
sustainability

Article

An Empirical Investigation to the “Skew”
Phenomenon in Stock Index Markets: Evidence from
the Nikkei 225 and Others

Yizhou Bai 1 and Zhiyu Guo 2,*
1 School of Mathematical Sciences, Nankai University, Tianjin 300071, China; baiyizhou@mail.nankai.edu.cn
2 Business School, Nankai University, Tianjin 300071, China
* Correspondence: zhiyuguo@mail.nankai.edu.cn

Received: 27 September 2019; Accepted: 6 December 2019; Published: 16 December 2019 ����������
�������

Abstract: The skew processes have recently received much attention, owing to their capacity to
describe controlled dynamics. In this paper, we employ the skew geometric Brownian motion (SGBM)
to depict nine major stock index markets. The skew process not only shows us where the “support”
and “resistance” levels are, but also how strong the force is. However, the densities of the skew
processes make it challenging to estimate the parameters in a convenient manner. For the sake of
overcoming this challenge, we adopt a Bayesian approach, which plays an important role in allowing
us to estimate the parameters by conditional probability densities without having to evaluate complex
integrals. Furthermore, we also propose the likelihood ratio tests and significance tests for the skew
probability. In the empirical study, our findings reveal that skew phenomenon exists in the global
stock markets and that the SGBM model works better than the traditional GBM model, as well as
performing competitively, compared to the GBM-jump model (GBM-J) and Markov regime switching
GBM model (GBM-MRS). In addition, we explore the possible reasons behind the skew phenomenon
in stock markets, the price clustering phenomenon and herd behaviors can help to explain the
skew phenomenon.
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1. Introduction

For decades, a classical problem has been how to describe the dynamics of stock prices. The most
basic model used to describe stock prices is geometric Brownian motion (GBM), which was first
used by Black and Scholes [1]. However, there are many empirical features of market data that
cannot be captured by GBM. Many researchers have proposed different approaches to modeling
phenomenon in the market. For example, Merton [2] proposed a jump-diffusion process to capture the
extraordinary magnitude changes of the asset price and Hamilton [3] introduced regime switching to
capture structural changes in time series data. In this paper, we focus on another market phenomenon,
which is called long-duration asset prices or price clustering. This phenomenon has been observed by
some researchers. Sonnemans [4] found that the price of the stocks on the Dutch stock market tended to
cluster at round numbers (e.g., 10, 20, 30, etc. or 5, 15, 25, etc.) and were affected by the round number
price barriers (prices passed less frequently round numbers than other numbers). Similar phenomenon
was also observed in China (Brown and Mitchell [5]; Hu et al. [6]) and Japan (Aşçioǧlu et al. [7]). The
phenomenon can be described by the skew diffusion process. Itô and McKean [8] first introduced the
skew Brownian motion (SBM), a process that behaves similarly to the conventional Brownian motion
before arriving at the skew level. Once it hits a skew level a, its excursion from a has a probability
of p to go upward and a probability of 1− p to go downward. Due to this property of skew process,
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it is very suitable for describing the price clustering phenomenon. We notice that skew processes can
also illustrate the strength of the phenomenon through the skew probability p. It is a more precise
characterization of the phenomenon than price clustering. Thus, we name the phenomenon described
by the skew process as skew phenomenon.

The mathematics of the SBM was explored, for instance, by Walsh [9], Le Gall [10], Barlow et al. [11],
Ouknine [12], Lejay and Martinez [13], Ramirez et al. [14], Ramirez [15], and Appuhamillage and
Sheldon [16]. The diverse applications of SBM in many fields have been investigated, such as in geophysics
(Appuhamillage et al. [17]; Atar and Budhiraja [18]; Song et al. [19]), molecular biology (Bossy et al. [20]),
population ecology (Cantrell and Cosner [21]; Min et al. [22]; Barahona et al. [23]), and so on. The SBM
has also been applied to financial modeling by several scholars; for example, Corns and Satchell [24]
and Gairat and Shcherbakov [25] used them to model the dynamics of the underlying asset and price
derivatives. Although Rossello [26] argued that there is arbitrage in SBM models, Zhu and He [27]
demonstrated that, by carefully choosing a risk-neutral measure, the SBM could be consistent with
no-arbitrage property.

In the existing literature on SBM, much effort has been made in exploring the mathematical
properties of SBM or applying them to model the underlying asset and price derivatives. However,
empirical testing of SBM has received much less attention. Is there, indeed, the skew phenomenon
present in the market? Can skew geometric Brownian motion (SGBM) outperform other models when
applied to modeling the dynamics of asset price? We attempt to answer these questions in this paper.
The contributions of this paper are four-fold. First, we apply a Bayesian estimation approach to estimate
the parameters. To do this, the local time in the model is removed by a piecewise transform. Second, we
test whether skew phenomenon is present in the global stock markets by checking whether the skew
probability p is significantly different from 0.5. Third, we compare the performance of SGBM with three
other models, the basic GBM model, GBM-jump model (GBM-J) and Markov regime switching GBM
model (GBM-MRS). Fourth, we show that the skew phenomenon and the price clustering phenomenon
can confirm with each other; the skew phenomenon is also related to the herd behavior. In this point,
we try to explain why the skew phenomenon exists.

The remaining part of this paper is organized as follows. Section 2 presents the SGBM model
and its piecewise transform. Section 3 specifies the methods for evaluating the model’s performance.
Section 4 describes the data and empirical results. In Section 5, we try to find some theories to explain
the existence of skew phenomenon. Finally, the conclusion is presented in Section 6.

2. The Model

Let St be the stock price at time t. Assume that St follows the SGBM

dSt

St
= µ̃dt + σdWt + (2p− 1) dL̂S

t (a) , (1)

where L̂S
t (a) is the symmetric local time of the process St at the “skew level” a, and the skew probability

p is the probability of moving upward when St hits the level a. If we set µ = µ̃− 1
2 σ2 and Xt = ln St,

then we get that Xt follows

dXt = µdt + σdWt + (2p− 1) dL̂X
t (ln a) . (2)

It is not difficult to obtain that L̂X
t (ln a) is the symmetric local time of the process Xt and the

“skew level” of Xt is ln a. To remove the local time, similar to Harrison and Shepp [28], we define a
function G(x) by

G (x) =

{
(1− p) (x− ln a) + ln a, if x ≥ ln a,
p (x− ln a) + ln a, if x < ln a.

