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Abstract: Today, wind power is becoming an important energy source for the future development
of electric energy due to its clean and environmentally friendly characteristics. However, due to
the uncertainty of incoming wind, the utilization efficiency of wind energy is extremely low, which
means the problem of wind curtailment becomes more and more serious. To solve the issue of wind
power large-scale consumption, a two-stage stochastic optimization model is established in this
paper. Different from other research frameworks, a novel two-side reserve capacity mechanism,
which simultaneously takes into account supply side and demand side, is designed to ensure the
stable consumption of wind power in the real-time market stage. Specifically, the reserve capacity of
thermal power units is considered on the supply side, and the demand response is introduced as
the reserve capacity on the demand side. At the same time, the compensation mechanism of reserve
capacity is introduced to encourage generation companies (GENCOs) to actively participate in the
power balance process of the real-time market. In terms of solution method, compared with the
traditional k-means clustering method, this paper uses the K-means classification based on numerical
weather prediction (K-means-NWP) scenario clustering method to better describe the fluctuation of
wind power output. Finally, an example simulation is conducted to analyze the influence of reserve
capacity compensation mechanism and system parameters on wind power consumption results.
The results demonstrate that with the introduction of reserve capacity compensation mechanism,
the wind curtailment quantity of the power system has a significant reduction. Besides, the income
of GENCOs is gradually increasing, which motivates their enthusiasm to provide reserve capacity.
Furthermore, the reserve capacity mechanism designed in this paper promotes the consumption of
wind power and the sustainable development of renewable energy.

Keywords: two-stage stochastic programming; two-side reserve capacity mechanism; wind power;
K-means-NWP; scheduling model

1. Introduction

1.1. Background and Motivation

With the excessive consumption of fossil energy, energy transformation has been paid attention
by all countries worldwide. Renewable energy is favored because of its cleanness, environmental
protection, and renewability [1]. Therefore, renewable energy generation will become the main method
of electric energy production in the future. However, these clean energy sources also have some
disadvantages. For instance, some kinds of renewable energy supply such as PV (photovoltaic) and
wind power, due to the randomness and fluctuation during the generation process, will increase the
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volatility of system power generation output. What is more, with their large-scale penetration, the
uncertainty of market balance will also increase, resulting in the power system operation facing serious
challenges. For this reason, countries around the world have not been very effective in large-scale use
of clean energy. In China, the utilization efficiency of wind energy is very low, and wind curtailment is
a serious problem [2]. In 2017, the wind curtailment rate in Xinjiang and Gansu province reached 33%
and 29% respectively [3]. Consequently, how to use renewable energy such as wind energy efficiently
and reduce spillage of wind power is the main problem to be solved in this paper. Specifically, we
further discuss the root cause of wind spillage, and we found that it is mainly the uncertainty of wind in
nature that leads to the failure of accurate prediction of wind power output, which leads to the deviation
of real-time wind power output, and finally affects the scheduling and production arrangement of the
real-time spot market. In order to realize large-scale consumption of wind power, reserve capacity
in the real-time stage is necessary, but a free reserve makes power generation companies gradually
lose interest [4]. Therefore, the establishment of a compensation mechanism for reserve capacity will
encourage more and more power generation manufacturers to provide more reserve capacity in the
real-time stage, offer sufficient reserve space for wind power, and promote wind power consumption.

1.2. Literature Review

With large-scale wind power penetrating into the power system, the significant increase of the
frequency modulation (FM) reserve unit is an inevitable trend [5]. However, considering the uncertainty
of wind power, how to reasonably arrange the production of these reserve units is the main issue we
need to focus on. In view of this problem, many studies have been done in previous research. The
following is an overview of the methodology used by predecessors’ studies to solve this problem.

For the uncertainty processing of wind power, most of the processing methods adopted in the
previous research can be divided into two categories, namely robust optimization and stochastic
optimization. References [6–10] adopt the idea of robust optimization to cope with the volatility
of wind power. Reference [6] studies the wind power uncertainty of gas-electric integrated system
coordination optimization and puts forward a two-stage distributionally robust optimization (DRO)
model with the goal of minimum system total operating cost to analyze the impact of residents of
gas load, abandon the wind punishment cost coefficient, and climb rate parameters on the final
optimization results. Based on robust optimization, the literature [7] establishes an optimization
model for joint scheduling of energy and auxiliary services markets that considered wind power
uncertainty in the real-time power market and proposes redundant constraint reduction strategy to
improve the computational efficiency of robust joint scheduling. Reference [8] utilizes distributionally
robust chance constrained and interval optimization to handle the impact of wind power fluctuation.
In reference [9], a robust unit commitment model with multi objectives (minimizing the operating cost
and maximizing the peak shaving capacity of the power system) is proposed to resist the disturbance
of wind power stochastic fluctuation. In addition, reference [10] utilizes robust optimization to deal
with the uncertainty of wind power and photovoltaic power output, and the Gaussian process method
is used to predict the confidence interval of uncertain parameters, which support a day-ahead market
scheduling strategy formulation. However, both robust optimization and distributionally robust
optimization have drawbacks, which are that scheduling decisions are too conservative and at the
expense of economic interests.

Therefore, stochastic optimization, another method to solve uncertain problems, is favored by
researchers. Reference [11] formulates a stochastic optimization model to accomplish the day-ahead
economic dispatch fully considered wind power volatility. In reference [12], a scheduling model for
the coordinated operation of hydro and wind power is established by utilizing the complementary
characteristics of hydro and wind energy, and a stochastic programming model is adopted to cope with
the uncertainty of wind power output. In addition, reference [13], in considering the influence of solar
radiation intensity and wind power uncertainty on the whole scheduling process, establishes a stochastic
optimal scheduling model for centralized wind-solar power stations. Moreover, a day-ahead stochastic
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scheduling model of thermal-hydro-wind-photovoltaic power system is presented in reference [14],
which adopts Monte Carlo simulation to generate the output scenarios of wind power and photovoltaic
power to describe their uncertainty. Yet all of the above studies did not consider the impact of wind
power uncertainty on the power system concretely. Specifically, wind power in the electricity spot
market is divided into two stages, i.e., the first stage is day-ahead market dispatch phase, and the
second stage is a real-time market, whereas the actual deviation of the wind power output often occurs
in the second stage. Therefore, the established stochastic programming model divided into two stages
should be taken into account, which can restore the real-time situation of actual scheduling.

