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Abstract: Building material supplier evaluation and selection is a significant strategic-decision
problem for reducing construction costs and ensuring the quality of a residential product. As people
are increasingly concerning about the green level of a residential product and the competition
in the housing market is becoming increasingly fierce, it becomes important to select a green
customer-oriented material supplier for property developers. Quality function deployment (QFD)
has been proven to be an effective quality control technique to take customer voices into consideration.
However, the relationship matrix in the QFD technique, as a key to translate customer requirements
into technical attributes, was subjectively given by decision-makers in previous studies, which
failed to reflect customer requirements accurately. The aim of this study is to put forward a
neighborhood-rough-set-based quality function deployment model for a green-building-material
supplier selection. The neighborhood rough set, as a nonparametric and flexible data-mining approach,
can effectively and objectively determine the core relationships between a variety of factors. A rough
number-based aggregation approach is applied to effectively and objectively aggregate the evaluations
given by a group of experts. Then, the classical double normalization-based multiple aggregation
method, which considers two types of normalization methods, three aggregation models, and a
comprehensive score formula, is extended in rough-number form in order to rank the alternatives.
Afterward, an attempt is made to evaluate and rank eleven alternative building-material suppliers
for a repute property developer in mainland China, and the corresponding comparative and sensitive
analyses verify the effectiveness and robustness of the proposed hybrid model.

Keywords: building-material supplier selection; multi-attribute group decision making; quality
function deployment; neighborhood rough set theory; rough number

1. Introduction

Environmental deteriorations have forced public and private sectors to think about environmental
and sustainable issues. To protect the environment and promote housing industrialization, many
provinces in China, such as Shanghai [1], Hainan [2], and Zhejiang [3], have begun to promote
whole-decoration residential houses. Materials account for 40% to 45% of the total cost in typical
construction projects [4,5]. Meanwhile, it is well-known that the greenness of a residential product
largely depends on the environmental performance of the materials it uses. Owing to the fact that
the construction material market in mainland China is not yet well developed, the environmental
performance, quality, and price of building materials are varied among suppliers. Hence, an effective
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and efficient green-building-material supplier selection plays a crucial role in ensuring the green level,
quality and controlling the cost of a house. It is especially significant for whole-decoration residential
products, as many expensive functional interior fit-out materials are involved in these live-directly
products, such as integral kitchen cabinet, closets, and bathroom fixtures.

In recent years, customers are paying more and more attention to the green level of a product
and incorporating green factors into their choice of living products. Also, as we all know, the users of
the whole-decoration products are not property developers but buyers, and the smooth running of
these users’ lives significantly depends on the utilization of the interior fit-out materials’ functions.
Therefore, the customer satisfaction is a key factor for the evaluation of these material products.
The quick and precise responses to customers’ various demands can help property developers
choose a customer-oriented green-material supplier, increase their competitiveness in the increasingly
competitive housing market, and further promote their business success. Traditional studies on
building-material suppler selection concentrated broadly on relevant supplier selection methods
and the economic efficiency of suppliers, without considering the voices of customers or customer
requirements (CRs), especially rarely taking into account their environmental requirements. However,
for an efficient supply chain management to gain success in business, clearly understanding customer
needs is of great importance [6,7]. QFD (quality function deployment) [8,9], as a quality-control
technique, has been proved to be an effective technique to take the customer voices into consideration.
However, in previous studies related to QFD, the relationship matrix that is key to translate the CRs into
TAs (technical attributes, such as product features and engineering characteristics), is subjectively given
by decision-makers on the basis of their limited knowledge, which may fail to reflect the CRs accurately.
To fill this gap, motivated by Bai and Sarkis [10] and Li et al. [11], we propose a novel method in this
study based on the neighborhood rough set theory in order to derive the relationship matrix between
CRs and TAs objectively. In the information table, the CRs are taken as the decision attributes, while
the TAs and alternatives are regarded as the condition attributes and objects, respectively.

In addition, as the building-material supplier selection is a multi-attribute group decision-making
(MAGDM) problem, how to express the judgments of a group and choose an appropriate MAGDM
method are critical issues [12,13]. The rough number has proved to be an effective and objective tool
in presenting the vagueness of human assessments, while the double normalization-based multiple
aggregation (DNMA) method, which considers two types of normalized methods, three aggregation
models, and a collective ranking score, is an effective ranking method for massive alternatives. Thus,
the presented study develops a rough number-based DNMA method to rank the suppliers, which not
only can identify the vagueness brought by the subjective individual judgments of the decision-makers
(DMs), but also can deduce a stable ranking result.

The contributions of this study involve three folds:

1. We construct the relationship matrix between CRs and TAs based on the neighborhood rough set,
which can help to derive the final weights of the TAs with less subjective factors.

2. We develop an integrated model consisting of QFD technique and rough number-based DNMA
method to select the optimal supplier. In this model, the voices of customers are taken into
consideration. In addition, the vagueness brought by the DMs’ subjective evaluations is addressed,
and a robust ranking result is obtained.

3. A case study of a reputed property developers in China is given to implement the proposed model
and guide property developers to a clearer understanding of customer standards. The proposed
model can assist DMs to directly identify the attributes that customers are most concerned about
and provide a ranking order to all the alternative suppliers.

This paper is organized as follows: Section 2 presents a review on the building-material supplier
selection and related methodologies. Section 3 gives the framework of the QFD-based DNMA method
for supplier selection. A case study is given in Section 4, and its comparative and sensitive analyses are
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provided in order to illustrate the reasonability of the proposed method. The paper ends in Section 5
with some concluding remarks.

2. Literature Review and Methodologies

In this section, we first give a short literature review on the building-material supplier selection,
and then present the methodologies used in the later presentation. The methodologies of this paper
contain the QFD method, neighborhood rough sets theory, and the DNMA method.

2.1. Brief Literature Review on Building-Material Supplier Selection

To ensure the quality and reduce cost in an increasingly competitive global market, supply chain
management has proved to be one of the indispensable management methods in the construction
industry. The first step to implement supply chain management is supplier choosing. Many scholars
have studied the critical role of building-material supplier evaluation in the construction industry.
Lam et al. [4] constructed a selection model based on the fuzzy PCA (principal component analysis)
for solving the material supplier selection problem from the perspective of property developers.
Wang et al. [14] proposed a framework by integrating the building information modeling and
geographic information system in order to select a resilient building component supplier. Seth et al. [15]
demonstrated the impact of competitive conditions on the supplier evaluation process for construction
supply chains. Building-material supplier selection is mainly supported by MAGDM methods, which
usually involve three aspects: the identification of evaluation attributes for property developers, the
determination of attributes weights, and the ranking method. DMs must make a trade-off between
several attributes and adopt proper MAGDM techniques to evaluate a finite set of alternatives.
For example, Zolfani et al. [7] adopted a hybrid multi-attribute decision-making model consisting
of the AHP (analytic hierarchical process) and the COPRAS-G (complex proportional assessment of
alternatives to grey relations) to select a building-material supplier. Eshtehardian et al. [16] investigated
the most effective attributes on the supplier selection process by a questionnaire survey and integrated
the ANP (analytic network process) with AHP to select appropriate suppliers for construction and civil
engineering companies. Safa et al. [5] developed an integrated model for the efficient procurement of
construction materials, primarily through the use of the TOPSIS (technique for order preference by
similarity to ideal solution) method.

Although there are large numbers of studies on building-material supplier selection, most
existing studies were conducted based on the attributes that are determined from the characteristics
of construction projects or the needs of property developers. As we know, a building development,
especially residential-house development, is to meet the needs of buyers. However, few studies have
assessed the performance of building-material suppliers by considering customer requirements.