(3)
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Then, we obtain its inverse function H(x) as

H (x) =


x

1− p
− p ln a

1− p
, if x ≥ ln a,

x
p
− (1− p) ln a

p
, if x < ln a.

(4)

Consider Yt = G (Xt). Then,

Yt =

{
(1− p) (Xt − ln a) + ln a, if Xt ≥ ln a,
p (Xt − ln a) + ln a, if Xt < ln a.

(5)

The inverse transform Xt = H (Yt) can be expressed as

Xt =


Yt

1− p
− p ln a

1− p
, if Yt ≥ ln a,

Yt

p
− (1− p) ln a

p
, if Yt < ln a.

(6)

As the function G(x) is the difference of two convex functions, we apply the generalized Itô
formula to Yt = G (Xt) to obtain:

dYt =

{
(1− p) (µdt + σdWt) , if Yt ≥ ln a,
p (µdt + σdWt) , if Yt < ln a.

(7)

The discretized version of Equation (7) can be expressed as:

∆Yti =

 (1− p)
(

µ∆t + σ
√

∆tεti

)
, if Yti ≥ ln a,

p
(

µ∆t + σ
√

∆tεti

)
, if Yti < ln a,

(8)

where ∆Yti = Yti+1 −Yti and {εti}
N
i=1 are independent and standard normally distributed. Denote N1

(respectively, N2) as the set in which the sample value is bigger (respectively, smaller) than the skew
level ln a (i.e., N1:= {i : i = 1, · · · , N, xti ≥ ln a} and N2 := {i : i = 1, · · · , N, xti < ln a}). Let n1,n2 be
the number of i included in the set N1 and N2, respectively. Obviously, n1 + n2 = N. Define yti := ∆Yti .
Then, the likelihood function of Equation (8) can be written as:

l (X|Θ) =

(
1

(1− p)
√

2πσ2∆t

)n1

exp

{
− 1

2 (1− p)2 σ2∆t
× ∑

i∈N1

[yti − (1− p) µ∆t]2
}

×
(

1

p
√

2πσ2∆t

)n2

exp

[
− 1

2p2σ2∆t
× ∑

i∈N2

(yti − pµ∆t)2

]
,

(9)

where Θ is the set of all parameters
{

µ, σ2, a, p
}

in Equation (8) and X represents the sample data.

3. Model Performance Evaluation

3.1. Significance Test of Skew Probability p

As SBM reduces to standard Brownian motion when p = 0.5, the skew model does not make any
sense if the estimated p̂ is not significantly different from 0.5. Thus, we need to test the significance of
the estimated skew probability p̂. The null hypothesis H0 is p̂ = 0.5, and the alternative hypothesis H1

is p̂ 6= 0.5. The other parameters are assumed to be the same under the two hypotheses. Under the
null hypothesis, the likelihood function is
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l (X|Θ0) =

(
2√

2πσ2∆t

)N
exp

[
− 2

σ2∆t
× ∑

i∈N

(
yti −

1
2

µ∆t
)2
]

. (10)

The likelihood ratio is defined as follows:

λ(X) = 2(sup ln l(X|Θ1)− sup ln l(X|Θ0)), (11)

where X is the sample data, l(X|Θ1) is the likelihood function under H1, and l(X|Θ0) is the likelihood
function under H0. When λ is large enough, we reject H0 and accept H1; then, we can consider the
alternative model to be better than the null model.

We need to know the distribution of λ under H0 in order to decide whether to accept the null
hypothesis or reject it at a specified significance level; however, it is difficult to obtain an analytical
solution of the distribution. Thus, we apply the bootstrap method to obtain an approximation of the
distribution. First, we get the parameters of standard BM model by maximum likelihood estimation.
Then, a simulated sample X∗ can be obtained using the estimated model and, thus, we can calculate a
value of λ based on X∗. Repeat this process 10,000 times, we can get 10,000 λ(X∗). Finally, we can get
the p-value of λ(X), which is the probability that λ(X∗) is bigger than λ(X).

3.2. Comparison of Model Performance

After verifying previous procedure, in this part, we compare the SGBM defined by Equation (1) with
the commonly-used models, to see which model fits the best. We focus on the following three models.

• GBM:
dSt

St
= µ̃dt + σdWt, (12)

• GBM-J:
dSt

St
= µ̃dt + σdWt + d(

N(t)

∑
i=1

Zi), (13)

where Z ∼ N (µJ , σ2
J ), N(t) is a Poisson process with intensity λ, and Wt, Zv and N(t) are

independent of each other.
• GBM-MRS:

dSt

St
= µ̃st dt + σst dWt, (14)

where st is a two state continuous-time Markov process which is independent of Wt.

The null hypothesis is that the GBM (respectively, GBM-J and GBM-MRS) is suitable for fitting
the data, and the alternative hypothesis is that the SGBM fits the data better. The test statistic λ(X)

defined by Equation (11) is also adopted. We obtain the p-value from 10,000 bootstrap samples. If the
p-value is less than 10%, we have the evidence that the SGBM fits the data better. If the p-value is less
than 5%, we have very strong evidence against the commonly-used models.

4. Empirical Analysis

4.1. Data

The closing prices of the AEX (Netherlands, AEX), BEL 20 (Belgium, BFX), DAX (Germany,
GDAXI), CAC 40 (France, FCHI), FTSE 100 (UK, FTSE), Shanghai Shenzhen CSI 300 (China, CSI
300), Nikkei 225 (Japan, N225), SMI (Switzerland, SSMI), and S&P 500 (U.S., SPX) indices are used
in the empirical study. The stock markets considered represent nine of the most important stock
markets internationally; all of them are mature capital markets (except for Chinese market). As a
representative of an emerging market, the Chinese market has been rapidly developing and has had
an important influence on the world economy; for these reasons, we also take it into account. The data
are taken from the Wind Database. The sample period of eight mature markets is from 1 January 2000
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to 31 December 2017, while the starting sample period of CSI 300 is 1 January 2002, as it is the first day
that the data are available. First, we use the weekly data over the whole sample period to check the
skew phenomenon in stock markets in the long-run. Then, we use daily data in each year to check the
skew phenomenon over a year. By rolling forward the data quarterly, we obtain 61 groups of data for
Chinese market and 69 groups for the other markets.