Generally, the consumption of wind power not only considers the reserve capacity market but also
other methods to realize the safe and reliable connection of wind power to the grid. For example, demand
response management (DRM) [15], joint operation of energy storage units, and other cooperative
operation mechanism can balance the deviation of wind power real-time output. However, many
researchers tend to consider these in terms of reserve capacity and ignore other approaches that can
also promote wind power consumption. In reference [16], a dynamic economic scheduling model of
integrated power system contained wind power is proposed to optimize the generation and reserve
capacity of all units, and the capacity and ramp rate of the generator have an important impact on the
optimal scheduling of reserve capacity, but the demand response of the user side is not mentioned.
What is more, reference [17] introduces the concept of interruptible load and presents a cost-benefit
tradeoff-based algorithm for optimal reserve capacity in the power market, which emphasized that
both generator sets and interruptible load could participate in the reserve market. In addition, some of
the literature also adopts the joint operation of energy storage device and wind turbine to reduce the
interference of wind power instability on the system [18–20]. For instance, reference [18] proposes
a wind power, pumped storage, and thermal plant joint operation mechanism with the objective
of maximizing the operator’s profit gained from the day-ahead market and reserve market, and a
heuristic optimization algorithm has been used to solve this problem. In reference [19], a combination
of wind turbines and air compression energy storage devices is introduced. Similar to reference [18],
reference [20] also presents a decision-making mechanism for wind-energy storage joint system to
participate in day-ahead market and reserve market. In summary, it can be found that the research on
the scheduling mechanism of DRM as a flexible resource to balance wind power is relatively weak.
Consequently, it is necessary to fill the research gap in this field.

According to the summary of the above literature review, it can be obviously concluded that
previous research still has three insufficiencies. First of all, in terms of research methods, most of
them adopt the idea of robust optimization, which leads to the over-conservative results. Second, the
traditional stochastic optimization process cannot fully reflect the actual scheduling process when
dealing with the uncertainty of wind power. Finally, on the demand side, the utilization of flexible
demand response resources is insufficient.

1.3. Contributions and Organization

To fill the research gap, this paper proposes a novel two-stage stochastic optimization model for
a wind power system with the participation of spot market, which considers both the flexibility of
supply side and demand side, that is, the flexibility capacity includes interruptible load of demand
response and reserve capacity of thermal power unit. The promotion effect of adding flexible capacity
market in the real-time stage on the consumption of clean energy is fully studied, and the consumption
situation of wind power is further analyzed. Additionally, the main contributions of this paper can be
divided into three aspects. First, the model is constructed to establish a compensation mechanism when
standby power is invoked in the real-time stage. Second, a two-stage stochastic optimization method
is used to set up the scheduling optimization model, and the clustering method K-means-NWP is
adopted to describe the uncertainty of wind power output. Finally, the flexibility of adjusting resources
based on demand response is considered, which can increase the reserve power of the system and
improve the consumption capacity of wind power.
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Besides, the organization of the remaining sections are as follows: Section 2 elaborates the main
problems studied in this paper; in the Section 3, the mathematical model is built and the solution
method is given; Section 4 uses a numerical example to verify the rationality of the established model;
and the final conclusions are given in Section 5.

2. Problem Description

In this section, the main problem that needs to be addressed in this paper is described in detail,
which contains the main problem introduction and the proposed optimization method process.

2.1. Wind Power Consumption

With the rapid development of renewable energy sources (wind power, photovoltaic, etc.) in
China, wind power installed capacity increases year by year. In order to implement the large-scale
consumption of wind power and ensure the safe and stable operation of the power system, the power
system needs to arrange a certain rotation reserve based on the original operation mode to cope with
the uncertainty of wind power output [21]. The influence of wind power on system dispatch and
operation is mainly caused by the uncertainty of wind power output, which changes rapidly and
violently and is unpredictable. The previous method of reserve configuration cannot meet the new
requirements brought by large-scale wind power grid connection [22]. With the increasing proportion
of wind power being grid-connected, the demand for a spinning reserve is increasing. It is not enough
to rely on conventional power supply to adjust and provide a spinning reserve. Therefore, how to
fully exploit the other regulatory resources in the system and rationally optimize the rotating standby
according to the characteristics of the spinning reserve requirements of a wind power grid-connected
system is an urgent problem that needs to be solved [23]. At present, flexible capacity resources (like
the reserve capacity of thermal power units, demand response, energy storage, etc.) are the key to
solving the problem of wind power consumption. This paper mainly considers the impact of thermal
power unit flexibility, demand response, and wind penalties on wind power consumption.

In order to ensure the safety and stability of the system, accept more clean energy, and maintain
a good system operation economy, it is urgent to make a reasonable and effective decision on the
optimization of spinning reserve capacity of the system after large-scale wind power integration.

2.2. Proposed Capacity Optimization Configuration Process

In this paper, a two-stage stochastic optimization model for dual-side reserve capacity of power
system considering wind power consumption is proposed. The overall goal of two-side reserve capacity
focuses on minimizing the total cost of system operation and improving wind power consumption.
Specifically, the stochastic optimization model can be divided into two stages. In the first stage, in the
day-ahead market, the dispatching operator sorts the operating costs and spare capacity costs reported
by each generator unit and determines the spare capacity that can be provided in the market on the next
day. Then, according to the forecast value of wind power output, the dispatching operator calculates
the reserve capacity that needs to be reserved for each generator unit in the second stage. In the second
stage, the method of randomly generating the scene is used to simulate the operation of the market
on the next day. When the wind power has error fluctuation, each generator unit provides backup
power for its system and at the same time considers the interruptible load on the demand side to
provide the unit with backup power. Finally, the impact on wind power consumption is analyzed by
introducing abandonment penalty cost, demand response, and thermal power unit flexibility (climbing
rate, minimum technical output) in the objective function.