2.2. The QFD Method

Generally, the QFD is used to address the services plan and new product design challenges to
meet better customers’ expectations [11,17–20]. It is an effective technique to translate CRs into TAs by
a relationship matrix called the house of quality (HOQ). The HOQ is a basic structure of QFD and
includes CRs, CRs’ importance weights, TAs, and the relationship matrix between CRs and TAs [8].
The first step for constructing an HOQ is the clarification of the CRs so that their voices are well
understood. For customers, not all CRs have the same level of importance, so a weighting technique
should be adopted to weight the CRs. TAs are associated with CRs. The relationship matrix represents
how each CR affects its associated TAs, which contributes to deriving the final importance degrees of
the TAs.

In recent years, the extensions and applications of the technique are increasing, including the
best computer workstation selection [8], performance evaluation of smart bike-sharing program [9],
and strategic supplier evaluation [6,21,22]. Although there are many successful QFD applications on
supplier selection, to the best of our knowledge, the relationship matrix that was used to translate the
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CRs into TAs in the previous studies is subjectively given by DMs based on their limited knowledge,
which may fail to respond to customers’ voices accurately.

2.3. The Rough Set Theory

Rough set theory is developed as a nonparametric data-mining approach that can effectively
determine the core relationships amongst a variety of factors [23]. It has been widely used for
identifying data dependencies, evaluating the importance of attributes, and seeking the minimum
subset of attributes attributes [11,24–27]. Utilizing the ability of rough set theory to identify data
dependencies, Li et al. [11] identified the correlation measure matrix corresponding to each CR in QFD
to design a washing machine.

In the rough set theory, an information system with decision attributes is called an information
table or a decision table. Let IS =

〈
U, Q = (T ∩C), V, f

〉
be an information table, where

U= {Ai|i = 1, 2, · · · ,m} is a set of objects, T =
{
T j

∣∣∣ j = 1, 2, · · · , n
}

is a set of condition attributes,
and C = {C1, C2, · · · , Cs} is a set of decision attributes. In general, T ∩ C = ∅ and each attribute
from T ∩ C forms a mapping f : U→ V , where V is the value domain of T and C [27,28]. Each
nonempty subset P ⊆ T determines an indiscernibility relation as RP =

{
(Ai, Aξ) ∈ U ×U

∣∣∣ f (Ai, t̃)

= f (Aξ, t̃), t̃ ∈ P
}
. The indiscernibility relation RP partitions U into a family of disjoint subsets given

by U
∣∣∣∣RP =

{
[A]P

∣∣∣A ∈ U
}
, where [A]P denotes the equivalence class determined by Ai with respect to P.

The equivalence relation causes vagueness of the two classes. Rough set theory describes these
vague classes through the lower and upper approximations. For any class Ũ ⊆ U and P ⊆ T, the lower
approximation of C is presented as RP(Ũ) = ∪

{
[A]P

∣∣∣[A]P ⊆ Ũ
}
, which is also called the positive

region of Ũ and is denoted alternatively as POSP(Ũ). The upper approximation is presented as
RP(Ũ) = ∪

{
[A]P

∣∣∣[A]P ∩ Ũ , ∅
}
. Ũ is called a rough set with respect to P if and only if RP(Ũ) , RP(Ũ),

and the objects belonging only to the upper approximation but not to the lower approximation compose
the boundary region, which is expressed as RBP(Ũ) = RP(Ũ) −RP(Ũ).

The classical rough set model can only be used to evaluate categorical features. In other words,
when introducing a classical rough set to process information, a discrete algorithm is often needed
to granulate the data, and then equivalence relations are employed to partition the universe, which
inevitably leads to the loss of information. To address this defect, Hu et al. [29,30] introduced a
neighborhood rough set model, in which neighborhood relations were used to generate a family of
neighborhood granules based on the distance relation of attributes, and then these neighborhood
granules were used to approximate decision classes. Neighborhood rough set has more flexibility and
expands the boundary dimensions of the classical rough set [10,23]. Bai and Sarkis [10] applied the
neighborhood rough set to evaluate environmental performance of green suppliers.

Given an arbitrary object Ai ∈ U and P̃ ⊆ T, the neighborhood δP̃(Ai) of Ai in the attribute space

P̃ is δP̃(Ai)= {Aξ
∣∣∣Aξ ∈ U, ∆P̃(Ai, Aξ) ≤ δ

}
, where ∆ is a distance function ∆(Ai, Aξ) ≥ 0. ∆(Ai, Aξ) =

∆(Aξ, Ai) and ∆(Ai, Aξ) = 0 if and only if Ai = Aξ. There are two key factors that define a neighborhood.
The distance calculation value and the neighborhood threshold size δ. When δ = 0, the neighborhood
rough set model degenerates to the classical rough set model.

The neighborhood rough set can also be described and generalized by introducing a measure of
inclusion [29,30] and dependency degree. Given a neighborhood decision table NS = 〈U, T ∩C, M〉,
Ãθ1 and Ãθ2 are two subsets in U, and then the inclusion degree of Ãθ1 in Ãθ2 is defined as I(Ãθ1, Ãθ2) =∣∣∣∣Ãθ1 ∩ Ãθ2

∣∣∣∣/∣∣∣∣Ãθ1

∣∣∣∣, Ãθ1 = ∅, where |∗| is the cardinality of a set. Given any subset Ã ⊆ U, the lower and

upper sets of Ã are NκÃ =
{
Ai

∣∣∣∣I(δ(Ai), Ã) ≥ κ, Ai ∈ U
}
, NκÃ =

{
Ai

∣∣∣∣I(δ(Ai), Ã) ≥ 1− κ, Ai ∈ U
}
, where

0.5 ≤ κ ≤ 1. The model degrades to the classical case if κ = 1. Then, the dependency degree of C to
P̃ is defined as $P̃(C) =

∣∣∣POSP̃(C)
∣∣∣/|A|, U = ∅, where POSP̃(C) is the lower approximation for the

decision attribute C and is defined as the union of the lower approximation of each decision class.
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It is remarkable that, in rough set theory, attributes are divided into two types: condition attributes
and decision attributes. Motivated by Bai and Sarkis [10] and Li et al. [11], in this paper, we propose
an improved QFD method based on the rough set theory, where condition attributes are used to
reflect property developers’ attributes for building-material suppliers and decision attributes are used
to express home buyers’ choices based on their demands or experience. In this way, the voices of
customers are considered, not through the subjective judgment of DMs, but through the objective
historical consumption data of the customers.

2.4. The DNMA Method

The DNMA method [31]is a recently proposed MAGDM method. To reduce the loss of information,
it considers two types of normalized methods and three aggregation models with different functions.
Meanwhile, this method further ensures the reliability of the collective ranking by applying a weighted
Euclidean distance formula to integrate the subordinate utility values with different ranks. The DNMA
method has been successfully applied to solve practical problems, such as the screen of early lung
cancer [32].

For an MAGDM problem with a set of alternatives A = U = {A1, A2, · · · , Am} and a set of attributes,
T = {T1, T2, · · · , Tn} with the weight vector W = (ω1,ω2, · · · ,ωn)

T. The decision-making matrix is
denoted as X = (xi j)m×n, where xi j is the value of alternative Ai on attribute T j. The steps of the DNMA
method are as follows [31].

Step 1. Normalize the decision matrix. The linear normalization value is

zi j =


∣∣∣∣xi j − xmin

i j

∣∣∣∣/∣∣∣∣xmax
i j − xmin

i j

∣∣∣∣ , forbenefitcriteria∣∣∣∣xi j − xmax
i j

∣∣∣∣/∣∣∣∣xmax
i j − xmin

i j

∣∣∣∣ , forcostcriteria

where xmax
i j and xmin

i j refer to the maximum and minimum values of attribute T j, respectively. The vector
normalization value is

z1
i j =


xi j/

√
m∑

i=1
(xi j)

2 , forbenefitcriteria

1− xi j/

√
m∑

i=1
(xi j)

2 , forcostcriteria

Step 2. Compute the subordinate utility values through three different subordinate aggregation
models, namely the complete compensatory model (CCM), un-compensatory model (UCM), and

incomplete compensatory model (ICM), which are expressed as ũ1(Ai) =
n∑

j=1
ω jzi j, ũ2(Ai) = max

j
ω j(1−

zi j), and ũ3(Ai) =
∏

j
(z1

i j)
ω j , respectively.

