advantages of the CA model to simulate spatial variations of
complex systems and the advantages of the Markov model for quantitative prediction [27,37]. With
the combined advantages of CA and Markov, the CA-Markov model has been widely used in land use
space simulation applications [38].

To reflect the regional characteristics and regional differences in land use changes, according to the
existing research [39–41], the entire country was divided into four regions—eastern, central, western
and northeast—in the process of future land use simulation based on the 16th National Congress of
the Communist Party of China. After the land use simulation for each region separately, we used the
merging tool in ArcGIS to combine the results so as to obtain the final land use pattern for the entirety
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of China. Detailed descriptions of the four regions are listed in Table 3. To carry out the simulation, the
CA-Markov module in IDRISI software was used.

Table 3. The descriptions of the four sections in the CA-Markov land use simulation.

Region Index Name Zone Abbreviation

Z1 Eastern China
Beijing, Tianjin, Hebei, Shandong, Jiangsu, Shanghai,

Zhejiang, Fujian, Guangdong, Hainan, Taiwan,
Macao and Hong Kong

EC

Z2 Northeast China Heilongjiang, Jilin and Liaoning NEC

Z3 Western China
Inner Mongolia, Ningxia, Shaanxi, Chongqing,

Guizhou, Guangxi, Yunnan, Sichuan, Gansu, Qinghai,
Xinjiang and Tibet

WC

Z4 Central China Shanxi, Henan, Anhui, Hubei, Hunan and Jiangxi CC

3.4. Gross Domestic Product Forecasting Based on the Regress Model

According to the statistical yearbook from 1990 to 2016, the GDP at the prefectural level was
obtained. A linear regression model was built up to predict the GDP for 2020-2050. Specifically, years
were considered as the independent variable and GDP at the prefectural level was set as the dependent
variable in the regression, as Equation (8) shows:

Y =∝ x + β, (8)

where Y is the dependent variable of GDP; ∝ and β are the regression coefficients; and x is the
independent variable of years.

We also defined the UGDP to indicate the GDP value on per unit area in a specific city (see
Equation (9)):

UGDPm =
GDPm

Aream
, (9)

where UGDPm is the GDP value for per unit area of the m-th city (thousand yuan/hm2) and Aream is
the area of the m-th land use (hm2).

4. Results

4.1. Temporal and Spatial Variations of ESV from 1990 to 2015

According to the national 11th Five-Year Plan, the whole nation can be classified into four major
sections: the eastern region, central region, western region and northeastern region. To display and
analyze the differences in ESV, GDP and green GDP in the regions in detail, we divided the four major
regions into eight major economic zones by referring to existing studies [42,43]. Descriptions of the
eight major economic zones are listed in Table 4. The differences, variations and trends for ESV, GDP
and green GDP were analyzed at the economic zone level.

As the results showed, UESV gradually increased from northwest to southeast (see Figure 2).
This pattern was consistent with the spatial distribution of major forests in China. The better the
hydrothermal conditions, the higher the value of ecosystem services would be. The UESV has been
analyzed for 2015 (see Table 5). The economic zones with high values of UESV mainly included the
SCEZ, with a UESV value of 420.35 yuan/hm2 and the ECEZ, with a UESV value of 354.41 yuan/hm2.
The high values of UESV in the SCEZ and ECEZ are probably due to better hydrothermal conditions
and higher vegetation coverage, such as for Foshan city in Guangdong province, with a UESV of
831.49 yuan/hm2 and Suzhou city in Jiangsu province, with a UESV value of 854.65 yuan/hm2,
whereas the lowest values of UESV, 246.22 yuan/hm2 and 137.95 yuan/hm2, were for Xiamen city
and Yancheng city, respectively. The NEEZ, MYTREZ and SWEZ experienced the second highest
UESV. To be specific, the UESV values in the NEEZ, MYTREZ and SWEZ were 325.14 yuan/hm2,
323.10 yuan/hm2 and 320.29 yuan/hm2, respectively. In particular, in the SWEZ, the high value of
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UESV, 506.71 yuan/hm2, was concentrated in Nujiang city in Yunnan province. Usually, in the SWEZ,
the places with rich hydrothermal conditions in Yunnan province tended to maintain high values of
UESV. On the other hand, Ziyang city in Sichuan suffered the lowest USEV value of 105.62 yuan/hm2

in the SWEZ.