Figure 1 and Table 1 illustrate the price series under consideration and show their descriptive
statistics, respectively. In Figure 1, we can observe that all stock indices display very similar patterns.
For example, during 2004, 2007, and 2016, the indices all clustered at a certain level. It is likely that
skew phenomenon exists over these periods.

In Table 1, according to the coefficient of variation (C.V.), we can see that Shanghai Shenzhen
CSI 300 index is the most volatile of the indices, while the FTSE 100 is the most stable. Table 2 shows
that the nine stock markets are highly correlated, which coincides with the results in Figure 1. The
correlation coefficient between the S&P 500 and DAX is the highest, while the correlation coefficient
between AEX and CSI 300 is the lowest.

Figure 1. Time series of closing price of the nine indices.

Table 1. Descriptive statistics of the closing price of the nine indices.

AEX BFX GDAXI FCHI FTSE CSI 300 N225 SSMI SPX

Mean 416.2 2972 6915 4338 5724 2518 13,379 7117 1435.7
Median 398.66 2883.43 6557.1 4277.65 5858.7 2522.08 12,833.64 7112.6 1315.23

Min 199.5 1527 2403 2534 3492 818 7173 3880 683.4
25% Quntile 335.34 2459.03 5003.16 3652.45 5129.71 1341.48 10,124.81 6026.76 1134.52
75% Quntile 489.08 3522.49 8265.18 4987.34 6429.46 3309.46 16,479.26 8238.56 1646.49

Max 695.2 4749 13,479 6814 7688 5737 22,903 9531 2683.3
Std.Dev 104.59 701.68 2531.23 913.02 941.39 1111.23 3760.91 1346.95 430.06

C.V. 0.2513 0.2361 0.3660 0.2105 0.1645 0.4412 0.2811 0.1893 0.2996
Skewness 0.6163 0.3605 0.5846 0.4326 −0.3050 0.3216 0.3891 −0.0928 0.9049
Kurtosis −0.1010 −0.6213 −0.3751 −0.4855 −0.6773 −0.4601 −0.9990 −1.0912 −0.0328

Table 2. Correlation coefficients of the nine indices.

AEX BFX GDAXI FCHI FTSE CSI 300 N225 SSMI SPX

AEX 1
BFX 0.6564 1

GDAXI 0.4377 0.6001 1
FCHI 0.9521 0.7876 0.4744 1
FTSE 0.6229 0.7174 0.9103 0.6783 1

CSI 300 0.4071 0.4408 0.6745 0.4445 0.6085 1
N225 0.7302 0.8307 0.7837 0.7885 0.8033 0.4596 1
SSMI 0.6703 0.8608 0.8333 0.7670 0.9129 0.5606 0.8885 1
SPX 0.4389 0.6220 0.9632 0.4565 0.8728 0.5338 0.8173 0.8117 1
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4.2. Empirical Results

4.2.1. Weekly Data of the Whole Sample Period

We estimate the parameters of SGBM model and test the skew phenomenon using the weekly
closing prices of the nine stock indices over the whole sample period. For more details of parameter
estimation approach, see Appendix A.

Table 3 gives the results of parameter estimation for the nine indices. We focus on the estimated
skew probability p̂. For the nine stock indices, the skew probabilities p̂ are 0.3343, 0.3669, 0.3754,
0.3204, 0.2748, 0.4715, 0.2984, 0.2712, and 0.3187, respectively. The corresponding skew levels are
329.4386, 2664.4319, 5540.7140, 3921.4128, 4788.8800, 3303.4179, 10,543.1285, 6589.6171, and 1066.8168,
respectively. According to the significance test of the skew probability p, all these estimates are
statistically significantly different from 0.5 at 5% level, other than the p̂ of CSI 300, indicating that
there are significant skew phenomena in the eight stock markets. According to Table 1, since C.V. is
used to measure the dispersion of data, it is not abnormal that the skew phenomenon does not exist in
the Chinese market over the whole sample period. Coinciding with the correlation shown in Table 2,
all the p̂ values are smaller than 0.5, which means that it is more likely for the dynamics of indices
to move downward than upward when hitting the skew level a. However, the likelihood ratio test
gives different conclusions. There are only four markets on which SGBM model strictly significantly
outperforms the other three models at the 10% level, while there are four markets on which SGBM does
not outperform them. The p-values of likelihood ratio tests in Japanese market is 0.100 against GBM
and 0.074 against GBM-J, reaching a significant margin. It is hard to say whether SGBM outperforms
these two models, since the p-values are at such a marginal level. Therefor, we try to find some clues
from the graph of the index.

Table 3. Empirical results.

µ̃ σ a p p-Value p-Value p-Value p-Value
(Significance Test of p) (vs. GBM) (vs. GBM-J) (vs. GBM-MRS)

AEX 0.0484 0.2156 329.4386 0.3343 0.009 0.037 0.071 0.040
(0.0094) (0.0052) (18.8989) (0.0317)

BFX 0.0542 0.1964 2664.4319 0.3669 0.017 0.229 0.211 0.176
(0.0037) (0.0046) (50.5755) (0.0216)

GDAXI 0.0809 0.2303 5540.7140 0.3754 0.015 0.116 0.154 0.147
(0.0050) (0.0054) (416.2285) (0.0388)

FCHI 0.0406 0.2118 3921.4128 0.3204 0.009 0.222 0.170 0.203
(0.0039) (0.0049) (145.9391) (0.0305)

FTSE 0.0364 0.1699 4788.8800 0.2748 0.003 0.028 0.041 0.037
(0.0022) (0.0040) (24.4696) (0.0292)