Step 3. Rank the alternatives. The subordinate ranking of alternatives can be listed in descending
order, based on the assessment results of the first and third subordinate aggregation models. The results
derived from the second subordinate aggregation model can be listed in an ascending order. As a
result, by integrating the three different models with a weighted Euclidean distance formula [31],
the final ranking can be determined based on an integrated score, which is shown as

Si =

√√√√√
ϕ(

ũ1(Ai)√
m∑

i=1
(ũ1(Ai))

2
)

2
+ (1−ϕ)

(
m−r1(Ai)+1
m(m+1)/2

)2
−

√√√√√
ϕ(

ũ2(Ai)√
m∑

i=1
(ũ2(Ai))

2
)

2
+ (1−ϕ)

(
r2(Ai)

m(m+1)/2

)2
+

√√√√√
ϕ(

ũ3(Ai)√
m∑

i=1
(ũ3(Ai))

2
)

2
+ (1−ϕ)

(
m−r3(Ai)+1
m(m+1)/2

)2
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where ϕ ∈ [0, 1] is a parameter to indicate the relative importance between the subordinate ranks and
the subordinate utility values. The larger Si is, the better the corresponding alternative will be.

3. The Improved QFD Technique Combined with the Rough Number-Based DNMA Method for
Supplier Selection

This section first introduces a rough number-based aggregation method to solve the vagueness
brought by the subjective judgments of a group. Then, an improved QFD technique integrating the
rough set theory is used to determine the weights of TAs in the building-material supplier selection.
Finally, to rank the suppliers, a rough number-based DNMA method is proposed.

3.1. Aggregation Method Based on Rough Numbers

Linguistic variables, originally introduced by Zadeh [33], is an intuitive and flexible way for DMs
to express qualitative perceptions, since they are in line with the human way of thinking and reasoning.
In this paper, the linguistic scale for qualitative evaluation on attributes are defined as LS1 = {none =

0.1, very low =1, low =2, fairly low =3, more or less low = 4, equal =5, more or less high =6, fairly
high = 7, high =8, very high =9, extremely high = 10

}
. Suppose that E =

{
eq
∣∣∣q = 1, 2, · · · , Q

}
is a

set of DMs and the judgment of DM eq for alternative Ai on attribute T j is xq
i j on the linguistic

scale LS1. The collective evaluation values of alternative Ai on attribute T j can be expressed as

x̃i j =
{
xq

i j

∣∣∣q = 1, 2, · · · , Q
}
.

As we see, several DMs are involved in the assessment process, and the final decision is made
on the basis of the subjective evaluations of DMs. Since variations of individual judgments exist,
there must be some vagueness brought by these subjective judgments in the aggregated judgments,
thus effectively and objectively aggregating these judgments is critical. Rough number, proposed
by Zhai et al. [34], has proved to be an effective and objective tool in presenting the vagueness of
information given by the involved DMs [35–37]. In this regard, Zhu et al. [35] developed a novel
rough number-based VIKOR method to evaluate the design concept alternatives. Pamučar et al. [36]
combined rough AHP with rough MABAC (multi-attributive border approximation area comparison)
method for evaluating university web pages. Song et al. [37] proposed a rough group AHP and rough
group TOPSIS to optimize the design concept evaluation under the subjective environment.

Inspired by these achievements, in this paper, we use a rough number-based approach to obtain
the aggregation values of a group. Suppose that yi j is an arbitrary object of x̃i j. Then, the lower
approximation and upper approximation of xq

i j can be defined as follows:

Apr(xq
i j) = ∪

{
yi j ∈ x̃i j

∣∣∣∣yi j ≤ xq
i j

}
, Apr(xq

i j) = ∪
{

yi j ∈ x̃i j

∣∣∣∣yi j ≥ xq
i j

}
(1)

The boundary region of xq
i j is obtained as follows:

Bnd(xq
i j) = ∪

{
yi j ∈ x̃i j

∣∣∣∣xq
i j , yi j

}
=

{
yi j ∈ x̃i j

∣∣∣∣yi j > xq
i j

}
∪

{
yi j ∈ x̃i j

∣∣∣∣yi j < xq
i j

}
(2)

Then, xq
i j can be represented by a rough number IR(xq

i j) = [xql
i j , xqu

ij ], which consists of its

corresponding lower limit xql
i j and upper limit xqu

ij , where:

xql
i j =

∑
yi j ∈ Apr(xq

i j)/Nl, xqu
ij =

∑
yi j ∈ Apr(xq

i j)/Nu (3)

with Nl and Nu being the numbers of objects in Apr(xq
i j) and Apr(xq

i j), respectively.
The interval between the lower limit and upper limit is known as the rough boundary, denoted as

follows:
RB(xq

i j) = xqu
ij − xql

i j (4)
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As a result, the rough sequence IR(x̃i j) can be denoted as

IR(x̃i j) =
{
[x1l

i j , x1u
ij ], [x

2l
i j , x2u

ij ], · · · , [x
Ql
ij , xQu

ij ]}, and the aggregated rough value of alternative Ai

on attribute T j is IR(xi j) = [xl
i j, xu

ij], where

xl
i j =

(
x1l

i j + x2l
i j + L + xQl

ij

)
/Q, xu

ij =
(
x1u

ij + x2u
ij + L + xQu

ij

)
/Q (5)

The basic operations of two rough numbers IR
(
x11

)
and IR

(
x12

)
are [34] IR(x11) ⊗ a= [xl

11, xu
11

]
⊗

a = [xl
11 × a, xu

11 × a]; IR(x11) ⊕ IR(x12) = [xl
11, xu

11

]
⊕ [xl

12, xu
12] = [xl

11 + xl
12, xu

11 + xu
12]; and

IR(x11) ⊗ IR(x12) = [xl
11, xu

11

]
⊗ [xl

12, xu
12] = [xl

11 × xl
12, xu

11 × xu
12].

3.2. The Weight Determination of TAs

To select the optimal building-material supplier, first we need to identify CRs and TAs,
respectively. The investigation methods (such as interview investigation, questionnaire investigation,
and observation investigation) can be adopted to identify the CRs [38], while the TAs can be identified
through a comprehensive consideration of the related factors from the material certification system,
the special needs of the target company, and the identified CRs. To facilitate the presentation, we assume
that there are n identified TAs and s identified CRs.

3.2.1. Deriving the Weights of CRs

In this paper, we use a rough number-based pairwise comparison method [35] to obtain the
weights of customer requirements. The procedure of this method is as follows:

Step 1. Construct pairwise comparison matrices with the linguistic scale LS2 ={
equal = 1, slightly important =2, important =3, very important =4, extremely important = 5

}
.

Here, a questionnaire is conducted by customer representatives êq̂ to obtain the pairwise comparison
matrix. Suppose that Q̂ customer representatives are invited and the comparison matrices are
described as:

WC
(q̂) =


1 aq̂

12 · · · aq̂
1s

aq̂
21 1 · · · aq̂

2s
...

...
. . .

...
aq̂

s1 aq̂
s2 · · · 1

, for q̂ = 1, 2, · · · , Q̂

where aq̂
hk

(
1 ≤ h ≤ s, 1 ≤ k ≤ s, 1 ≤ q̂ ≤ Q̂) is the relative importance of CR h on CR k given by customer

representative êq̂, and s is the number of CRs. To satisfy the consistency, aq̂
hk × aq̂

kh = 1 should be held.
All customer representatives’ comparison matrices are presented as:

W̃C =


1 ã12 · · · ã1s

ã21 1 · · · ã2s
...