3. Mathematical Modeling and Solution

In this section, we present a two-stage stochastic optimization model that mainly focuses on
optimizing the dual-side reserve capacity of the power system to improve wind power consumption.
In the first stage, the wind power output is predicted to determine the system backup capacity that
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needs to be generated in the second stage. In the second stage, the wind power output is clustered
according to historical meteorological data by the K-means-NWP method in order to simulate the wind
power output on the next day, then according to the error between the wind power output simulation
value and the actual value. The remaining reserve capacity in the day-ahead phase can be utilized to
balance the error.

3.1. Mathematical Modeling

This paper presents a two-stage stochastic optimization model. In the first stage, the independent
system operator (ISO) ranks the operation cost and reserve capacity cost reported by each unit in the
day-ahead market. With the aim of minimizing the total operating cost of the system, the reserve
capacity available on the intra-day market the next day can be determined by optimization [24]. Then
according to the typical output scenario of wind power output, the reserve capacity provided by other
units is calculated. In the second stage, the K-means method based on meteorological data is used
to simulate the operation of the intra-day-market in the second day. In case of fluctuations in wind
power, thermal units provide reserve capacity for the system, and meanwhile, interruptible load on the
demand side is considered to provide reserve electricity (interruptible load refers to the load that can
be interrupted by the user side when the power grid needs it, which is usually realized by signing a
contract with the user). Considering the compensation price of reserve electricity supply from thermal
unit and interruptible load in real-time market, the scheduling and production arrangement in the
second stage is completed with the objective function of minimum system equilibrium in the real-time
stage [25]. Finally, the effect on wind power consumption is analyzed by introducing penalty coefficient
of wind curtailment, demand response, and flexibility of thermal units (ramp rate and minimum
technical output) into the objective function.

f = min
T∑

t=1

NG∑
g=1

[ai(PDa
g,t )

2
+ biPDa

g,t + ci + µon
g,tC

start
g + µ

o f f
g,t Cdown

g + ρu
g,rR

up,max
g,t + ρd

g,rR
down,max
g,t )]+

Ω∑
ω=1

ρω
T∑

t=1

NG∑
g=1
{(1−ω)λtRIL

ω,t + ρu
c Rω,up

g,t + ρd
c Rω,down

g,t + csWspill
ω }

(1)

where ai, bi, ci respectively represent the coefficients of the generating cost function of thermal units;
µon

g,t, µ
o f f
g,t denote the start and stop status of thermal units; ρu

g,r, ρd
g,r refer to the compensation price

of reserve capacity of thermal units; ρω is the probability of wind power combination scenario ω; Ω
represents the total number of wind power combination scenarios, which equals to the product of
the number of output scenes of all wind turbines; λt is the user electricity price; ρu

c , ρd
c represent the

compensation price of standby power provided by thermal units in the real-time stage; cs denotes the
penalty coefficient of wind curtailment; Wspill

ω represents the wind abandon quantity of wind power
combination scenario ω.

3.1.1. The Constraints of the Day-ahead Stage

(1) Day-ahead system power balance

NG∑
g=1

Nw∑
w=1

(PDa
g,t + PDa

w,t) = Lt, (2)

where NG, NW respectively represent the number of thermal power and wind power units. PDa
g,t is

the power of thermal power unit g at time t in the day-ahead stage. PDa
w,t denotes the power of the

wind turbine g at time stage t in the day-ahead stage. Lt refers to the total load of the system at
time t.
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(2) Day-ahead unit output constraint

µg,tPmin
g ≤ PDa

g,t ≤ µg,tPmax
g , (3)

where µg,t is the start and stop state of thermal unit g at time stage t. Pmax
g , Pmin

g separately denote
the maximum and minimum power of thermal unit g.

(3) Day-ahead wind power output constraints

0 ≤ PDa
w,t ≤

_
Pw,t, (4)

where
_
Pw,t is the predictive power of wind turbine w at time stage t.

(4) Day-ahead wind power ramping constraints

− rd
w ≤ PDa

w,t − PDa
w,t−1 ≤ ru

w, (5)

where ru
w, rd

w refer to the ramp rate of wind turbine w.
(5) Day-ahead thermal units startup and shut off constraints [26]

µ
o f f
g,t = µg,t−1 − µg,t + µon

g,t (6)

µon
g,t + µ

o f f
g,t ≤ 1 (7)

(6) Day-ahead thermal units ramping constraints

PDa
g,t − PDa

g,t−1 ≤ ru
g, (8)

− rd
g ≤ PDa

g,t − PDa
g,t−1, (9)

where ru
g, rd

g refer to the ramp rate of thermal unit w.

(7) Day-ahead spinning reserve capacity constraints

Upper reserve capacity provided by thermal units at time stage t:

Rup,max
g,t = min

{
Pmax

g − PDa
g,t , ru

g

}
. (10)

Lower reserve capacity provided by thermal units at time stage t:

Rdown,max
g,t = min

{
PDa

g,t − Pmin
g , rd

g

}
. (11)

Lower reserve capacity required by wind turbine:

Rdown
w,t = max{

K∑
k=1

P
{
δ(k)

}_
Pw,t, 0}. (12)

Upper reserve capacity needed by wind turbine:

Rup
w,t = min{

K∑
k=1

P
{
δ(k)

}_
Pw,t, 0}, (13)
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NG∑
g=1

Rup,max
g,t ≥

NW∑
w=1

Rup
w,t, (14)

NG∑
g=1

Rdown,max
g,t ≥ −

NW∑
w=1

Rdown
w,t , (15)

where Rup,max
g,t and Rdown,max

g,t respectively refer to the maximum of the upper reserve capacity and

lower reserve capacity provided by thermal unit g at time stage t. Rup
w,t, Rdown

w,t separately refer to
the maximum of the upper reserve capacity and lower reserve capacity required by wind turbine
w at time stage t.