CSI 300 0.1114 0.2643 3303.4179 0.4715 0.277 0.212 0.200 0.197
(0.0069) (0.0066) (1390.6915) (0.1439)

N225 0.0672 0.2136 10,543.1285 0.2984 0.004 0.100 0.074 0.012
(0.0046) (0.0051) (92.3691) (0.0349)

SSMI 0.0535 0.1811 6589.6171 0.2712 0.002 0.089 0.097 0.032
(0.0043) (0.0042) (35.9129) (0.0314)

SPX 0.0690 0.1714 1066.8168 0.3187 0.001 0.016 0.071 0.053
(0.0040) (0.0040) (17.2439) (0.0292)

Figure 2 shows the historical price data and skew level of Nikkei 225 index, which is 10,543.1285,
as shown in Table 3. In Figure 2, we can see that there are two major time intervals during which
the skew phenomenon is very significant. The first interval is from 2001 to 2003, during which the
process walks through the skew level several times, but the major part is below it. The second interval
is from 2009 to 2013. The vertical lines indicate the dates when the extreme price movements occur.
It is obvious that extreme price movements occur frequently when the index is near the skew level.
As many researchers have devoted considerable effort to correlation between extreme price movement
and herding, the herding may be conducive to the explanation of skew phenomenon.
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Figure 2. Skew level of Nikkei 225 index.

Figure 3 shows the price clustering during 2000–2017, in Nikkei 225 index. As the observations
of the index are discrete, it is difficult to find that the dynamic hits a specific level precisely. Thus,
we use a small interval around it to stand for the level. Sonnemans [4] was interested in the number
of times crossing a level. Besides that, we also consider the number of times reflecting from a level.
The difference between “crossing” and “reflecting” is whether the previous price and the following
price are on the same side of the level. In Figure 3 we notice that the data exhibit price clustering on
some scales. After signalling the skew level in Figure 3 by a straight line, it is obvious that the skew
level is one of the points at which the indices cluster. The total number of times hitting the skew level is
53. In addition to three times crossing the skew level from above and three times from below, there are
also 17 times reflected by the skew level upward and 30 times downward. For convenience, we assume
that, after hitting the skew level, whether the dynamic goes up or goes down can be described by a
Bernoulli random variable with probability p. The result of hypothesis test shows that the p is rejected
to be greater than or equal to 0.5. We can conclude that there is a big chance for Nikkei 225 index to
move down when price series hits 10,543.1285, the process goes down in most cases once it touches
the skew level.

Figure 3. Price clustering of Nikkei 225 index.

We can notice that skew level does not need to be a very high level for the skew probability p
to be smaller than 0.5, or to be at a very low level for the skew probability p to be bigger than 0.5.
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In fact, the skew levels we estimate in the empirical study are all lower than both the means and
medians in the eight mature stock markets. However, the skew levels need to be the levels at which
the dynamic crosses several times and has a preference for moving upward or downward. Overall,
the skew probabilities p are different from 0.5 with statistical significance in the eight markets and the
SGBM model does not underperform the standard GBM model, GBM-J model, and GBM-MRS model,
proving that skew phenomenon exists broadly in stock markets all around the world.

4.2.2. Daily Data over One Year Period

After investigating the skew phenomenon over the whole sample period, we study the skew
phenomenon over a one-year period. We obtain 61 subsamples of the CSI 300 index and 69 subsamples
of the other eight stock indices. We estimate the parameters and check the skew phenomenon by
testing the significance of the skew probability p. Table 4 and Figure 4 show the results for the Nikkei
225 index. The detailed results of other indices are available upon request. For simplicity, we only show
the results of subsamples whose skew probability p is significantly different from 0.5 at the 10% level.
Furthermore, we define the subsamples in which the skew phenomenon exists as skew subsamples.

Figure 4. Skew levels of the Nikkei 225 index.

There are 28 subsamples in which the skew phenomenon exists, accounting for about 40% of
the total subsamples. Almost all the skew probabilities p̂ are smaller than 0.5, indicating that these
skew levels are resistance levels. The only subsample in which the p̂ is bigger than 0.5 is from the
fourth quarter of 2016 to the third quarter of 2017, with the corresponding skew level â of 16,336.7533.
Similar to the weekly data, the skew level of each subsample can be seen as the scale at which the
index clusters. Taking the subsample from the second quarter of 2003 to the first quarter of 2004 as an
example, Figure 5 shows the conclusion clearly. The skew level we estimate is 10,742.4626. The price
clustering phenomenon is also most foremost on the level. Therefore, our skew phenomenon and price
clustering phenomenon can confirm with each other.

Table 5 shows the results of the comparison of p-values and MSEs for each model. The third
column of Table 5 shows that the SGBM model clearly works better than the GBM model in most
cases. In detail, the SGBM model wins 19 (67.86%) of the subsamples. The SGBM model also beats the
GBM-J model, which is exhibited in the fifth column of Table 5; the SGBM model wins 18 (64.29%) of
the subsamples. However, the results indicate that there may not be a noticeable difference between
the SGBM model and GBM-MRS model for fitting the data. In fact, the two models capture different
characteristics of the dynamic. A combination of them may outperform all the models mentioned here,
and this is one of our future works.
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Table 4. Empirical Results using daily data of the Nikkei 225 index.