...
. . .

...
ãs1 ãs2 · · · 1


where ãhk =

{̃
a1

hk, ã2
hk, · · · , ãQ̂

hk

}
is the sequence of relative importance of CR h on CR k.

Step 2. Construct the rough comparison matrix. By Equations (1) to (3), the element
ãhk in W̃C is translated into a rough number, presented as IR(aq̂

hk) = [aq̂l
hk, aq̂u

hk ], where aq̂l
hk is the

lower limit of IR(aq̂
hk), while aq̂u

hk is the upper limit. Then, the rough sequence IR(̃ahk

)
can be
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denoted as IR(̃ahk) =
{
[a1l

hk, a1u
hk ], [a

2l
hk, a2u

hk ], · · · , [a
Q̂l
hk , aQ̂u

hk ]}, and the aggregated rough group sequence

IR(ahk) = [al
hk, au

hk

]
is obtained with

al
hk = (a1l

hk + a2l
hk + · · ·+ aQ̂l

hk )/Q̂ , au
hk = (a1u

hk + a2u
hk + · · ·+ aQ̂u

hk )/Q̂ (6)

Further, the aggregated rough comparison matrix can be obtained as:

IR(Wc) =


[1, 1] [al

12, au
12] · · · [al

1s, au
1s]

[al
21, au

21] [1, 1] · · · [al
2s, au

2s]
...

...
. . .

...
[al

s1, au
s1] [al

s2, au
s2] · · · [1, 1]


Step 3. Calculate the rough weight IR(w̃Ch) = [w̃Ch

l, w̃Ch
u] for each attribute with

w̃Ch
l = s

√√ s∏
k=1

al
hk, w̃Ch

u = s

√√ s∏
k=1

au
hk (7)

Finally, we obtain the rough weight vector of customer needs as
IR(w̃C) = ([ w̃l

C1, w̃u
C1], · · · , [w̃

l
Ch, w̃u

Ch], · · · , [w̃
l
Cs, w̃u

Cs])
T.

3.2.2. Establishing the Relationship of CRs and TAs

In the traditional QFD, the determination of the relationship matrix relies on the experience of
DMs. To overcome the inaccuracy caused by this subjective way, we introduce the dependency degree
in neighborhood rough set theory, combined with rough numbers, as the relationship measure between
CRs and TAs. The CRs and TAs are expressed as Cs and T j, respectively. The calculation steps are
as follows:

Step 1. Normalize the aggregated rough value of alternative Ai on attribute T j as IR(zi j) = [zl
i j, zu

ij].
The normalization process is done to establish the same scale for all attributes for the purpose of
comparability. Here, we adopt the linear normalization as:

zl
i j =


∣∣∣∣xi j

l
− xmin

i j

∣∣∣∣/∣∣∣∣xmax
i j − xmin

i j

∣∣∣∣, for benefit criteria∣∣∣∣xi j
u
− xmax

i j

∣∣∣∣/∣∣∣∣xmax
i j − xmin

i j

∣∣∣∣, for cost criteria

zu
ij =


∣∣∣∣xi j

u
− xmin

i j

∣∣∣∣/∣∣∣∣xmax
i j − xmin

i j

∣∣∣∣, for benefit criteria∣∣∣∣xi j
l
− xmax

i j

∣∣∣∣/∣∣∣∣xmax
i j − xmin

i j

∣∣∣∣, for cost criteria

(8)

where xi j
l and xi j

u are the upper and lower limit of the aggregated rough evaluation values for
supplier Ai on attribute T j, respectively; and xmax

i j and xmin
i j are the maximum and minimum values in

LS1, respectively.
Step 2. Develop the neighborhood decision system based on interval rough numbers. The data is

presented in the form of an information system in rough set analysis, with its rows corresponding
to objects and its columns corresponding to condition attributes [34]. To construct a neighborhood
information system, we should reformat the decision matrix of the supplier evaluation.

In reality, due to the limitation of professional level, when a customer is asked to provide his/her
requirements, the opinions are usually somewhat general; that is to say, one CR is based on a set of
detailed attributes. For example, when choosing a building-material supplier and customers only
consider the environmental protection level, they may not be careful to examine that the general
attribute can be reflected in the environmental certification, recycling of materials, etc. However,
property developers with certain professional abilities need to consider more-detailed indicators.
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Therefore, for one Ch of the identified CRs, we can always find multiple corresponding TAS. Assume
that each Ch is independent and a neighborhood information table contains only one decision attribute.

In this way, each Ch with its associated TCh
= {TηCh

∣∣∣η = 1, 2, · · · , η#
}

forms an information system

(Table 1), where the candidate building-material suppliers are the objects, and the CRs with their
associated TAs are decision attributes and condition attributes, respectively. The number of CRs
determines the number of the neighborhood information systems.

Table 1. A Neighborhood Information System.

Supplier T1 T2 · · · Tη#Ch
Decision (Ch)

A1 (zl
11, zu

11) (zl
12, zu

12) · · · (zl
1η#, zu

1η#) 2

A2 (zl
21, zu

21) (zl
21, zu

21) · · · (zl
2η#, zu

2η#) 1
...

...
...

...
...

...
Am (zl

m1, zu
m1) (zl

m2, zu
m2) · · · (zl

mη#, zu
mη#) 2

In Table 1, the value of decision attribute Ch is assigned based on customers’ consumption
preferences. Value “1” indicates that customers are unsatisfied with the supplier’s performance under
the decision attribute, which means that customers do not select the supplier most of the time. Value
“2” indicates a better customer satisfaction, which means customers always choose the supplier under
the decision attribute.

Step 3. Compute neighborhood relational matrices for the performance measures. Neighborhood
relations are used to group sets of suppliers (objects) based on similarity or indistinguishability, using
the neighborhood distance parameter [10]. First, we need to calculate the distances between the
suppliers on each TηCh

, which result in n m×m distance matrices. Then, we use the Euclidean distance
formula to obtain the matrices, which is denoted as follows:

∆{IR(z
TηCh

,i
), IR(zTηCh

,i1
)} = [(zl

TηCh
,i
− zl

TηCh
,i1
)

2
+(zu

TηCh
,i
− zu

TηCh
,i1
)2]1/2 (9)

where IR(z
TηCh

,i
)(1 ≤ i ≤ m) and R(zTηCh

,i1
)(1 ≤ i1 ≤ m) are the normalized aggregated rough value

of TηCh
.

Step 4. Determine the neighborhood relation for each performance measure. Here, we need to
arrive at a relational matrix R(TCh

), which is defined as R(TηCh
) = (ri,i1)m×m, with

ri,i1 =

 1, ∆
IR(z

TηCh
,i
), IR(zTηCh

,i1
)

 ≤ δ
0, otherwise

(10)

where δ is the neighborhood distance parameter.
Step 5. Determine the inclusion measure and lower rough sets for each CR. We first compute the

neighborhood information granule δ
TηCh

(Ai) for supplier Ai under TηCh
with

δ
TηCh

(Ai) =
m∑

i1=1

ri,i1 (11)
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Then, we calculate the relational matrix for the neighborhood suppliers who have the same CR
score, and populate the matrix R(Ch) with

R(Ch) = (̃ri,i1)m×m, r̃i,i1 =

 1, ∆
IR(z

TηCh
,i
), IR(zTηCh

,i1
)

 ≤ δ, Ch,i = Ch,i1

0, otherwise
(12)

Next, we determine the neighborhood information granule δCh

TηCh

(Ai) for a given supplier Ai under

TηCh
and Ch:

δCh

TηCh

(Ai) =
m∑

i1=1

r̃i,i1 (13)

The inclusion measure can be obtained as follows:

I
{
δCh

Tηh
(Ai), δTηh

(Ai)

}
= δCh

Tηh
(Ai)/δTηh

(Ai) (14)

We should set a threshold κ to identify the lower rough sets of Ch on TηCh
. If I

δCh

TηCh

(Ai), δTηCh

(Ai)

 ≥
κ, we say that Ai ∈ POSTηCh

(Ch), which means that supplier Ai belongs to the lower neighborhood

rough set based on TηCh
and Ch.