Table 4. Descriptions of China’s eight economic zones and abbreviations.

Region Index Name Zone Abbreviation

A Northeast Economic Zone Liaoning, Jilin, Heilongjiang NEEZ
B Northwest Economic Zone Gansu, Qinghai, Ningxia, Tibet and Xinjiang NWEZ

C Middle Reaches of the Yellow River
Economic Zone Shaanxi, Shanxi, Henan and Inner Mongolia MYREZ

D Northern Coastal Economic Zone Beijing, Tianjin, Hebei and Shandong NCEZ
E Eastern Coastal Economic Zone Shanghai, Jiangsu and Zhejiang ECEZ
F Middle Yangtze River Economic Zone Hubei, Hunan, Jiangxi and Anhui MYTREZ

G Southwest Economic Zone Yunnan, Guizhou, Sichuan, Chongqing and
Guangxi SWEZ

H Southern Coastal Economic Zone Fujian, Guangdong and Hainan SCEZ
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Table 5. The maximum and minimum values of UESV in 2015 (Units: yuan/hm2).

The Maximum
Value of UESV

The City with the
Maximum Value of

UESV

The Minimum
Value of UESV

The City with the
Minimum Value of

UESV

The UESV
Value

NEEZ 539.80 Benxi 141.67 Qiqihar 325.14

NWEZ 301.52 Tibetan Autonomous
Prefecture of Hainan 44.92 Jiuquan 140.13

MYREZ 347.42 Hulun Buir 51.85 Alxa League 195.25
NCEZ 429.70 Tianjin 65.46 Langfang 179.57
ECEZ 854.65 Suzhou 137.95 Yancheng 354.41

MYTREZ 609.69 Ezhou 69.14 Bozhou 323.10

SWEZ 506.71 Nujiang Lisu Nationality
Autonomous 105.62 Ziyang 320.29

SCEZ 831.49 Foshan 246.22 Xiamen 420.35

Typically, in the NEEZ, the high values of UESV are probably due to the fact that there are massive
forest reserves in the NEEZ and forests are an important carbon pool in China [44]. Some places in
the NEEZ trended to maintain the highest average UESV of 539.80 yuan/hm2, such as Benxi city in
Liaoning province. However, some places in the NEEZ also experienced lower UESV, such as Qiqihar
city in Heilongjiang province, with a UESV value of merely 141.67 yuan/hm2. In the MYTREZ, the
high values of UESV were distributed in the highly developed central cities, such as Wuhan city in
Hubei province and Changsha city in Hunan province, which have well-developed waterbodies and
relatively rich forest lands, with UESVs of up to 489.40 yuan/hm2 and 360.67 yuan/hm2, respectively.
On the other hand, the lowest UESV was located in Bozhou city in Anhui province for the MYTREZ,
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which had few forest lands, with a UESV of only 69.14 yuan/hm2. As for the SWEZ, the places with
rich hydrothermal conditions in Yunnan tended to maintain high values of UESV. On the other hand,
Ziyang city suffered the lowest USEV value of 105.62 yuan/hm2 in the SWEZ.

The NWEZ, MYREZ and NCEZ suffered the lowest UESV. The shortage of waterbodies and
massive unused land covers resulted in relatively low UESV values in the NWEZ, MYREZ and NCEZ,
which were 140.13 yuan/hm2, 195.25 yuan/hm2 and 179.57 yuan/hm2, respectively. The maximum
UESV values in the NWEZ, MYREZ and NCEZ were merely 301.52 yuan/hm2, 347.42 yuan/hm2

and 429.70 yuan/hm2 in the Tibetan Autonomous Prefecture of Hainan, Hulun Buir city and
Tianjin, respectively.