µ̃ σ a p p-Value
(Significance Test of p)

2000 −0.2456 0.2212 20,034.8714 0.2534 0.0030
(0.0165) (0.0101) (413.4776) (0.0686)

2000Q2-2001Q1 −0.4097 0.2473 19,825.2982 0.0974 0.0039
(0.0102) (0.0113) (460.0698) (0.0861)

2000Q4-2001Q3 −0.4189 0.2769 10,371.7933 0.2136 0.0554
(0.0267) (0.0128) (1103.1802) (0.1588)

2003 0.3298 0.2261 10,654.5045 0.3531 0.0408
(0.0406) (0.0105) (502.0837) (0.0811)

2003Q2-2004Q1 0.5392 0.2127 10,680.3592 0.3660 0.0405
(0.0488) (0.0098) (484.8874) (0.0801)

2003Q3-2004Q2 0.4053 0.2243 10,742.4626 0.3860 0.0320
(0.0530) (0.0104) (293.4311) (0.0691)

2003Q4-2004Q3 0.1464 0.2100 10,766.2403 0.3933 0.0495
(0.0470) (0.0096) (410.5015) (0.0580)

2004Q2-2005Q1 0.0489 0.1676 11,402.2879 0.4020 0.0803
(0.0268) (0.0077) (408.0682) (0.0746)

2004Q3-2005Q2 0.0173 0.1399 11,375.1845 0.3919 0.0789
(0.0252) (0.0065) (264.4332) (0.0785)

2006Q2-2007Q1 0.0866 0.1790 16,938.1223 0.3330 0.0231
(0.0357) (0.0084) (675.8992) (0.0694)

2006Q3-2007Q2 0.2293 0.1512 17,067.5300 0.3369 0.0185
(0.0235) (0.0069) (304.7319) (0.0620)

2006Q4-2007Q3 0.1002 0.1663 16,413.7392 0.3096 0.0098
(0.0367) (0.0076) (725.1981) (0.0720)

2007 -0.0298 0.1828 16,888.0877 0.3503 0.0179
(0.0389) (0.0084) (515.9827) (0.0608)

2007Q2-2008Q1 −0.1958 0.2490 16,110.2372 0.3452 0.0215
(0.0230) (0.01162) (790.6090) (0.0691)

2007Q3-2008Q2 −0.1416 0.2779 14,299.7574 0.3758 0.0205
(0.0618) (0.0129) (1274.6560) (0.0590)

2008 −0.2791 0.4525 9428.0456 0.2776 0.0065
(0.0472) (0.0209) (343.0267) (0.0798)

2008Q2-2009Q1 −0.2039 0.4534 9426.7842 0.2646 0.0039
(0.0465) (0.0212) (287.9609) (0.0741)

2008Q3-2009Q2 −0.0461 0.4629 9426.0125 0.2861 0.0051
(0.0495) (0.0217) (325.4943) (0.0721)

2008Q4-2009Q3 0.1847 0.4524 9470.2083 0.2678 0.0004
(0.0471) (0.0209) (96.9193) (0.0522)

2012Q3-2013Q2 0.5130 0.2410 14,977.6250 0.2404 0.0386
(0.0201) (0.0113) (1109.5259) (0.1300)

2012Q4-2013Q3 0.6014 0.2586 15,166.0798 0.2240 0.0140
(0.0179) (0.0119) (660.9910) (0.1041)

2013 0.5417 0.2663 15,113.0267 0.3568 0.0493
(0.0368) (0.0121) (1002.0543) (0.0919)

2013Q2-2014Q1 0.3197 0.2702 15,000.5340 0.3818 0.0676
(0.0431) (0.0124) (872.2384) (0.0962)

2015 0.1548 0.2027 19,155.8567 0.3894 0.0726
(0.0298) (0.0094) (1020.5246) (0.0744)

2015Q3-2016Q2 −0.1820 0.2743 15,878.1070 0.3056 0.0160
(0.0334) (0.0127) (979.1998) (0.0894)

2015Q4-2016Q3 0.0246 0.2491 15,953.6224 0.3582 0.0501
(0.0331) (0.0115) (956.2708) (0.0814)

2016Q2-2017Q1 0.2820 0.2117 16,046.1535 0.3235 0.0000
(0.0238) (0.0097) (139.1869) (0.0362)

2016Q4-2017Q3 0.1808 0.1377 16,336.7533 0.6801 0.0005
(0.0071) (0.0062) (22.2896) (0.0370)
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Figure 5. Price clustering of Nikkei 225 index (2003Q2–2004Q1).

Table 5. Test Results of Nikkei 225 for daily data.

GBM GBM-J GBM-MRS
p-Value MSE(SGBM) p-Value MSE(SGBM) p-Value MSE(SGBM)

(LR Test) -MSE(GBM) (LR Test) -MSE(GBM-J) (LR Test) -MSE(GBM-MRS)

2000 0.0124 −467.1184 0.0814 −59.8494 0.0216 −373.2085
2000Q2-2001Q1 0.0000 −1007.3783 0.0287 93.9713 0.0000 −910.8165
2000Q4-2001Q3 0.0113 −632.1330 0.0217 −359.3064 0.0220 −613.0307

2003 0.0404 −29.2933 0.0806 −153.4616 0.0424 469.0911
2003Q2-2004Q1 0.0027 −80.3167 0.0904 −42.6875 0.0719 −73.0463
2003Q3-2004Q2 0.0879 59.5639 0.0472 7.0149 0.0663 628.7460
2003Q4-2004Q3 0.0152 30.7509 0.0178 −65.8554 0.0201 389.9553
2004Q2-2005Q1 0.0907 6.0259 0.0423 3.4178 0.0715 949.0714
2004Q3-2005Q2 0.0728 −0.5947 0.0612 6.0508 0.0501 538.1349
2006Q2-2007Q1 0.0871 25.8809 0.0695 −327.3464 0.0714 329.1633
2006Q3-2007Q2 0.0896 56.7752 0.0740 −127.1399 0.0733 58.6503
2006Q4-2007Q3 0.0318 31.5326 0.0104 38.3551 0.0302 108.8783

2007 0.0163 −84.9845 0.0261 35.8483 0.0466 31.3096
2007Q2-2008Q1 0.0451 −207.4157 0.0295 −748.2395 0.0691 −173.9129
2007Q3-2008Q2 0.0320 −352.3729 0.0371 −218.0522 0.0236 385.4208

2008 0.0745 −826.6330 0.0185 −744.8044 0.0423 −543.4644
2008Q2-2009Q1 0.0763 −319.0402 0.0475 −391.4915 0.0563 −20.1404
2008Q3-2009Q2 0.0701 −193.5511 0.0706 359.5804 0.0773 333.3380
2008Q4-2009Q3 0.0001 33.3291 0.0311 −111.1087 0.0206 174.5915
2012Q3-2013Q2 0.0006 −212.9670 0.0535 −10.3022 0.0233 −211.3495
2012Q4-2013Q3 0.0003 −182.9501 0.0001 95.2869 0.0001 −51.4135