Step 6. Compute the dependency degrees for each CR with its associated TAs. The dependency
degree of TηCh

to Ch is calculated as follows:

$TηCh
(Ch) =

∣∣∣∣∣POSTηCh
(Ch)

∣∣∣∣∣/|m| (15)

On the basis of the dependency degree, the relationship between CRS and TAS can be
established objectively.

3.2.3. Determine the Final Weights of TAs

The development of residential house is to meet the customers’ needs for life. Quick and precise
responses to customers’ various demands can improve the supply chain management and guarantee
success in business. . In this paper, we consider customer voices by adjusting the weights of attributes
given by DMs.

First, property developers are invited to evaluate the initial relative importance of TAs from
their technique perspectives. Same as the weighting technique of CRs, the rough set-based
pairwise comparison method is applied. The initial rough weight vector of TAs is denoted
as IR(w̃)= ([w̃l

1, w̃u
1 ], · · · , [w̃l

j, w̃u
j ], · · · , [w̃

l
n, w̃u

n])
T, and the normalized initial weight of a TA is

IR(w j) = [wl
j, wu

j

]
with

wl
j= min{wl

j/
n∑

j=1

wl
j , wu

j /
n∑

j=1

wu
j },w

u
j = max{wl

j/
n∑

j=1

wl
j, wu

j /
n∑

j=1

wu
j } (16)

Then, based on the dependency degree, the weight of customer to T j (IR(w̃ j,C−T)) can be obtained by

$ j × [w̃l
Ch, w̃u

Ch] = [w̃l
j,C−T, w̃u

j,C−T] (17)
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where $ j refers to the dependency degree of Ch to T j, [w̃l
Ch, w̃u

Ch] is the obtained rough weight vector
of Ch in Section 3.2.1, and the normalized weight of customer to T j, IR(w j,C−T) = [wl

j,C−T, wu
j,C−T] is

obtained with

wl
j,C−T = min{wl

j,C−T/
n∑

j=1
wl

j,C−T , wu
j,C−T/

n∑
j=1

wu
j,C−T }, wu

j,C−T = max{wl
j,C−T/

n∑
j=1

wl
j,C−T , wu

j,C−T/
n∑

j=1
wu

j,C−T } (18)

Afterward, the final weight of a TA can be obtained as follows:

IR(ŵ j) = λIR(w j,C−T)+(1− λ)IR(w j) = [ŵl
j, ŵu

j] (19)

where IR(w j,C−T) refers to the normalized rough weight of customer to T j, while IR(w j) refers to the
normalized rough weight of initial T j. λ is a parameter which depends on the importance degree of
DMs for customer requirements.

3.3. Ranking the Suppliers with the Rough Number-Based DNMA Method

In MAGDM methods, several DMs are involved in the assessment process, and the final decision
is made on the basis of the subjective evaluations of DMs. To represent the vagueness brought by the
subjective individual assessments, in this paper, a rough set-based DNMA method is developed and
then combined with the improved QFD, to select the optimal building-material supplier under a clear
and object understanding of customer voices. The steps of the rough set-based DNMA method are
as follows.

Step 1. Calculate the linear normalization value IR(zi j) = [zl
i j, zu

ij] by Equation (8) and the vector

normalization value IR(z1
i j) = [z1l

i j , z1u
ij ] by Equation (20):

z1l
i j =


min{xi j

l/

√
m∑

i=1
(xi jl)

2 , xi j
u/

√
m∑

i=1
(xi ju)

2
}

min{1− xi j
l/

√
m∑

i=1
(xi jl)

2, 1− xi j
u/

√
m∑

i=1
(xi ju)

2
}

, z1u
ij =


max{xi j

l/

√
m∑

i=1
(xi jl)

2 , xi j
u/

√
m∑

i=1
(xi ju)

2
}

max{1− xi j
l/

√
m∑

i=1
(xi jl)

2, 1− xi j
u/

√
m∑

i=1
(xi ju)

2
}

(20)

where xi j
l and xi j

u are the upper and lower limits of the aggregated rough evaluation value for supplier
Ai on attribute T j.

Step 2. Compute the subordinate utility values through three different subordinate aggregation
models. The complete compensatory model (CCM) is expressed as IR

{
ũ1(Ai)

}
= [ũl

1(Ai), ũu
1(Ai)] with

ũl
1(Ai) =

n∑
j=1

(ŵl
j × zl

i j), ũu
1(Ai) =

n∑
j=1

(ŵu
j × zu

ij) (21)

The un-compensatory model (UCM) is expressed as IR
{
ũ2(ai)

}
= [ũl

2(Ai), ũu
2(Ai)] with

ũl
2(Ai) = max

j

{
ŵl

j × (1− zl
i j)

}
, ũu

2(Ai) = max
j

{
ŵu

j × (1− zu
ij)

}
(22)

The incomplete compensatory model (ICM) is expressed as IR
{
u3(ai)

}
= [ul

3(Ai), uu
3(Ai)] with

ũl
3(Ai) =

∏
j

(
z1u

ij

)ŵu
j , ũu

3(Ai) =
∏

j

(
z1l

i j

)ŵl
j (23)

Step 3. Rank the suppliers. The larger the final integrated score of Si= [Sl
i, Su

i

]
is, the better the

corresponding alternative will be. Sl
i = min

{
S̃l

i, S̃u
i

}
, Su

i = max
{
S̃l

i, S̃u
i

}
(for i = 1, 2, · · · , m) are calculated
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by Equation (24), and the comparison rules of rough numbers (please refer to [34]) are used to obtain
the ranking results.

S̃l
i =

√√√√√√
ϕ(

ũl
1(Ai)√

m∑
i=1

(ũl
1(Ai))

2
)

2
+ (1−ϕ)

(
m−r1(Ai)+1
m(m+1)/2

)2
−

√√√√√
ϕ(

ũl
2(Ai)√

m∑
i=1

(ũl
2(Ai))

2
)

2
+ (1−ϕ)

(
r2(Ai)

m(m+1)/2

)2
+

√√√√√√
ϕ(

ũl
3(Ai)√

m∑
i=1

(ũl
3(Ai))

2
)

2
+ (1−ϕ)

(
m−r3(Ai)+1
m(m+1)/2

)2
, S̃u

i =

√√√√√
ϕ(

ũu
1 (Ai)√

m∑
i=1

(ũu
1 (Ai))

2
)

2
+ (1−ϕ)

(
m−r1(Ai)+1
m(m+1)/2

)2
−

√√√√√
ϕ(

ũu
2 (Ai)√

m∑
i=1

(ũu
2 (Ai))

2
)

2
+ (1−ϕ)

(
r2(Ai)

m(m+1)/2

)2
+

√√√√√
ϕ(

ũu
3 (Ai)√

m∑
i=1

(ũu
3 (Ai))

2
)

2
+ (1−ϕ)

(
m−r3(Ai)+1
m(m+1)/2

)2

(24)

4. Case Study

To illustrate the validity and efficiency of the proposed QFD-based DNMA method with rough
numbers, in this section, we make an attempt to evaluate and rank eleven alternative building-material
suppliers for a reputable property developer in China. To verify the effectiveness and the robustness of
the proposed model, comparative and sensitive analyses are conducted.