3.1.2. Real-time stage

(8) Wind power abandon quantity constraint

0 ≤Wspill
w ≤ PRt

w,t, (16)

Wspill
ω =

NW∑
w=1

Wspill
w , (17)

where PRt
w,t is the power of wind turbine w at time stage t in the real-time stage; Wspill

w refers to the
wind abandon quantity of wind turbine w.

(9) Real-time units output constraints

PRt
g,ω,t = PDa

g,t + Rup
g,ω,t −Rdown

g,ω,t , (18)

µg,tPmax
g ≤ PRt

g,ω,t ≤ µg,tPmin
g , (19)

where PRt
g,ω,t denotes the power of thermal unit g at time stage t in the wind power combination

scene w at the real-time stage. Rup
g,ω,t and Rdown

g,ω,t separately denote the upper reserve capacity and
lower reserve capacity provided by thermal unit g at time stage t in the wind power combination
scene w at the real-time stage.

(10) Real-time reserve capacity constraints

Rup
w,ω,t ≤ Rup

g,ω,t ≤ uup
g,tR

up,max
g,t , (20)

Rdown
w,ω,t ≤ Rdown

g,ω,t ≤ udown
g,t Rdown,max

g,t , (21)

where uup
g,t and udown

g,t respectively refer to the state provided by thermal unit g at time stage t in
the real-time stage.

0 ≤ RIL
ω,t ≤ θLt, (22)

where RIL
ω,t denotes the interruptible load provided by users at time stage t in the wind power

combination scenario ω in the real-time stage. θ represents the proportion of the maximum of
interruptible load that can be provided by the power side to the total load [27].

(11) Real-time reserve service (only one in use at any given time)

0 ≤ uup
g,t + udown

g,t ≤ 1 (23)
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(12) Real-time wind power output constraints

0 ≤ PRt
w,t ≤ PRt

w,t
0 ≤ PRt

w2,t ≤ PRt
w2,l,t

(24)

(13) Real-time wind power ramping constraints

− rd
w ≤ PRt

w,t − PRt
w,t−1 ≤ ru

w (25)

(14) Real-time power balance constraints

NG∑
g=1

(Rup
g,ω,t −Rdown

g,ω,t ) + RIL
g,ω,t +

NW∑
w=1

(PRt
w1,s,t + PRt

w2,l,t − PDa
w1,t − PDa

w2,t) −Wspill
ω = 0 (26)

3.2. K-Means Classification Based on Numerical Weather Prediction (K-Means-NWP)

The K-means clustering method is the most classic one in the dynamic clustering algorithm. Its
basic idea is to divide each sample into the category closest to the mean, which is clustered by the
distance and near distance.

The K-means clustering algorithm generally includes the following processing steps:

(a) Dividing all data into K initial classes, selecting K sample points as the initial cluster center, and
record as z1(l), z2(l) . . . . . . zk(l); Where, the initial value l = 1;

(b) All samples are assigned to the K ω j(K) class represented by each cluster center according to the
nearest neighbor rule, The number of samples included in each category is N j(l);

(c) Calculating the mean vector of each type and use the vector as the new cluster center:

z j(l + 1) =
1

N j(l)

∑
x(i)∈ω j(l)

x(i), (27)

where j = 1, 2 . . . . . . k, i = 1, 2 . . . . . .N j(l);
(d) When z j(l + 1) , z j(l), it means the clustering result is not optimal, then returns to step (b) and

continues the iterative calculation;
(e) When z j(l + 1) = z j(l), it means that the clustering result is optimal at this time and the iteration

process is over.

According to the literature [28], there is a close relationship between wind power generation
and meteorological data, especially with wind speed. However, the existing statistical forecasting
methods based on numerical weather forecast do not classify meteorological information according
to different characteristics; that is, they do not consider the different characteristics of wind power
output corresponding to different meteorological data. Therefore, it is necessary to solve the following
problems: 1) different characteristics of meteorological information correspond to large differences
in wind power output, and 2) various factors in meteorological data are related to wind power
output; that is, the factors that play a leading role in wind power output. Based on this, this paper
comprehensively considers various meteorological factors and proposes a method of wind power
output prediction based on fuzzy k-means of numerical weather forecast (K-means-NWP). The specific
steps are as follows:

Step 1 The meteorological factors affecting wind power output are analyzed, including daily
atmospheric pressure average (Pav), daily wind speed minimum (Vim), daily wind speed
maximum (Vmax), daily temperature minimum (Tmin), daily temperature maximum (Tmax),
and daily wind direction, the sinusoidal mean (Dsin), and the daily wind cosine mean (Dcos).
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Step 2 Select the historical meteorological data of the previous month, xi =

[Pav Vmin Vmax Tmin Tmax Dsin Dcos], then X = [x1; x2 . . . . . . ; xn]; n = 30. Since
the dimensions of the components in the NWP vector are different, normalization is required.
The air pressure, wind speed, and temperature are divided by their respective historical
maximum values. The wind direction sine and cosine values are normalized values and need
no further processing.

Step 3 Set the initial value k of clustering number according to the number of target clusters.
Step 4 According to Equation (27), calculate the mean vector of each type and use the vector as the

new cluster center.
Step 5 According to the fuzzy k-means criterion, judge the final result. If it is not the optimal result,

return to step 4 to continue the iteration. Otherwise, the iteration ends, and the clustering
result is output.

Step 6 Observe the meteorological data of the target day, calculate the distance between them and
the clustering results and normalize them as the membership degree of the corresponding
clustering results.