2013 0.0001 −352.1612 0.0513 27.2120 0.0704 1024.1617
2013Q2-2014Q1 0.0067 86.0643 0.0831 −220.8618 0.0740 2345.8511

2015 0.0530 26.6559 0.0411 −17.5073 0.0519 316.1277
2015Q3-2016Q2 0.0103 −319.1788 0.0117 −72.5074 0.0410 185.5714
2015Q4-2016Q3 0.0107 −10.4042 0.0192 96.3527 0.0261 3363.1619
2016Q2-2017Q1 0.0078 −25.4598 0.0581 −15.1377 0.0654 1218.5149
2016Q4-2017Q3 0.0001 −287.6788 0.0851 −30.6904 0.0752 −238.8011

Table 6 summarizes the results of all the nine indices. It can be easily observed in Table 6 that the
SMI has the most skew subsamples among all the indices, followed by the Nikkei 225, while FTSE
100 has the fewest skew subsamples. Since the market behaviors of the different indices vary, it is
reasonable that there are more skew subsamples in some markets while fewer in others. Although the
numbers of skew subsamples in all markets are fewer than half of total subsamples, the percentages
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are still noticeable. Collectively, all the numbers in Table 6 confirm that the skew phenomenon exists
in subsamples of daily data over the period of a year. The skew probability p is smaller than 0.5 in
most skew subsamples, which means that there are more resistance levels than support levels; this is
consistent with the investor psychology: as investors are more sensitive to decline of stock price, stock
price will sometimes move downward with a bigger probability when hitting a specific level.

Table 6. Empirical results of the nine indices.

AEX BFX GDAXI FCHI FTSE CSI 300 N225 SSMI SPX

Total subsamples 69 69 69 69 69 61 69 69 69
skew subsamples 15 19 14 20 13 23 28 29 20

Percentage(%) 21.74 26.09 20.29 28.99 18.84 33.33 40.58 42.03 28.99
p < 0.5 subsamples 15 16 11 17 12 20 27 29 19

Percentage(%) 100.00 84.21 78.57 85.00 92.31 86.96 96.43 100.00 95.00
better than GBM 10 16 11 14 9 19 19 22 17

Percentage(%) 66.67 84.21 85.71 70.00 69.23 82.61 67.86 75.86 85.00
better than GBM-J 11 11 8 14 7 16 18 15 9

Percentage(%) 73.33 57.89 57.14 70.00 53.85 69.57 64.29 51.72 45.00
better than GBM-MRS 7 10 5 12 5 12 9 10 7

Percentage(%) 46.67 52.63 35.71 60.00 38.46 52.17 32.14 34.48 35.00

Although there are some markets in which the long-run skew phenomenon does not exist and the
percentage of short-run skew subsamples is smaller than 50%, we should not ignore skew phenomenon
when modeling asset prices. As a skew model can be reduced to a conventional model, the skew
model can be used in both kinds of markets: the markets in which skew phenomenon exists and the
markets in which skew phenomenon does not exist. For those markets in which skew phenomenon
does not exist, the skew probability will simply be 0.5. However, the conventional model cannot
capture skew features, and there will be bias if we use the conventional model to describe markets in
which skew phenomenon is present. Thus, it is necessary to introduce the skew model and consider
skew phenomenon when modeling asset dynamics.

5. Why the Skew Phenomenon Exists

As the market behavior is uncertain and confusing, many researchers try to find some
reasons to explain different market phenomena. In this section, we try to explain why the skew
phenomenon exists.

As shown in Figures 3 and 5, the skew levels are consistent with the levels that the indices cluster
at. Thus, the explanations for price clustering phenomenon can help us to understand the reason for
the existence of skew phenomenon. Donaldson and Kim [29] pointed out that the DJIA’s rise and fall
was indeed restrained by “support” and “resistance” levels; these “support” and “resistance” levels
are known as psychological barriers. The existence of such psychological barriers in different markets
has been proven in many empirical studies. Sonnemans [4] found that round numbers could act as
price barriers for individual stocks. Westerhoff [30] claimed the psychological barriers existed in foreign
exchange market. Dowling et al. [31] tested the presence of psychological barriers in WTI and Brent oil
futures and found them present in the Brent prices but not in the WTI prices. Skew level is similar to,
but not identical to, a psychological barrier. Psychological barriers exist in markets due to investor’s
perceptions that the fundamental asset value is anchored to a nearest round number. The skew level
can be viewed as a psychological barrier, although it is not a round number. Both ideas describe the
unusual behavior of asset dynamics when hitting a special level.

According to the empirical results in Tables 1 and 3, the skew probability p̂ is smaller than 0.5 and
the skew level is lower than the mean in each market. This may be not consistent with what we
should expect. Usually, we expect a high skew level a when p is small. However, “running after rising
and falling” phenomenon can often be seen in stock markets, which can be connected with herding
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behavior and positive feedback trading strategies. Figure 2 illustrates that the skew phenomenon is
closely related to extreme price movements. During periods of extreme market movements, the herd
behavior is universal in the markets. Devenow and Welch [32] conducted a literature review on the
economics of rational herding in financial markets, demonstrating that irrational investors usually
disregard their prior beliefs and follow other investors blindly. Chang et al. [33] examined the investor
behavior within different international markets (i.e., US, Hong Kong, Japan, South Korea, and Taiwan)
and found significant evidence of herding in the two emerging markets (Korea and Taiwan). Perhaps
the existence of a low skew level with a small skew probability can be explained by positive feedback
trading. When there is a stock market downturn, many investors expect a high probability to keep
moving downward. Therefore, a low skew level sometimes correspond to a small skew probability.