The total ESV for China experienced an obvious decreasing trend from 1990 to 2015, with the
average UESV dropping 1004.64 yuan/hm2. Most of China has suffered from an approximately 10%
decline in ESV (see the green area in Figure 2). Specifically, the UESV in the NWEZ, MYTREZ and
SWEZ showed an obvious decreasing trend, with decreases of 1.72 yuan/hm2, 108.62 yuan/hm2

and 6.35 yuan/hm2 from 1990 to 2015, respectively. Among them, the forest land and grassland
decreased and the construction land increased over large areas of Hefei city, which suffered the greatest
decrease from 427.08 yuan/hm2 in 1990 to 248.31 yuan/hm2 in 2015. However, UESV in some areas
still showed slight growth. For example, the UESV in the ECEC, MYREZ, NCEZ and SCEZ grew by
22.90 yuan/hm2, 49.83 yuan/hm2, 54.72 yuan/hm2 and 5.23 yuan/hm2 from 1990 to 2015, respectively.
Waterbodies enlarged Jining city in Shandong province and Zhuhai city in Guangdong province, which
maintained large increases of 178.35 yuan/hm2 and 164.31 yuan/hm2, respectively (see Figure 3).
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4.2. ESV Forecasting Based on Future Land Use Change

4.2.1. Future Land Use Simulation

To reduce the uncertainty in the land use simulation, this study used the CA-Markov model to
determine land suitability so as to guide the land use simulation process. The land use characteristics
and geographical conditions were different in the four regions. For example, in the northeast, eastern
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and central regions, cultivated land was the main land use type and the transportation network was
dense without steep slopes in regions. However, in the western region, most areas were covered by
unused land with a low density of built-up land and transportation networks. Therefore, according to
the different natural characteristics of each region, the suitability atlas calculation process differed for
different regions, which was set as follows.

(1) Selection of impact factors:
There were many constraints for different land uses. Various impact factors such as the slope,

distance to transportation networks and distance to the waterbody can be used to determine the
constraints for land uses.

(2) Establishment of suitability maps for land uses
Cultivated land: First, the places covered with cultivated land were set to 1. Otherwise, they

would be set to 0. Moreover, the places covered with unused land in Z1, Z2 and Z4 were set to 1,
indicating that the unused land in those regions can be transformed into cultivated land. However, the
unused land in Z3 was set to 0, since the unused land in Z3 is usually desert, frozen ground or other
land uses and cannot be developed. Therefore, the places covered with unused land in Z3 were set to 0.
According to the national Regulations on the Work of Water and Soil Conservation [45], cultivated land
cannot be located in places with slopes larger than 25 degrees. Therefore, the suitability for cultivated
land was set to 0 at places with slopes exceeding 25 degrees.

Forest land: According to the transfer matrix, the grass land can be transferred to forest land.
Therefore, the places with grass land were set to 1. Meanwhile, it was then determined that the forest
land tended to be located in places close to waterbodies. It is learned that in Z1, 73% of the forest land
was located in places within 550 km of a waterbody. Therefore, we selected a threshold of 550 km as
a constraint, indicating that a place is suitable for forest land. Otherwise, the places would be set to
0. As for Z2, Z3 and Z4, similarly, the distance thresholds for waterbodies have been set to 450 km,
880 km and 420 km when 71%, 77% and 72% forest land, respectively, is located within those distances
from waterbodies. Similar to cultivated land, for forest land, the places with unused land in Z1, Z2 and
Z4 were set to 1, indicating that those places are capable of being converted to forest land.

Grass land: According to the land use transfer matrix, forest land can be converted to grass land.
Therefore, the places covered by forest land and grass land were set to 1 first. Meanwhile, it is also
found out that the grass land tended to be located close to waterbodies. We set the threshold distance
such that 70% grassland was located in the distance buffer. Specifically, the threshold distances from
a waterbody for Z1, Z2, Z3 and Z4 were 550 km, 420 km, 850 km and 400 km, respectively. Last, the
places covered by unused land in Z1, Z2 and Z4 were set to 1.

Waterbody: Transfers and development were not allowed for waterbodies. Therefore, the places
with waterbody types were set to 1 and the other places were set to 0.

Construction land: First, the places with construction land were set to 1. It was then determined
that the construction land tended to be located in the places close to transportation networks. Therefore,
we selected the threshold distances from transportation networks when there was 75% construction
land located in those buffer areas. Specifically, the threshold distances were 800 km, 900 km, 1350 km
and 1000 km for Z1, Z2, Z3 and Z4, respectively.

The suitability maps for different land uses were obtained at the national scale and are presented
in Figure 4.