The flow chart of K-means-NWP steps is as shown in Figure 1.
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Through Figure 1, we can get n clustering results and the corresponding meteorological data types
of each result. As shown in Equation (28),

K1 = [Pav Vmin Vmax Tmin Tmax D sin D cos]
K2 = [Pav Vmin Vmax Tmin Tmax D sin D cos]
K3 = [Pav Vmin Vmax Tmin Tmax D sin D cos]
...

...
Kn = [Pav Vmin Vmax Tmin Tmax D sin D cos]

. (28)
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In this paper, in order to simplify the calculation, we take n = 3 to get three scenarios of high,
medium, and low wind power output, which is expressed as [Kh; Km; Kl], and then calculate the
membership degree of the target day meteorological data corresponding to the three scenarios of high,
medium and low wind power output, which is expressed as [ρh,ρm,ρl]. Thus, the predictive value of
target daily wind power output in each scenario can be obtained.

Ph = [P1; P2 . . . . . .Pn];ρ = ρh
Pm = [P1; P2 . . . . . .Pn];ρ = ρm

Pl = [P1; P2 . . . . . .Pn];ρ = ρl

n = 1, 2, · · · , 24 (29)

3.3. Solution Methodology

Figure 2 illustrates the solution process of the two-stage stochastic optimization model in this
paper. First, the K-means-NWP method is used to cluster the actual output data of each wind turbine,
and several possible situations and probabilities of the actual output of wind turbine are obtained. Then,
the clustering results of each wind turbine are combined to obtain typical combination scenarios. On
this basis, MATLAB R2016b (MathWorks company, Natick, MA, USA, 2016) and CPLEX Optimization
Studiov12.8 (IBM company, Amund, New York, NY, USA, 2017) are used to solve the mixed integer
linear programming model proposed in Section 3.1, and the unit scheduling results in the day-ahead
and real-time phases are obtained. The detailed solution process is shown as follows:
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4. Numerical Example

In the numerical example, this paper adopts the basic data of related physical components in the
previous literature, and on this basis, the model algorithm proposed in Section 3 is used to realize the
simulation, which studies the effect of reserve capacity compensation mechanism on GENCOs’ revenue
and quantity of wind spillage. Meanwhile, the impact of changes in related parameters on spare
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capacity allocation, reserve costs, and wind power consumption is investigated, and the calculated
results also meet the expectations, verifying the effectiveness and applicability of the proposed method.

4.1. Parameters Setting

In this section, the power system contained thermal units, wind power generators and interruptible
load is set up, and necessary input information and data is presented [29,30]. We build a power
system that aggregates four thermal units and two wind turbines. The install capacity of the two wind
turbines is 150 MW and 100 MW. Table 1 demonstrates the key parameters of the GENCOs, and Table 2
shows the parameters of electricity market. In addition, we divide spot trading into 96 time periods to
simulate scheduling. And the above parameters are substituted into the model, and the model can be
solved by Matlab R2016b and CPLEX Optimization Studio v 12.8.

Table 1. The key parameters of generation companies (GENCOs) (Unit: MW, MW/15 min).

GENCOs Parameters Value

Thermal Unit 1

Pmax
g1 350

Pmin
g1

50
rg1,u 34.5
rg1,d 34.5

Thermal Unit 2

Pmax
g2 240

Pmin
g2

50
rg2,u 67.5
rg2,d 67.5

Thermal Unit 3

Pmax
g3 200

Pmin
g3

80
rg3,u 123
rg3,d 123

Thermal Unit 4

Pmax
g4 250

Pmax
g4 50

rg4,u 69
rg4,d 69

Wind Turbine 1
rw1,u 34
rw1,d 34

Wind Turbine 2
rw2,u 22

rw1,d 22

Table 2. The parameters of electricity market.

Parameters ξ θ CS

value 0.2 0.005 800

4.2. The Influence of Compensation Mechanism

A two-stage stochastic optimization model proposed in Section 3.1 introduces the reserve capacity
compensation mechanism, which provides compensation for the demand response provided by thermal
units and the user side. In this section, two different scenarios are set up. By analyzing the operation
results of the model, the effect of the introduction of reserve capacity compensation mechanism on
wind power consumption and generator revenue is discussed. In order to observe more clearly the
influence of compensation mechanism on wind power consumption, the penalty coefficient of wind
curtailment is 0 in the two scenarios discussed in this section.
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4.2.1. Scenario Set

Case 1

In the traditional power system without reserve capacity compensation mechanism, the total
system cost is composed of the operating cost and startup and shut off cost of thermal units. From
the perspective of thermal power plants, their revenue is generated by day-ahead dispatching minus
operation cost and startup and shut off cost.

G =
T∑

t=1

NG∑
g=1

[ρg,daPDa,t
g − (ai(P

Da,t
g )

2
+ biP

Da,t
g + ci + µt,on

g Cstart
g + µ

t,o f f
g Cdown

g )] (30)

Case 2

After the reserve capacity compensation mechanism is added into the conventional system,
the power plant can obtain the compensation by reserving capacity in the day-ahead market, and
meanwhile, the reserve power compensation can be obtained according to the net adjustment amount
in the real-time market under the compensation mechanism. In addition to thermal units, the real-time
reserve power provided by interruptible load will also obtain compensation. The total system cost
increases the reserve capacity cost of thermal units, the compensation cost of calling thermal power
plant and the reserve power of interruptible load on the original basis. Similarly, thermal power plants
increase the income of reserve capacity and reserve power compensation.