Additionally, skew phenomenon may be the result of government regulation. There is less
government regulation in stock markets than interest markets or foreign exchange markets, but it does
not mean that the government will leave the stock market alone. Stock prices are usually considered
to react to external forces. Chen et al. [34] proved that stock returns were exposed to systematic
economic news, where many macroeconomic variables would systematically affect stock market returns.
To stabilize the stock markets, a government may take some measures and give guidance to markets.
Chang et al. [33] proved that, in the emerging market, herd behavior could result due to a relatively
high degree of government intervention. In June 2015, the Chinese stock market lost over $3.2 trillion in
value, Chinese government took unprecedented steps to prevent stocks from falling further. Authorities
suspended initial public offerings (IPOs), limited bearish bets though CSI 300 Index Futures, and
encouraged financial firms to buy more shares. The empirical results show that there was indeed skew
phenomenon in 2015. When the stock index hits a specific level, the government will try to guide the
trend of market, causing the occurrence of a skew level.

In the end, it is noteworthy that the Chinese market is the only one in which the p is not
significantly different from 0.5. As an emerging market, the Chinese stock market started relatively
late compared with other developed countries and is still immature. Therefore, it is not abnormal that
the long-run skew phenomenon existing in the other mature capital markets can not be found in the
Chinese market. Another reason may be that the interest rate in China is relatively high compared
with other developed countries. The U.S. held a zero interest rate for seven years, and Europe and
Japan have been holding zero or negative interest rate since 2016. However, the interest rate in China
was between 4% and 6% during 2000–2018, which was much higher than the interest rates in other
areas. Thus, it is inappropriate to ignore time value in the Chinese market. The trend of the dynamic is
influenced by the interest rate more significantly in Chinese stock market than in other stock markets.
Therefore, the long-run skew phenomenon is also affected by the interest rates, the skew level should
be an oblique line rather than a straight line, as the sample period spanned 17 years. When we move
to one-year sample period, there is still short-run skew phenomenon in the Chinese market.

6. Conclusions

This study tests for the skew phenomenon in nine international stock markets, based on the
SGBM model, and find that skew phenomenon is common worldwide. For the weekly data over the
whole sample period, the skew probabilities p are significantly different from 0.5 at the 5% level in
eight markets. Furthermore, we test the goodness-of-fit of SGBM model and three commonly-used
models using the likelihood ratio test. SGBM significantly outperforms other models in four markets:
the Dutch market, British market, Swiss market and American market. In the Japanese market, the
p-value of likelihood ratio test is 0.1, reaching a significant margin. The graph of historical prices show
that the Nikkei 225 index goes downward at most times when it hits the skew level. Thus, we can
consider the Japanese market to be a skew market as well. Overall, we can say that skew phenomenon
exists broadly in the global stock markets.

For the daily data over the one-year period, there are 61 subsamples for the CSI 300 and
69 subsamples for the other indices. There are 15, 19, 14, 20, 13, 23, 27, 29, and 20 skew subsamples in
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each market, respectively. The Swiss market has the most skew subsamples while the British market
has the fewest skew subsamples. The proportion of skew subsamples, out of the total subsamples,
is noticeable. The skew probability is smaller than 0.5 in most skew subsamples, indicating that there
are more resistance levels than support levels.

In addition, we attempt to explain why the skew phenomenon exists in stock markets. As the
skew levels can be viewed as the barriers at which the indices cluster, psychological barriers of stock
price may be one of the reasons. Herding behavior and positive feedback trading strategy may
provide another reason, as a skew probability smaller than 0.5 corresponds to a skew level lower
than the sample mean in the empirical test. Government regulation can cause the occurrence of skew
phenomenon as well.

For the above explanations of the skew phenomenon, an important investment implication is
that, besides the characteristics such as jump and regime switching, the skew phenomenon is also
noteworthy. In the financial markets with skew phenomenon, the value of skew levels and skew
probabilities are great assistance to investors in judging the indices trends. For the government, testing
the skew phenomenon is a method to examine whether the intervention is effective. The value of skew
levels and skew probabilities are the evidence of the effect of intervention.
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Appendix A. Bayesian Estimation of Skew Brownian Motion Model

We introduce the parameter estimation method in this appendix. If we assume Θ to be the set
of all parameters (θ1, θ2, · · · , θn) and the joint prior density function of Θ to be p (Θ), the posterior
density function of the model is:

p(Θ|X) =
l(X|Θ)p(Θ)∫
l(X|Θ)p(Θ)dΘ

∝ l(X|Θ)p(Θ).
(A1)

In Bayesian inference, the inference which we want to conduct can be evaluated from the
expectation of a certain function g(Θ):

E [g (Θ)] =
∫

g (Θ) p (Θ|X) dΘ. (A2)

To avoid the complexity of multiple integrals, the Monte Carlo method is adopted in this paper.
Let

{
Θ(1), · · · , Θ(m)

}
be the samples generated from the posterior density function p (Θ|X); then,

Equation (A2) is approximated by:

E [g (Θ)] =
1
m

m

∑
i=1

g
(

Θ(i)
)

. (A3)

However, due to the difficulty in generating the samples
{

θ(1), · · · , θ(m)
}

directly, we employ
the Gibbs sampler, which provides an exercisable way to generate these samples. In fact, the Gibbs
sampler always uses the full set of univariate conditionals to define the iteration. In our case, instead of
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generating Θ(i+1) =
{

θ
(i+1)
1 , θ

(i+1)
2 , · · · , θ

(i+1)
n

}
from Θ(i) =

{
θ
(i)
1 , θ

(i)
2 , · · · , θ

(i)
n

}
by p (Θ|X) directly,

we get the Θ(i+1) with the conditional probability densities as follows:

θ
(i+1)
1 ∼p

(
θ1|X, θ2 = θ

(i)
2 , θ3 = (θ3)

(i) , · · · , θn = θ
(i)
n

)
,

θ
(i+1)
2 ∼p

(
θ2|X, θ1 = θ

(i+1)
1 , θ3 = (θ3)

(i) , · · · , θn = θ
(i)
n

)
,

. . .

θ
(i+1)
n ∼p

(
θn|X, θ1 = θ

(i+1)
1 , θ2 = (θ2)

(i+1) , · · · , θn−1 = θ
(i+1)
n−1

)
,

(A4)

To make the Gibbs sampler computationally efficient, the priors are chosen such that the
conditional posterior distributions are easy to simulate. According to convention, conjugate priors are
used to obtain simple analytical forms. For the resulting posterior distributions, see Chen and Li [35].