The land uses in 2015 were simulated based on land use in 2010 and land use changes from 2005 to
2010 were used to verify the model (see Table 6). The Markov model was used to calculate the land
use transfer matrix and then quantitatively explained the transformation among land-use types from
2005 to 2010. Then, based on the suitability maps and transfer matrix, the land use spatial pattern was
simulated for 2015 (see Figure 5). The simulation results indicated that the simulation accuracies in Z1,
Z2, Z3 and Z4 were 84%, 81%, 91% and 88%, respectively. According to existing studies, the accuracies
of our model were acceptable [46,47]. Therefore, the model can be used for further forecasting of the
spatial distribution.
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Figure 4. Suitability maps for different land uses based on binary and continuous values in the
CA-Markov model (the red raster indicates the places that are suitable for the specific land use, while
the green raster indicates the places that are not suitable for the specific land use): (a) cultivated land,
(b) forestland, (c) grassland, (d) waterbody and (e) construction land.

Table 6. Transition probability matrix of land use change from 2005 to 2010.

Land Use Type
2010

Cultivated
Land

Forest
Land

Grass
Land Waterbody Construction

Land
Unused

Land

2005

Cultivated land 0.9939 0.001 0.0007 0.0006 0.004 0.0001
Forest land 0.0007 0.9983 0.0006 0.0012 0.0005 0.0001
Grass land 0.0023 0.0007 0.9942 0.0015 0.0002 0.0008
Waterbody 0.0015 0.0002 0.0014 0.9946 0.0016 0.0017

Construction land 0.0006 0.0004 0.0034 0.0009 0.9942 0.0003
Unused land 0.0012 0 0.001 0.0013 0.0002 0.9976
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The verified model with land use transfer matrix from 2005 to 2010 was then used to simulate
the future land use patterns for Z1, Z2, Z3 and Z4. The results indicated that the areas of cultivated
land, grassland and unused land in the next 30 years will dynamically decrease with decline rates
of −8.71%, −2.97% and −9.28%, respectively (see Table 7). By contrast, forest land, waterbody and
construction land will increase by 11.80%, 3.99% and 96.53%, respectively (see Table 7). Some regions
in particular experienced sharp growth in construction land, such as Z1 and Z3, with increases of
6.75×106 hm2 and 15.48×106 hm2, respectively. On the other hand, the areas of cultivated land, grass
land and unused land were largely decreased in the western region, those losses being 15.42×106 hm2,
12.50×106 hm2 and 15.24×106 hm2, respectively (see Table 8).

Table 7. Land use change from 1990 to 2050 (Units: 106 hm2).

Forecast Data from 2020 to 2050

Year 1990 2015 2020 2025 2030 2035 2040 2045 2050 Growth
Rate (%)

Cultivated land 177.18 178.6 181.25 178.43 175.35 172.29 169.4 165.65 161.75 −8.71
Forest land 225.5 224.02 228.99 230.7 232.04 237.24 240.44 244.58 252.1 11.80
Grass land 300.19 295.4 264.93 268.33 267.27 258.39 262.57 276.81 291.28 −2.97
Waterbody 27.05 28.01 26.9 27.41 27.74 27.17 27.08 26.98 28.13 3.99

Construction land 15.86 22.19 25.01 25.46 26.54 27.46 28.63 29.93 31.17 96.53
Unused land 200.89 198.45 219.59 216.34 217.73 224.12 218.55 202.72 182.24 −9.28

Table 8. Land use growth changes in Z1, Z2, Z3 and Z4 from 1990 to 2050 (Units: 106 hm2).

Cultivated Land Forest Land Grass Land Waterbody Construction Land Unused Land

Z1 −6.52 2.81 −3.02 0.01 6.75 −0.03
Z2 0.18 2.36 −2.82 −0.15 3.28 −2.85
Z3 −15.42 26.61 −12.50 1.07 15.48 −15.24
Z4 −11.78 7.80 −3.66 −0.06 9.31 −1.61

4.2.2. Forecasted ESV from 2020 to 2050

Based on the simulated future land use pattern, the ESV from 2020 to 2050 was measured. In terms
of spatial variation, it was found that the high values of UESV were mainly distributed in coastal and
northeast China, such as the SCEZ and ECEZ (see Figure 6). Specifically, the UESV in the SCEZ would
be up to 421.35 yuan/hm2 in 2050, with the UESV in the ECEZ following at 361.85 yuan/hm2 in 2050.
According to our results, the overall pattern of UESV was ranked as the SCEZ > ECEZ > MYTREZ >
NEEZ > SWEZ > MYREZ > NCEZ > NWEZ in 2050.
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In terms of temporal variation, the UESV was gradually decreased from 2020 to 2050, with a total
reduction of 1108 yuan/hm2 and rate of growth of −1.21% (Table 9). The ESV in the SWEZ, NCEZ and
ECEZ showed a decreasing trend, with reducing rates of −10.53%, −1.968% and −1.512%, respectively.
As an example, the maximum decline rate of Nantong city was −43.91% (see Figure 6). The UESV in
the NWEZ showed a slight downward trend, with reductions of −0.268%.