4.1. Case Description

The construction of whole-decoration residential products involves hundreds of building materials,
such as brick, concrete, emulsion paint, integral kitchen cabinet fixture, and bathroom fixtures. In the
fit-out phase, the green level, quality, and price of some functional materials vary among suppliers,
and the material-supplier selection will affect the customers’ purchase intention of a whole-decoration
residential product. Integral kitchen cabinet is one of the most important functional fit-out materials.
On one hand, its expense accounts for a large proportion of the overall fit-out cost, and it is important
in quality guarantee of a residential product; on the other hand, people use it every day for their three
meals, which determines the importance of this material to home buyers. Thus, this study takes the
integral-kitchen-cabinet supplier selection as an example.

Company A is one of the largest and most comprehensive property developers in China. In 2009,
the property developer announced its residential whole-decoration strategy, and up to now, more than
80% of its residential products delivered to customers have been achieved in whole-decoration. To
improve the green level and the quality of their delivered residential products, and reduce the cost
of product fit-out through supply chain management, the management committee of the property
developer conducts supplier decisions by using MAGDM methods. Eleven integral-kitchen-cabinet
suppliers were selected from their supplier list for the case study.

4.2. Implementation

To investigate customer requirements and ratings of integral-kitchen-cabinet suppliers for a
whole-decoration residential product, the interview survey method, combined with the questionnaire
survey method, was adopted.

First, by interviewing real estate enterprises’ target customers and sales staff, we found that, for
an integral kitchen cabinet of a residential product, customers are most concerned about the economic
performance, the environmental certification, and the market performance. Then, 1000 questionnaires
were distributed to five buildings’ sales halls, to collect the ratings of the integral-kitchen-cabinet
suppliers from residential products’ visitors/buyers. The ratings should be given according to these
target customers’ historical experiences, and the rating levels are divided into two: “2” for always
choosing and choosing with high probability; “1” for hardly choosing and never choosing. If more
than 60% of customers choose “2”, we give the supplier a rating of “2”; otherwise, a rating of “1” is
given. The results are shown in Table 2 by sorting out and analyzing the collected questionnaires.
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Table 2. Customer Requirements and Their Ratings.

Suppliers Ratings

Economic Performance Environmental Certification Market Performance

A1 2 1 1
A2 1 1 2
A3 2 2 2
A4 1 1 1
A5 2 2 2
A6 2 2 2
A7 2 2 2
A8 1 1 1
A9 1 1 2
A10 2 2 2
A11 2 2 1

Then, a decision-making group is invited to determine the TAs based on the material certification
system, the special needs of their company, and the identified customer requirements. For example,
since the company A focuses on the long-term relationship with the selected supplier, so as to deliver
the residential products better, faster, and smoother, the cooperation willingness is defined as a TA.
The TAs are shown in Table 3.

Table 3. Technical Attributes.

Attribute Form Target Value

Quality assurance ability (T1) Benefit Max
Price (T2) Benefit Min

Timeliness of delivery (T3) Benefit Max
Level of after-sale service (T4) Cost Max

Environmental certification (T5) Cost Max
Environmental impact of construction (T6) Benefit Min

Product recycling (T7) Cost Min
Marketing level (T8) Benefit Max
Market position (T9) Benefit Max

Innovation capability (T10) Benefit Max
Cooperation willingness (T11) Benefit Max

Financial condition (T12) Benefit Max

The decision-making group consists of five members {e1, e2, e3, e4, e5}: the chief executive e1,
the general manager e2, the contract management manager e3, and two experts e4, e5 with a
minimum of five years of experience managing a supply chain in a real-estate development company.
The decision-making group is required to provide their individual evaluations on the 11 candidates
on each TA (shown in Table 4). After that, we use the rough number-based approach to aggregate
individual DMs’ judgments, and the results are listed in Table 5.
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Table 4. The Individual Evaluations for Alternatives on Technical Attributes.

A1 A2 A3 A4 · · · A11

e1 e2 e3 e4 e5 e1 e2 e3 e4 e5 e1 e2 e3 e4 e5 e1 e2 e3 e4 e5 · · · e1 e2 e3 e4 e5

T1 7 8 8 7 7 6 5 5 6 6 7 8 8 8 7 5 6 5 5 5 · · · 6 7 8 8 9
T2 8 8 8 8 8 4 4 4 4 4 7 7 7 7 7 5 5 5 5 5 · · · 4 4 4 4 4
T3 4 4 4 4 4 6 6 6 6 6 7 7 7 7 7 6 6 6 6 6 · · · 5 5 5 5 5
T4 8 8 7 7 7 6 5 5 6 6 7 7 8 8 7 4 6 5 5 5 · · · 6 7 6 6 7
T5 5 6 5 6 5 5 6 5 7 6 7 8 9 8 8 4 4 3 4 5 · · · 8 7 8 8 9
T6 4 5 6 6 6 6 7 8 8 7 6 5 6 4 4 6 7 8 8 7 · · · 3 2 4 4 3
T7 7 6 6 5 6 4 5 4 5 5 7 8 8 7 7 5 6 6 5 6 · · · 8 7 6 8 8
T8 3 4 5 6 5 8 7 6 7 7 6 7 8 7 7 3 3 4 5 5 · · · 4 5 5 6 5
T9 5 5 6 5 5 7 8 8 7 7 8 6 8 7 7 4 5 6 6 5 · · · 3 4 5 3 5
T10 4 5 6 5 5 8 8 9 7 8 8 8 9 7 7 6 5 4 5 6 · · · 7 8 7 8 7
T11 7 8 6 7 8 6 7 8 8 7 7 8 6 7 8 3 4 5 3 5 · · · 7 8 9 7 8
T12 3 3 4 5 4 8 8 9 10 9 7 7 8 8 7 6 6 6 7 7 · · · 6 5 7 6 5

Table 5. Rough Aggregation of Decision-Makers’ (DMs’) Judgments.

T1 T2 T3 T4 · · · T12

xl
i1 xu

i1 xl
i2 xu

i2 xl
i3 xu

i3 xl
i4 xu

i4
xl

i j xu
ij xl

i,12 xu
i,12

A1 7.16 7.64 8.00 8.00 4.00 4.00 7.16 7.64 · · · · · · 3.36 4.25
A2 5.36 5.84 4.00 4.00 6.00 6.00 5.36 5.84 · · · · · · 8.36 9.25
A3 7.36 7.84 7.00 7.00 7.00 7.00 7.16 7.64 · · · · · · 7.16 7.64
A4 5.04 5.36 5.00 5.00 6.00 6.00 4.65 5.35 · · · · · · 6.16 6.64
A5 7.16 7.64 10.00 10.00 9.00 9.00 7.16 7.64 · · · · · · 5.65 6.35
A6 6.75 7.64 7.00 7.00 7.00 7.00 7.36 7.84 · · · · · · 6.75 7.64
A7 7.36 7.84 6.00 6.00 6.00 6.00 7.36 7.84 · · · · · · 6.75 7.64
A8 3.65 4.35 2.00 2.00 2.00 2.00 3.65 4.35 · · · · · · 5.36 6.25
A9 6.16 6.64 7.00 7.00 7.00 7.00 7.17 8.06 · · · · · · 6.75 7.64
A10 7.65 8.35 10.00 10.00 9.00 9.00 7.65 8.35 · · · · · · 6.65 7.35
A11 6.92 8.25 4.00 4.00 5.00 5.00 6.16 6.64 · · · · · · 5.36 6.25

Next, we derive the final weights of TAs in three phases:
Phase 1 is to derive the weights of CRs. Ten customer representatives are invited to give their

pairwise comparisons of the CRs (shown in Table 6). Based on Equations (1) to (3), the rough comparison
values are obtained, shown in (Table 7). Then, the rough weights of CRs are obtained by Equations (6)
to (7) as IR(w̃C)=

{
[0.98, 1.22], [1.04, 1.27], [0.78, 0.96]}.

Table 6. Pairwise Comparisons of Customer Requirements.