G =
T∑

t=1

NG∑
g=1

[ρg,daPDa,t
g + ρg,r,uRt,up,max

g + ρg,r,dRt,down,max
g + ρc,uRt,up

g,ω − ρc,dRt,down
g,ω − (ai(P

Da,t
g )

2

+biP
Da,t
g + ci + µt,on

g Cstart
g + µ

t,o f f
g Cdown

g )]

(31)

4.2.2. Result and Discussion (High-Medium-Low)

In the day-ahead market, the reserved reserve capacity of thermal units 1–4 and the predicted
output of wind turbines 1 and 2 can be obtained according to the calculation results in the first stage of
the model, among which the wind power output is the predicted value. According to the clustering
method in Section 3.2, the actual output scenarios of wind power are classified as high, medium, and
low. The probabilities of each scenario are shown in Table 3.

Table 3. Clustering results of wind power output.

High Medium Low

wind turbine 1 51.2% 31.5% 17.3%
wind turbine 2 42.4% 29.8% 27.8%

Different dispatching results can be obtained under different wind power output combinations.
This paper selects five typical combinations—High-High (HH), High-Low (HL), Medium-High (MH),
Medium-Medium (MM), and Low-Low (LL). The influence of compensation mechanism on wind power
consumption and power generation benefit is analyzed under different wind power output combination.

Figure 3 shows the comparison of wind curtailment results in scenario 1 and scenario 2 under
different wind power output combinations. It can be seen that the wind curtailment quantity in
scenario 1 is significantly less than that in scenario 2, which intuitively illustrates the influence of the
reserve capacity compensation mechanism on promoting wind power consumption. In the real-time
stage, the thermal unit provides upper reserve capacity Rt,up

g,ω and lower reserve capacity Rt,down
g,ω , while

the interruptible load IL provides upper reserve capacity Rt,IL
g,ω. Then, to promote system balance and

wind power consumption, the net reserve power generated in the real-time stage can be expressed as
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Rt,down
g,ω + Rt,up

g,ω + Rt,IL
g,ω. As shown in Table 4 and Figure 4, when there is a reserve capacity compensation

mechanism, thermal units are more active in providing reserve capacity to maintain system balance
compared with the net reserve capacity in scenario 1 and scenario 2.
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Figure 3. Daily curtailment curve under different wind power output combination.

Table 4. Each balance unit output under different wind power output combination in the real-time
stage during 96 periods.

Wind Power
Output Scenario

Case 1 Case 2

Thermal
Unit Down
Regulation

Thermal
Unit Up

Regulation
IL

Thermal
Unit Down
Regulation

Thermal
Unit Up

Regulation
IL

HH 1263.55 −125.93 −180.66 4240.83 −11.61 −44.37
HL 859.89 −242.89 −194.71 4128.32 −15.04 −185.94
MH 971.40 −152.99 −186.83 4169.41 −16.54 −258.47
MM 695.67 −138.29 −191.97 4129.06 −27.99 −217.37
LL 702.71 −437.85 −227.80 3966.31 −35.43 −237.69

Table 5 demonstrates the composition of the total system cost and the benefits of the power plant
under the two scenarios. According to the wind curtailment result in Figure 3, the wind curtailment
penalty cost in scenario 2 is also greatly reduced compared with scenario 1 due to the small quantity of
wind curtailment. In addition, since scenario 2 absorbs more wind power, and the power generation
cost of the wind turbines is 0, its power generation economy is obviously better than that of thermal
power units, so the total system cost of scenario 2 is far less than scenario 1. In terms of the income of
the GENCOs, the GENCOs in scenario 1 can only obtain the electricity revenue of pre-dispatching in
the day-ahead stage. In scenario 2, due to the compensation mechanism of reserve capacity, GENCOs
can obtain the compensation of reserve capacity reserved in the day-ahead stage and also gain revenue
when the upper reserve power is provided in the real-time stage. Consequently, in scenario 2, the
profit of the GENCOs is greatly increased, which can more effectively promote their enthusiasm to
provide reserve capacity.
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Figure 4. Each balance unit output under different wind power output combination in the real-time
stage 96 periods.

Table 5. Cost-benefit comparison.

Unit: ¥10 Thousand Case 1 Case 2

Total system cost 411.4 190.4
Power plant revenue: 4087.2 4279.4

Day-ahead generation income 4498.7 4612.9
Capacity of the income 0 341.7

Charge income 0 −230.9
Power generation cost −411.4 −444.3

4.3. Impact Factors Analysis on the Wind Power Consumption

From the analysis of Section 4.2, it can be seen that the existence of compensation mechanism in the
system is conducive to maintaining the balance of the system and promoting the consumption of the
system’s wind power. From the perspective of the GENCOs, the benefits are also increased. This section
mainly discusses the influence of the change of relevant parameters in the system on wind power
consumption, and the analysis is based on the market with backup capacity compensation mechanism.

In the base scenario, the tariff discount rate is 0.2, the maximum proportion of interruptible load
IL in the total load is 0.005, and the penalty coefficient of wind curtailment is 800.

4.3.1. Demand Response Parameters

Figure 5 draws the interruptible load provided by the power side at various time nodes in different
wind power scenarios under different tariff discount rates in the real-time stage, As can be seen from
Figure 5, in the five different wind power combination scenarios, when ξ = 0.7, the power side provides
the most interruptible load to balance the market. Table 6 illustrates the total amount of interruptible
load provided by the power side in one day. Obviously, the interruptible load provided by the power
side in the real-time stage will increase with the increase of the tariff discount rate. Compared with
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the scenario of a low tariff discount rate, the incentive of a high tariff discount rate can promote the
power side to make up for the negative error of wind power output to a greater extent. The wind
curtailment in various wind power scenarios with different discount rates are illustrated in Table 7.
From the perspective of the overall operation of the system, the increase of the tariff discount rate is
conducive to wind power consumption and reduce wind curtailment. Figure 6 denotes the pre-output
of wind turbines at various time nodes in the day-ahead stage of the system under different tariff
discount rates, and the total output of day-ahead wind power under different discount rates is shown
in Table 8. The increase of tariff discount rate affects the output of units in the equilibrium stage and
also changes the pre-output of wind turbines in the day-ahead stage. It can be seen that, as opposed
the situation in Section 4.1, with the increase of the tariff discount rate, the pre-output of wind turbines
in the day-ahead stage is gradually increased under the condition that the actual output of wind
power in the real-time stage is the same, which is equivalent to reducing the pressure of balancing
wind power fluctuations in the real-time stage. In this process, the results in Table 9 are produced
because more wind power has completed pre-dispatching in the day-ahead stage. In addition, with
the increase of the tariff discount rate, the net reserve power provided by other units in the real-time
phase gradually decreases.Sustainability 2020, 12, x FOR PEER REVIEW 16 of 23 
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Figure 5. The interruptible load provided by each time node under different tariff discount rate in
thereal-time stage.
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Figure 6. Pre-output of wind power units at different time nodes under different tariff discount rates in
the day-ahead stage.