Table 9. The variations in UESV in regions from 2020 to 2050 (Units: Yuan/hm2).

Economic Zone 2020 2025 2030 2035 2040 2045 2050 Growth Rate (%)

NEEZ 319.80 324.64 324.26 320.70 324.79 322.71 320.63 0.259
NWEZ 144.48 144.04 147.06 144.06 144.06 144.59 144.09 −0.270
MYREZ 196.89 197.31 197.32 209.28 197.32 197.37 197.26 0.188
NCEZ 173.76 170.63 171.78 170.42 170.59 170.19 170.34 −1.967
ECEZ 367.40 361.78 361.90 361.97 362.23 362.06 361.85 −1.511

MYTREZ 324.57 325.18 325.19 325.14 317.93 323.50 325.05 0.148
SWEZ 324.31 333.80 324.39 321.37 324.37 324.28 290.16 −10.530
SCEZ 421.33 421.41 421.59 411.44 421.46 421.53 421.35 0.004

A slight upward trend of UESV was detected in the NEEZ, MYREZ, MYTREZ and SCEZ with
increases of 0.259%, 0.188%, 0.148% and 0.004%, respectively. For the SCEZ and NEEZ, it is probably
because of increasing forest land in these two regions. Specifically, in the SCEZ and NEEZ, the forest
land increases by 1.38×106 hm2 and 3.21×106 hm2, respectively. A larger area of forest land (with ei
of 108,095.26×108 yuan/hm2) would lead to a higher value of ecological service. On the other hand,
even if the construction land increases by 1.30×106 hm2 and 1.78×106 hm2 in both regions, it trended
to cover the other land uses with lower ecological service values, such as unused land (with ei of
7357.97×108 yuan/hm2) and cultivated land (with ei of 0 yuan/hm2). Therefore, an increasing trend
has been detected in these regions.

4.3. Temporal and Spatial Variations of GDP from 1990 to 2015

The results indicated that in 2015, the UGDP decreased from the southeast to the northwest and
the high values of UGDP were mainly concentrated in the NEEZ, ECEZ and SWEZ (see Figure 7). In
addition, it was also found that the UGDP trended to be much higher in one or two cities than the
UGDPs of the surrounding cities. For example, the average UGDPs in Shenzhen city (3051.39 thousand
yuan/hm2) and Guangzhou city (877.10 thousand yuan/hm2) were the highest in Guangdong province,
whereas the average UGDP for other cities in Guangdong province was merely 211.18 thousand
yuan/hm2 in the period from 1990 to 2015.Sustainability 2019, 11, x FOR PEER REVIEW 14 of 21 
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Figure 7. Spatial distribution of UGDP in China: (a) UGDP in 1990 and (b) UGDP in 2015.

The spatial differences in UGDP in China became more severe from 1990 to 2015. For example,
the maximum UGDP of Shenzhen city was up to 72.00 thousand yuan/hm2 in Guangdong province
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and the maximum UGDP of Urumqi city in Xinjiang province was merely 4.00 thousand yuan/hm2

in 1990; that gap was up to 9077.00 thousand yuan/hm2 in 2015. Different growth rates in different
regions led to this spatial difference in UGDP in 2015.

The UGDP showed an obvious upward trend in the ECEZ, SCEZ and NCEZ. For example,
Shenzhen city, Shanghai city and Beijing city experienced the largest growth, with increases of
9193.81 thousand yuan/hm2, 4329.82 thousand yuan/hm2 and 1369.45 thousand yuan/hm2 from
1990 to 2015, respectively.