C1 C2 C3

C1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1

2 1 1 1 2 2 1 3 1 2 1
C2 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1
C3 1 1 1 1

2
1
2 1 1

3 1 1
2 1 1

2 1 1 1
2 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1

Table 7. Aggregation Results of the Pairwise Comparisons and Rough Weights of Customer
Requirements.

C1 C2 C3 Rough Weights

w̃l
C1 w̃u

C1 w̃l
C2 w̃u

C2 w̃l
C3 w̃u

C3 w̃l
C w̃u

C
C1 1.00 1.00 0.82 0.98 1.15 1.88 0.98 1.22
C2 1.04 1.36 1.00 1.00 1.09 1.51 1.04 1.27
C3 0.64 0.93 0.75 0.96 1.00 1.00 0.78 0.96
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Phase 2 is to establish relationships between CRs and TAs. First, we should normalize the collective
rough values of the DMs (shown in Table 8). Then, we should find a set of corresponding TAS for each
Ch. Since the identified CRs are independent, each Ch with its associated TCh could form an information
system. In this case study, three information tables are constructed. According to DMs’ opinions,
T1 − T4 are related to C1, and T5 − T7 are related to C2, while T8 − T12 are related to C3. We set δ = 0.1
and κ = 0.8. Here we display the calculation processes only for the second attribute T2 that relates to
C1, denoted as T2

C1. Table 9 shows the information system that takes C1 as the decision condition. By
Equations (9) to (11), the neighborhood relations and neighborhood information granule for supplier Ai
on T2

C1 (δ
T2

C1
(Ai)) can be computed (shown in Table 10). Next, using Equations (12) to (14), the inclusion

degrees of T2
C1 are obtained as I

{
δ

C1

T2
C1
(Ai), δT2

C1
(Ai)

}
= {1, 0.5, 0.67, 1, 1, 0.67, 1, 1, 0.33, 1, 0.5}. All the

results are listed in Table 11. When κ is set as 0.8, we get the lower rough sets POSTηC1
(C1) of C1 to T2

as {A1, A4, A5, A7, A8, A10}. Finally, the dependency degree of C1 to T2 is obtained as 0.55 by Equation
(15). By repeating the above steps, we can acquire the objective relationships between CRs and TAs,
which are presented in Table 12.

Table 8. Linear Normalization Values of the Aggregated Judgments.

T1 T2 T3 T4 · · · T12

zl
i1 zu

i1 zl
i2 zu

i2 zl
i3 zu

i3 zl
i4 zu

i4
zl

i j zu
ij zl

i,12 zu
i,12

A1 0.71 0.76 0.20 0.20 0.39 0.39 0.71 0.76 · · · · · · 0.33 0.42
A2 0.53 0.58 0.61 0.61 0.60 0.60 0.53 0.58 · · · · · · 0.83 0.92
A3 0.73 0.78 0.30 0.30 0.70 0.70 0.71 0.76 · · · · · · 0.71 0.76
A4 0.50 0.53 0.51 0.51 0.60 0.60 0.46 0.53 · · · · · · 0.61 0.66
A5 0.71 0.76 0.00 0.00 0.90 0.90 0.71 0.76 · · · · · · 0.56 0.63
A6 0.67 0.76 0.30 0.30 0.70 0.70 0.73 0.78 · · · · · · 0.67 0.76
A7 0.73 0.78 0.40 0.40 0.60 0.60 0.73 0.78 · · · · · · 0.67 0.76
A8 0.36 0.43 0.81 0.81 0.19 0.19 0.36 0.43 · · · · · · 0.53 0.62
A9 0.61 0.66 0.30 0.30 0.70 0.70 0.71 0.80 · · · · · · 0.67 0.76
A10 0.76 0.83 0.00 0.00 0.90 0.90 0.76 0.83 · · · · · · 0.66 0.73
A11 0.69 0.82 0.61 0.61 0.49 0.49 0.61 0.66 · · · · · · 0.53 0.62

Table 9. The Information System with C1 as the Decision Condition.

T1 T2 T3 T4 C1

zl
i1 zu

i1 zl
i2 zu

i2 zl
i3 zu

i3 zl
i4 zu

i4
A1 0.71 0.76 0.20 0.20 0.39 0.39 0.71 0.76 2
A2 0.53 0.58 0.61 0.61 0.60 0.60 0.53 0.58 1
A3 0.73 0.78 0.30 0.30 0.70 0.70 0.71 0.76 2
A4 0.50 0.53 0.51 0.51 0.60 0.60 0.46 0.53 1
A5 0.71 0.76 0.00 0.00 0.90 0.90 0.71 0.76 2
A6 0.67 0.76 0.30 0.30 0.70 0.70 0.73 0.78 2
A7 0.73 0.78 0.40 0.40 0.60 0.60 0.73 0.78 2
A8 0.36 0.43 0.81 0.81 0.19 0.19 0.36 0.43 1
A9 0.61 0.66 0.30 0.30 0.70 0.70 0.71 0.80 1
A10 0.76 0.83 0.00 0.00 0.90 0.90 0.76 0.83 2
A11 0.69 0.82 0.61 0.61 0.49 0.49 0.61 0.66 2
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Table 10. The Neighborhood Relation Matrix and the Information Granule for T2
C1.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 δ
T2

C1

A1 1 0 0 0 0 0 0 0 0 0 0 1
A2 0 1 0 0 0 0 0 0 0 0 1 2
A3 0 0 1 0 0 1 0 0 1 0 0 3
A4 0 0 0 1 0 0 0 0 0 0 0 1
A5 0 0 0 0 1 0 0 0 0 1 0 2
A6 0 0 1 0 0 1 0 0 1 0 0 3
A7 0 0 0 0 0 0 1 0 0 0 0 1
A8 0 0 0 0 0 0 0 1 0 0 0 1
A9 0 0 1 0 0 1 0 0 1 0 0 3
A10 0 0 0 0 1 0 0 0 0 1 0 2
A11 0 1 0 0 0 0 0 0 0 0 1 2

Table 11. Neighborhood Relational Matrix and the Information Granule for T2
C1

and C1.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 δ
C1

T2
C1

I{δC1

T2
C1

,δ
T2

C1
}

A1 1 0 0 0 0 0 0 0 0 0 0 1 1.00
A2 0 1 0 0 0 0 0 0 0 0 0 2 0.50
A3 0 0 1 0 0 1 0 0 0 0 0 3 0.67
A4 0 0 0 1 0 0 0 0 0 0 0 1 1.00
A5 0 0 0 0 1 0 0 0 0 1 0 2 1.00
A6 0 0 1 0 0 1 0 0 0 0 0 3 0.67
A7 0 0 0 0 0 0 1 0 0 0 0 1 1.00
A8 0 0 0 0 0 0 0 1 0 0 0 1 1.00
A9 0 0 0 0 0 0 0 0 1 0 0 3 0.33
A10 0 0 0 0 1 0 0 0 0 1 0 2 1.00
A11 0 0 0 0 0 0 0 0 0 0 1 2 0.50

Table 12. The Objective Relationships between Customer Requirements and Technical Attributes.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

C1 1 0.55 0.45 0.91
C2 0.91 0.55 0.91
C3 0.45 1 0.91 0.27 0.64

From the yield results, we can see that customers are highly dependent on attributes T1, T4, T5,
T7, T9 and T10, while they pay less attention to attributes T3, T8 and T11. In other words, customers
are especially concerned about the green level, quality, and service of an integral kitchen cabinet
product. Meanwhile, we can also see that, comparing with price, customers pay more attention to the
product’s quality.