Table 6. Total amount of reserve power provided by interruptible load under different tariff discount
rates during 96 time periods.

Tariff Discount Rate
Total Amount of Reserve Power Provided by Interruptible Load (MW)

HH HL MH MM LL

0.2 34.09 237.60 214.51 238.50 271.26
0.4 57.96 305.71 279.26 309.88 350.05
0.7 66.74 332.40 293.12 323.96 365.45

Table 7. Total value of wind curtailment at different tariff discount rates during 96 time periods.

Tariff Discount Rate
Total Value of Wind Curtailment (MW)

HH HL MH MM LL

0.2 621.13 231.72 462.36 108.39 51.39
0.4 605.80 219.97 455.25 103.70 47.86
0.7 570.42 210.34 427.18 91.87 46.29

Table 8. Total pre-output of wind turbines under different tariff discount rates in the day-ahead stage
during 96 time periods.

Tariff Discount Rate
The Total Pre-Output of Wind Turbines (MW)

Wind Turbine 1 Wind Turbine 2 Total

0.2 6599.08 1676.18 8275.26
0.4 6014.50 2290.93 8305.43
0.7 6249.37 2104.43 8353.80
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Table 9. Net reserve power at different tariff discount rates during 96 time periods.

Tariff Discount Rate
Net Reserve Power (MW)

HH HL MH MM LL

0.2 4178.33 3309.44 3618.84 3193.27 2345.67
0.4 4163.48 3291.03 3595.77 3167.79 2319.03
0.7 4150.50 3252.29 3575.47 3131.25 2272.23

Another parameter that affects the demand response is the interruptible load limit that can be
provided by the power side, represented by the proportion of interruptible load to the total load.
The system operation results under different θ values are shown in Tables 10–12. Similar to the
tariff discount rate, with the increase of the θ value, the wind curtailment quantity in each scenario
decreases, and as the output value of pre-dispatch of wind power in the day-ahead stage increases
with the increase of the θ value, the total reserve capacity provided by other units in the real-time stage
also decreases.

Table 10. Total pre-output of wind turbine in different interruptible load limits in day-ahead stage
during 96 time periods.

Interruptible Load Limits Wind Turbine 1 Wind Turbine 2 Total

0.005 6599.08 1676.18 8275.26
0.05 6206.46 2194.97 8401.42
0.1 6474.96 1970.40 8445.36

Table 11. Net reserve power under different interruptible load limits during 96 time periods.

Interruptible Load Limits
Net Reserve Power during 96 Time Periods (MW)

HH HL MH MM LL

0.005 4799.46 3541.17 4081.19 3301.66 2397.06
0.05 4673.30 3415.01 3955.03 3175.50 2270.90
0.1 4629.36 3371.06 3911.09 3131.55 2226.96

Table 12. Total value of wind curtailment under different limits of interruptible load during 96
time periods.

Interruptible Load Limits
Total Value of Wind Curtailment (MW)

HH HL MH MM LL

0.005 621.14 231.73 462.36 108.39 51.39
0.05 550.26 219.92 424.00 112.36 48.45
0.1 513.36 183.55 392.49 83.06 42.27

4.3.2. Penalty Coefficient for Wind Curtailment

The change of penalty coefficient of wind curtailment also has a great influence on the result of
the system operation. Different system operation results are obtained when the penalty coefficient of
wind curtailment is the various values shown in Table 13. Figure 7 denotes the comparison of wind
curtailment curves of the system in one day under different penalty coefficient of wind curtailment.
Meanwhile, Table 14 demonstrates the sum of wind curtailment quantity in each wind power scene
under different penalty coefficient of wind curtailment. It is clear that, in each wind power scenario,
the higher the penalty coefficient of wind curtailment, the less the wind curtailment quantity of the
system will be. It is obvious that, in the case of a high penalty coefficient of wind curtailment, the
system will try to use the reserve capacity of thermal units to absorb wind power in order to reduce
the total cost of the system.
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Table 13. The range of parameters.

Parameters Value

ξ 0.2 0.4 0.7
θ 0.005 0.05 0.1

CS 800 500 200

Table 14. The total quantity of wind curtailment in each wind power output scenario under different
penalty coefficients of wind curtailment during 96 time periods.

Penalty Coefficient of
Wind Curtailment

The Total Quantity of Wind Curtailment (MW)

HH HL MH MM LL

200 2030.09 1154.49 1455.50 736.86 462.28
500 1168.55 449.70 858.52 211.03 86.49
800 621.13 231.72 462.36 108.39 51.39
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Figure 7. Wind curtailment curves under different penalty coefficients of wind curtailment.

Table 15 shows the sum of the net reserve capacity provided by the thermal unit and the load side
in one day under different penalty coefficient of wind curtailment in the real-time stage. While the
penalty coefficient of wind curtailment increases, the sum of net reserve capacity in the real-time stage
gradually decreases. This is because, in the case that the actual output value of wind power is the same,
the higher the penalty coefficient of wind curtailment, the more pre-dispatch the system will make to
wind turbines in the day-ahead stage, as shown in Table 16. should be noted that, compared with the
data in Table 9, Table 11, and Table 16, the change of penalty coefficient of wind curtailment has a more
significant impact on wind power consumption than the change of wind turbine pre-output caused
by the change of relevant parameters of demand response. The change of penalty coefficient of wind
curtailment can affect wind power consumption to a greater extent.
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Table 15. Net reserve capacity under different penalty coefficients of wind curtailment during 96
time periods.