The growth rates of the NEEZ and MYTRZE were moderate. Traditional industrial cities in the
NEEZ experienced higher development than other cities in NEEZ. For example, the UGDPs in Harbin
city and Daqing city were increased by 106.23 thousand yuan/hm2 and 133.78 thousand yuan/hm2,
with growth rates of 98.05% and 94.97%, respectively. Capital cities, for example, Wuhan in Hubei
province, Hefei in Anhui province and Nanchang city in Jiangxi province in the MYTREZ, experienced
greater growth than did other cities in the MYTREZ and accounted for 41.13%, 13.20%, 30.79% and
29.8% of the total UGDP for the whole region of the MYTREZ in 2015.

However, the NWEZ, SWEZ and MYREZ experienced relatively low growth rates. For
example, the UGDP of Hetian in Xinjiang province, Pu’er in Yunnan province and Yushu in Qinghai
province experienced the lowest growths of 0.94 thousand yuan/hm2, 0.91 thousand yuan/hm2 and
0.73 thousand yuan/hm2 from 1990 to 2015, respectively.

4.4. GDP Forecasting from 2020 to 2050

Based on the temporal changes in GDP, a linear regression was built up for each city to predict
the GDP in 2020 to 2050. The values of R square and significant P for the regressions of each city
are presented in Figure 8a. It is noted that the values of R square for most of the cities were in the
range of 0.72 and 0.99, indicating a high fitting accuracy. Specifically, the R square was larger in the
highly developed cities of China, such as Beijing (with R square of 0.95), Shanghai (with R square of
0.98) and Guangzhou (with R square of 0.95). However, R square was lower in those eastern cities
suffering depressed development, such as Qitaihe in Heilongjiang (with R square of 0.72), Liupanshui
in Guizhou province (with R square of 0.75) and Xiangyang in Hubei province (with R square of 0.76).
In statistics, a significant P less than 0.05 and greater than 0.01 indicates statistical significance and P
less than 0.01 indicates very significant. However, the significant P exceeded 0.05, indicating that the
difference was not significant. The significant P was closer to 0.01 in most of the highly developed
cities (see Figure 8b), such as Beijing (with P of 0.007), Shanghai (with P of 0.003) and Guangzhou
(with P of 0.007). However, values of P exceeded 0.05 in the economically under-developed areas, for
example, Haixi Mongol (with P of 0.266) in Qinghai province, Laibin (with P of 0.154) in the Guangxi
Zhuang Autonomous Region and Tongren (with P of 0.157) in Guizhou province. According to the
regression model, the GDP value for each city from 2020 to 2050 was predicted.
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The predicted GDP was presented as the UGDP value for each city in 2020 and 2050 (see
Figure 9). According to the results, a huge increase in GDP has been detected—the total national GDP
increases from 85,271.13 billion yuan in 2020 to 180,718.28 billion yuan in 2050. The increase is mainly
concentrated in the highly developed cities, such as Beijing city, Shanghai city, Guangzhou city and
Hangzhou city and the sum of GDP values is as large as 21,847.24 billion yuan, contributing 23.76% of
the entire national GDP value in 2050.
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As a result, the spatial differences in UGDP become stronger from 2020 to 2050. The high value
regions of UGDP were mainly distributed in the ECEZ and SCEZ, with values of 45,061.62 thousand
yuan/hm2 and 68,205.96 thousand yuan/hm2, respectively, in 2050. High UGDP values in the
ECEZ and SCEZ are primarily found in Shanghai city, Hangzhou city and Guangzhou city; for 2050,
their values were 9949.94 thousand yuan/hm2, 1279.45 thousand yuan/hm2 and 5405.24 thousand
yuan/hm2, respectively. In contrast, the UGDP values in the NWEZ and SWEZ were only
4363.51 thousand yuan/hm2 and 16,449.02 thousand yuan/hm2, respectively, in 2050. In the NWEZ
and SWEZ, the lowest UGDPs were located in the blue area in Figure 9, such as Ali in Tibet province
and Yushu in Qinghai province, with values of 0.33 thousand yuan/hm2 and 0.97 thousand yuan/hm2,
respectively, in 2050. In the ECEZ and SCEZ, the difference between the high value of UGDP and the
low value of UGDP in the NWEZ and SWEZ was 46,135.58 thousand yuan/hm2 in 2020 and then
the difference was 93,689.98 thousand yuan/hm2 in 2050; therefore, the spatial difference was greater
between 2020 and 2050.