For each parameter in SGBM model, the estimation is presented as follows:

Appendix A.1. Estimation of the Instantaneous Return

Conditional on σ, p, and a, the proper prior distribution of µ should be a normal distribution
N
(

µµ, σ2
µ

)
. With the likelihood function in Equation (10), we get the proposal distribution of µ:

µ|X, σ2, p, a ∼ N
(

µ̂µ, σ̂2
µ

)
, (A5)

where

µ̂µ =

[
1
σ2

(
∑i∈N1

yti

1− p
+

∑i∈N2
yti

p

)
+

µµ

σ2
µ

]
σ̂2

µ,

σ̂−2
µ =

∆tN
σ2 +

1
σ2

µ
.

Appendix A.2. Estimation of the Volatility

Conditional on µ, p and a, the posterior distribution of σ2 is IG (ασ, λσ). Then, the proposal
distribution of σ2 is:

σ2|X, µ, p, a ∼ IG
(

α̂σ, λ̂σ

)
, (A6)

where
α̂σ =

N
2
+ ασ,

λ̂σ =
∑i∈N1

[yti − (1− p) µ∆t]2

2 (1− p)2 ∆t
+

∑i∈N2
(yti − pµ∆t)2

2p2∆t
+ λσ.

Appendix A.3. Estimation of the Skew Level

Conditional on µ, σ, and p, we can hardly find the conjugate priors of a to be its prior distribution.
Normally, we employ the Griddy–Gibbs sampler according to Ritter and Tanner [36]. Assume that a is
uniform on a predetermined interval (al , au) by observation. Conditional on µ, σ, and p, the density of
a is developed:
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p
(

a|X, µ, σ2, p
)

∝

(
1

(1− p)
√

2πσ2∆t

)n1

exp

{
− 1

2 (1− p)2 σ2∆t

× ∑
i∈N1

[yti − (1− p) µ∆t]2
}
×
(

1

p
√

2πσ2∆t

)n2

× exp

[
− 1

2p2σ2∆t
× ∑

i∈N2

(yti − pµ∆t)2

]
1

au − al
.

(A7)

We get the cumulative density Fa through the n grid points {a1, · · · , an} and right part of
Equation (A7). Then, together with a uniform random number Ua and preselected values 0 <

ξ1 < · · · < ξn < 1, a(i+1) and the new grid points (i.e., used in the next iteration) are obtained as
F−1

a (Ua) and F−1
a (ξi).

Appendix A.4. Estimation of the Skew Probability

Analogous to the estimation of the skew level, we assume p to be uniform on [0, 1] and the
grid points to be {p1, · · · , pn}. For each p ∈ {p1, · · · , pn}, conditional on µ, σ, and a, and from the
transforms in Equations (5) and (7), we calculate density of p as:

p
(

p|X, µ, σ2, a
)

∝

(
1

(1− p)
√

2πσ2∆t

)n1

exp

{
− 1

2 (1− p)2 σ2∆t

× ∑
i∈N1

[yti − (1− p) µ∆t]2
}
×
(

1

p
√

2πσ2∆t

)n2

× exp

[
− 1

2p2σ2∆t
× ∑

i∈N2

(yti − pµ∆t)2

]
.

(A8)

Then, we get the cumulative density Fp. The other procedure is the same as what is done to
estimate the skew level. Finally, we demonstrate that p(i+1) equals F−1

p
(
Up
)

and the new grid points

are
{

F−1
p (ξ1) , · · · , F−1

p (ξn)
}

.

Appendix A.5. Simulations

To evaluate the performance of our SGBM model and estimation approach, we conduct a set of
simulations. The simulation results are presented in the following.

We set the parameter values at µ̃ = 0.0672, σ = 0.2136, p = 0.2984, and a = 10, 543.1285, which
are the same as the estimates that we obtain using the price series of Nikkei 225 index, as analyzed in
Section 4. For the skew model, the St is generated as specified in Equation (1) for the samples of size
1000. As the skew phenomenon is set to exist in the simulated sample, the parameters are expected to
be biased if the presence of skew phenomenon is ignored. For the simulated sample, we compare the
estimates of SGBM model using the Bayesian approach and the estimates of conventional GBM model
using maximum likelihood estimation. the absolute relative error (ARE) of the estimates, between the
calculated value and experimental value, is defined as

ARE =

∣∣∣∣∣ θ̂ − θ

θ

∣∣∣∣∣ , (A9)

where θ is used as a generic notation to denote each parameter in the model. The simulation results
are presented in Table A1.
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Table A1. Simulation Results.

µ̃ σ a p p-Value p-Value
(Likelihood Ratio Test) (Significance Test of p)

SGBM 0.0593 0.2109 10,367.3596 0.3034 0.04 0.0000
(0.0063) (0.0049) (83.2747) (0.0370)

ARE 11.75% 1.26% 1.67% 1.65%
GBM 0.0227 0.2152
ARE 66.22% 0.75%

For the simulated sample, the parameters are estimated to be µ̃ = 0.0593, σ = 0.2109,
a = 10, 367.3596, and p = 0.3034 under the SGBM assumption, and the parameters are estimated
to be µ̃ = 0.0227 and σ = 0.2152 under the GBM assumption. We can see that the absolute relative
error reached as high as 66.22% between the real value of µ̃ and estimated value of µ̃ under the GBM
model, while the absolute relative error is much smaller under the SGBM assumption. As for σ, the
ARE is small for both models. It turns out to be true that skew phenomenon, if ignored, can yield a
substantial bias in the estimates of parameters.

Finally, we consider testing for the presence of skew phenomenon on the basis of the likelihood
ratio test and significance test of skew probability p. As shown in Table A1, the skew probability is
significantly different from 0.5, thus there is skew phenomenon present in the simulated sample. The
p-value of the likelihood ratio test shows that the SGBM model outperforms the GBM model. We can
see that skew phenomenon plays an important role in the dynamics of stock prices, such that it is
essential to take into consideration when modeling stock prices.
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