Penalty Coefficient of
Wind Curtailment

Net Reserve Capacity (MW)

HH HL MH MM LL

200 4224.72 3842.03 4081.03 4020.14 3390.13
500 4220.84 3681.40 3812.60 3680.56 2900.50
800 4178.33 3309.44 3618.84 3193.27 2345.67

Table 16. Total pre-output of wind turbines under the penalty coefficient of wind curtailment in the
day-ahead stage during 96 time periods.

Penalty Coefficient of
Wind Curtailment

The Pre-Output of Wind Turbines (MW)

Wind Turbine 1 Wind Turbine 2 Total

200 5197.05 1622.86 6819.91
500 6145.76 1539.57 7685.33
800 6599.08 1676.18 8275.26

5. Conclusions

In this paper, we introduce a reserve capacity compensation mechanism and propose a two-stage
stochastic optimization model based on demand response and wind power consumption on the
basis of considering the total cost of the day-ahead stage and the real-time stage. Since the actual
output of a wind turbine is uncertain, this paper uses K-means-NWP scenario clustering method to
process. The wind power output is divided into three scenarios—high, medium, and low—and the
actual unit data and market data are used to analyze the system operation result and wind power
consumption situation with or without a reserve capacity compensation mechanism and then to
compare the influence of different parameters in the system on the wind power consumption result.
The conclusions are as follows:

(1) Operating results in a variety of wind power output combination scenarios all prove that after
the introduction of reserve capacity compensation mechanism, the system’s wind abandoning capacity
is significantly reduced, and thermal units and interruptible loads are also significantly more active in
providing reserve capacity, which is conducive to maintaining system balance and promoting wind
power consumption.

(2) From the perspective of GENCOs, the reserve capacity compensation mechanism greatly
increases the income of GENCOs and thus their enthusiasm to provide reserve capacity. This also
plays an active role in promoting wind power consumption, stabilizing wind power output instability,
and maintaining system balance.

(3) As the tariff discount rate increases, the power side provides more interruptible load in the
balance stage. Compared with the scenario of a low tariff discount rate, the incentive of a high tariff
discount rate can promote the power side to stabilize the negative error of wind power output to a
greater extent. The increase of the tariff discount rate is helpful for wind power consumption and
reduce wind abandoning. Similarly, with the increase of the proportion of the total load of interruptible
load stations, the analysis of the system operation results also reached the same conclusion.

(4) The increase of the penalty coefficient of wind curtailment has a great influence on the system
operation result. With the increase of the penalty coefficient of wind curtailment, the total wind
abandoning quantity of the system is greatly reduced. The higher the penalty coefficient of wind
curtailment is, the more pre-dispatching the system will make to the wind turbine in the day-ahead
stage. Compared with the change of parameters ξ and θ, the change of CS has a more significant
impact on the wind abandoning quantity and wind power consumption of the whole system.

In conclusion, this paper puts forward targeted suggestions for further promotion of wind power
consumption, hoping to provide reference for subsequent research. However, there are other ways to
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promote wind power consumption such as energy storage. The energy storage system has a response
speed of at least minute, and it can store the power in the valley load period and release it in the peak
load period. Considering the contribution of an energy storage system in promoting wind power
consumption is a worthy subject for further research, which will be further discussed in a future paper.
In addition, the construction of the core model is still relatively ideal, which does not consider the
blocking effect of the physical power grid in the actual operation process. Future research can be
extended in this direction.
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Nomenclature

Indexes
ω wind power combination scenario index, running from 1 to Ω
w wind turbine index, running from 1 to NW
g thermal turbine index, running from 1 to NG
t Time step index, running from 1 to T
Constants
ai, bi, ci the coefficients of the generating cost function of thermal units
λt the user electricity price
Pmax

g the maximum power of thermal unit g
Pmin

g the minimum power of thermal unit g
ru

w, rd
w the up and down ramp rate of wind turbine w

Rup,max
g,t the maximum of the upper reserve capacity provided by thermal unit g at time stage t

Rdown,max
g,t the maximum of the lower reserve capacity provided by thermal unit g at time stage t

Rup
w,t the maximum of the upper reserve capacity required by wind turbine w at time stage t

Rdown
w,t the maximum of the lower reserve capacity required by wind turbine w at time stage t

Rup
g,ω,t

the upper reserve capacity provided by thermal unit g at time stage t in the wind power
combination scene w at the real-time stage

Rdown
g,ω,t

the lower reserve capacity provided by thermal unit g at time stage t in the wind power
combination scene w at the real-time stage

uup
g,t, udown

g,t the state provided by thermal unit g at time stage t in the real-time stage
ρu

g,r, ρ
d
g,r the compensation price of reserve capacity of thermal units

ρω the probability of wind power combination scenario ω
ρu

c , ρd
c the compensation price of standby power provided by thermal units in the real-time stage

θ
the proportion of the maximum of interruptible load that can be provided by the power side to
the total load

ξ the tariff discount rate
CS Penalty coefficient for abandoning wind
Variables

Wspill
ω the wind abandon quantity of wind power combination scenario ω

PDa
g,t the power of thermal power unit g at time t in the day-ahead stage

Lt the total load of the system at time t
µg,t the start and stop state of thermal unit g at time stage t
_
Pw,t the predictive power of wind turbine w at time stage t

PRt
w,t the power of wind turbine w at time stage t in the real-time stage
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PRt
g,ω,t

the power of thermal unit g at time stage t in the wind power combination scene w at the
real-time stage

Rω,t
IL

the interruptible load provided by users at time stage t in the wind power combination
scenario ω in the real-time stage
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