4.5. Temporal and Spatial Variations of Green GDP from 1990 to 2050

The green GDP was measured according to ESV and GDP at the prefectural level and a huge
increase has been revealed from 1990 to 2050. It was found that the green GDP increased from
19,623.94 billion yuan in 1990 to 194,978.29 billion yuan in 2050. Even if the ESV was decreasing, due
to the rapid economic development growth, the national green GDP was increasing.

In terms of spatial distribution (see Figure 10), high values of green GDP tended to be located in
the south China and east coastal regions, such as Beijing city, Shenzhen city and Guangzhou city, having
green GDP of 5006.06 billion yuan, 5273.93 billion yuan and 3910.14 billion yuan in 2050. In addition,
low values of green GDP tended to be located in west China, such as Jinchang and Jiayuguan in
Gansu province, having green GDP of 75.33 billion yuan and 63.50 billion yuan in 2050. To be specific,
the economic zones can be ranked as follows according to their green GDP values in 2050: NCEZ >
MYTREZ > SWEZ > MYREZ > ECEZ > SCEZ > NEEZ and NWEZ (Table 10). It was obvious that places
with higher green GDP values tended to experience stronger spatial differences or spatial inequalities.
For example, the Ugreen GDP in Wuhan was up to 3104.02 thousand yuan/hm2 in 2050 but the Ugreen
GDPs for cities surrounding Wuhan city were relatively low, such as for Huanggang city, with a Ugreen
GDP of 492.19 thousand yuan/hm2 in 2050 (see Figure 10).
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Table 10. Statistics of total ESV, GDP and green GDP in eight districts in 1990 and 2050 (Billion Yuan)
and the proportions of ESV and GDP in green GDP (%).

1990 2050

ESV
Proportion
of ESV in

Green GDP
GDP

Proportion
of GDP in

Green GDP

Value of
Green
GDP

ESV
Proportion
of ESV in

Green GDP
GDP

Proportion
of GDP in

Green GDP

Green
GDP

NEEZ 2547.46 93.29 183.10 6.71 2730.56 2489.93 15.66 13,414.89 84.34 15,904.82
NWEZ 3580.29 99.06 33.99 0.94 3614.28 5747.21 47.10 6456.22 52.90 12,203.43
MYREZ 3184.91 97.72 74.33 2.28 3259.24 3268.02 12.66 22,540.06 87.34 25,808.08
NCEZ 599.23 71.15 242.93 28.85 842.16 620.36 1.73 35,244.08 98.27 35,864.44
ECEZ 698.20 71.13 283.33 28.87 981.53 733.46 2.80 25,457.61 97.20 26,191.07

MYTREZ 2264.68 95.78 99.89 4.22 2364.57 2270.84 8.46 24,566.68 91.54 26,837.52
SWEZ 4298.28 97.66 103.05 2.34 4401.33 3920.97 14.71 22,726.93 85.29 26,647.87
SCEZ 1242.60 86.88 187.67 13.12 1430.27 1250.80 4.90 24,270.26 95.10 25,521.06
Sum 18,415.65 − 1208.29 − 19,623.94 20,301.59 − 174,676.73 − 19,4978.29

The huge differences in green GDP values between one city and the surrounding cities may lead
to numerous social problems. Being aware of highly spatial differences in green GDP in south China
and coastal China and low green GDPs in west China can help the government when making decisions
concerning environmental preservation and economic promotion.

The regional differences in the contributions of GDP and ESV to green GDP were analyzed. The
proportion of ESV and GDP in green GDP changed significantly in regions (see Table 10 and Figure 11).
In 1990, for most cities in China, the ESV accounted for 80% to 95% of green GDP. However, when it
comes to 2015, due to the drastic economic growth in China, the contribution of ESV has been hugely
diminished (see Figure 11).

In regions with high green GDP, the contribution of GDP to green GDP was increased gradually,
such as for the SCEZ, ECEZ, NCEZ and the MYTREZ. For example, in the NCEZ, the proportion of
GDP accounting for the green GDP had a large increase from 28.85% in 1990 to 98.27% to 2050.
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Figure 11. ESV and GDP as a percentage of green GDP from 1990 to 2050.

Cities with reducing ESV values and dramatically increasing GDP experienced a huge growth in
green GDP, such as Shenzhen, Chongqing and Beijing (see Figure 12). Taking Shenzhen as an example,
it demonstrated that the proportion of GDP in green GDP was 98.30%.

Sustainability 2019, 11, x FOR PEER REVIEW 17 of 21 

 

Figure 11. ESV and GDP as a percentage of green GDP from 1990 to 2050. 

 

Figure 12. The ratio of ESV to green GDP, (a) the ratio of ESV to green GDP in 1990, (b) the ratio of 

ESV to green GDP in 2015, (c) the ratio of ESV to green GDP in 2030 and (d) the ratio of ESV to green 

GDP in 2050. 

 

(a) (b) 

(c) (d) 

Shenzhen 

Chongqing 

Beijing 

Yushu 

Shenzhen 

Chongqing 

Beijing 

Yushu 

Shenzhen 

Chongqing 

Beijing 

Yushu 

Shenzhen 

Chongqing 

Beijing 
Yushu 
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to green GDP in 2015, (c) the ratio of ESV to green GDP in 2030 and (d) the ratio of ESV to green GDP
in 2050.
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However, on the other hand, the green GDP in regions with low GDP was largely dependent on
the variation of ESV and the drop in ESV would lead to a direct decrease in green GDP. For example,
in the NWEZ, the ESV accounted for 99.06% of green GDP in 1990 and the contribution would drop
to 47.10% in 2050. Consider, as an example, Yushu in Qinghai province, the contribution rate of
ESV to green GDP of which was 95.20% in 1990 and 92.57% in 2050 and ESV has always occupied a
high proportion.

5. Conclusions and Discussion

This study proposed a green GDP accounting and predicting system for prefecture-level cities
for China. In the proposed method, we used the coefficient method to measure the ESV according to
the output of local agricultural crops and land use patterns; on the other hand, the GDP value was
obtained from statistical yearbooks in China. To measure the future green GDP value, we integrated
the land use simulation model, CA-Markov, into the green GDP accounting system. The CA-Markov
model was used to predict the future land use pattern, which has been taken as input in the coefficient
method to measure the future ESV.

The results indicated that the green GDP value experienced a huge increase from 1990 to 2015 and
the forecasting green GDP also displayed a dramatic growth from 2020 to 2050. A totally different
increase rate has been found in regions of China. High increase rates of green GDP were concentrated
in SCEZ, ECEZ and NCEZ, with growth rates of 87.96%, 93.33% and 93.90%, respectively, from 1990 to
2015 and 94.40%, 96.25% and 97.65%, respectively, from 2015 to 2050. However, in NWEZ and SWEZ,
the lowest growth rates of 1.09% and 65.59%, respectively, from 1990 and 2015 and 33.56% and 80.92%,
respectively, from 2020 to 2050 have been found. Consequently, the spatial differences in green GDP in
regions became increasingly serious. The spatial differences of green GDP also have been detected in
some other studies. Li and Fang [9] estimated the global ESV and GDP in 2009. According to the maps
of global green GDP presented by Li and Fang [10], the coastal areas, such as Zhejiang and Jiangsu
provinces, experienced the highest green GDPs—up to 10,000 to 17,299 US dollar per sq.km in 2009.
However, in west China, the green GDP ranged from 0 to 200 US dollars per sq.km in 2009.

Meanwhile, the results indicated a dominant contribution of economic development to green
GDP. In the ECEZ, NCEZ and SCEZ, the contribution of GDP to green GDP was up to 90%. A high
contribution of GDP to green GDP would depress the importance of preserving ESV. On the contrary,
in east China, such as Yunfu in Guangdong, Quzhou in Zhejiang and Huaian in Jiangsu, due to the
slow economic development, the contributions of GDP to green GDP were merely 31.91%, 43.40%
and 43.89% in 2050. In those regions, the green GDP is dependent on preservation of the ESV to a
large extent. Being aware of the contribution of ESV to green GDP in different regions can help the
government develop different policies for different regions. Li and Ding [13] evaluated the variations
of ESV and GDP for Shananxi province from the 1980s to 2010 and found that disparities in GDP were
much higher than those of ESV, which is consistent with our results.

The results proposed in this study can facilitate governmental decision making. Huge spatial
differences in the future detected by our study would lead to abundant social problems. Being aware
of the differences in green GDP, GDP and ESV in regions, a decision maker can determine the hotspots
and make policies accordingly to preserve GDP or ESV.
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