Phase 3 is to determine the final weights of TAs. Each weight consists of two parts: the weight of
customer to T j (IR(w̃ j,C−T)) and the weight given by property developers’ DMs (IR(w j)) which is also
called the initial relative importance of TAs. The same as CRs, we acquire the initial weights of TAs
through the rough number-based pairwise comparison method. Since there are 12 TAs, according to
the AHP method, a stratification is needed for weighting these attributes. In our illustrated case study,
we exploit the relationships with CRs to stratify the TAs. The interlevel calculation process can be
found in [39]. By applying Equations (16) to (19), the final weights of TAs that customer voices are
taken into accounts were derived, shown in Table 13, where the parameter λ is set as 0.4.
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Table 13. The Rough Weights of Technical Attributes.

C1 C2 C3 C4 C5 C6

lo up lo up lo up lo up lo up lo up
IR(w̃C−T) 0.98 1.22 0.53 0.67 0.45 0.56 0.89 1.11 0.95 1.16 0.57 0.69

IR(w̃) 1.05 1.73 2.15 3.26 1.33 1.68 0.69 1.11 0.95 1.4 0.62 1.05
IR(wC−T) 0.12 0.13 0.07 0.07 0.06 0.06 0.11 0.11 0.12 0.12 0.07 0.07

IR(w) 0.09 0.1 0.18 0.18 0.09 0.11 0.06 0.06 0.08 0.08 0.05 0.06
IR(ŵ) 0.1 0.11 0.14 0.14 0.08 0.09 0.08 0.08 0.09 0.1 0.06 0.06

C7 C8 C9 C10 C11 C12

lo up lo up lo up lo up lo up lo up
IR(w̃C−T) 0.95 1.16 0.36 0.44 0.78 0.96 0.71 0.87 0.21 0.26 0.5 0.61

IR(w̃) 0.41 0.64 0.54 0.84 1.04 1.74 0.83 1.32 0.68 1.11 1.34 2.04
IR(wC−T) 0.12 0.12 0.04 0.05 0.1 0.1 0.09 0.09 0.03 0.03 0.06 0.06

IR(w) 0.04 0.04 0.05 0.05 0.09 0.1 0.07 0.07 0.06 0.06 0.11 0.12
IR(ŵ) 0.07 0.07 0.05 0.05 0.09 0.1 0.08 0.08 0.05 0.05 0.09 0.09

After acquiring the final weights of TAs, we then rank the suppliers by the rough set-based DNMA
method. First, we normalize the aggregated rough judgments. The linear normalized values were
calculated in Table 8, while the vector normalized values can be computed by Equation (20) (shown in
Table 14). Then, Equations (21) to (24) and the comparison rules of rough numbers [34] are employed
to determine the final ranking of the alternatives with ϕ = 0.5. The results are shown in Table 15.
The comprehensive ranking of the alternatives is A3 > A11 > A7 > A6 > A2 > A9 > A10 > A4 > A8 >
A5 > A1, where A3 is supposed to be the optimal suppliers considering the voices of customers.

Table 14. The Vector Normalization Values of Aggregated Judgments.

T1 T2 T3 T4 · · · T12

z1l
i1 z1u

i1 z1l
i2 z1u

i2 z1l
i3 z1u

i3 z1l
i4 z1u

i4
z1l

i j z1u
ij z1l

i,12 z1u
i,12

A1 0.32 0.33 0.65 0.65 0.19 0.19 0.32 0.33 · · · · · · 0.16 0.18
A2 0.25 0.25 0.82 0.82 0.28 0.28 0.25 0.25 · · · · · · 0.39 0.40
A3 0.33 0.34 0.69 0.69 0.33 0.33 0.32 0.33 · · · · · · 0.32 0.34
A4 0.23 0.23 0.78 0.78 0.28 0.28 0.21 0.23 · · · · · · 0.28 0.29
A5 0.32 0.33 0.56 0.56 0.42 0.42 0.32 0.33 · · · · · · 0.27 0.27
A6 0.31 0.32 0.69 0.69 0.33 0.33 0.33 0.34 · · · · · · 0.32 0.32
A7 0.33 0.34 0.73 0.73 0.28 0.28 0.33 0.34 · · · · · · 0.32 0.32
A8 0.17 0.18 0.91 0.91 0.09 0.09 0.17 0.18 · · · · · · 0.26 0.27
A9 0.28 0.28 0.69 0.69 0.33 0.33 0.33 0.34 · · · · · · 0.32 0.32
A10 0.35 0.35 0.56 0.56 0.42 0.42 0.35 0.35 · · · · · · 0.31 0.32
A11 0.32 0.35 0.82 0.82 0.23 0.23 0.28 0.28 · · · · · · 0.26 0.27

Table 15. The Ranking Results of Alternatives.

ũl
1 ũu

1 r1 ũl
2 ũu

2 r2 ũl
3 ũu

3 r3 Sl Su Ranking

A1 0.465 0.536 10 0.109 0.110 9 0.296 0.300 9 0.115 0.115 11
A2 0.588 0.663 6 0.054 0.054 1 0.347 0.356 7 0.282 0.283 5
A3 0.627 0.707 1 0.095 0.096 6 0.384 0.391 2 0.298 0.301 1
A4 0.459 0.533 11 0.067 0.068 3 0.288 0.289 10 0.172 0.173 8
A5 0.583 0.663 7 0.136 0.138 10 0.370 0.378 4 0.162 0.162 10
A6 0.613 0.698 2 0.095 0.096 6 0.378 0.386 3 0.283 0.284 4
A7 0.606 0.687 4 0.081 0.082 5 0.369 0.376 5 0.284 0.286 3
A8 0.475 0.552 9 0.067 0.074 4 0.269 0.273 11 0.165 0.175 9
A9 0.556 0.643 8 0.095 0.096 6 0.350 0.356 6 0.216 0.218 6
A10 0.601 0.695 3 0.136 0.138 10 0.385 0.395 1 0.204 0.207 7
A11 0.594 0.683 5 0.061 0.054 2 0.348 0.350 8 0.280 0.292 2
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4.3. Comparison and Discussion

To verify the effectiveness and robustness of the proposed approach in this paper, comparative
and sensitive analyses are conducted in this subsection.

We first compare the results after and before considering customer needs. The results yielded by
the rough DNMA method are shown in Figure 1, through which we find that, when customer voices
are taken into accounts, supplier A3 is believed to be the optimal suppliers, while when evaluating
these suppliers only from the perspective of the property developer, supplier A2 is the best one. With
the in-depth analysis on Table 2, we find that supplier A3 offers a good customer experience, since its
integral kitchen cabinet products are always in the choice lists of customers, while that of supplier
A2 is relatively poor, given that the supplier gains poor ratings from customers, both in the aspects
of economic performance and environmental certification. From this analysis, we can see that our
method effectively takes the customer voices into consideration.
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Figure 1. Comparative Ranking by the DNMA Method.

In the second comparative analysis, we integrate our improved QFD method with the rough VIKOR
method [35], to verify the effectiveness of our method. The results are illustrated in Figure 2. From this
figure, we can find similar results. Supplier A11 is the recommend one before considering customer
needs, but the supplier’s ratings by customers are poor in the aspect of market performance. Supplier
A7 is the best choice after considering customer voices, which matches the ratings of the customer to
suppliers. Therefore, customer voices were successfully considered in our proposed approach.
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Figure 2. Comparative Ranking by the VIKOR Method.

In the case study, we set two important parameters that relate to the neighborhood rough set as
δ = 0.1 and κ = 0.8. The setting of the two parameters may affect the dependency degrees of CRs
to TAs. Therefore, it is necessary to verify the robustness of the model through sensitive analysis.
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Here, the parameter δ is set as 0 ≤ δ ≤ 0.2, and κ is set as 0.8 ≤ κ ≤ 1, of which the increment is 0.05.
Twenty-five tests are conducted. The results yielded are shown in Figure 3, through which we can see
A3 is always the optimal supplier and A11 is always the last one. The top-five rakings generated are A2,
A3, A6, A7 and A11. Overall, the results of the 25 tests are with small fluctuation in a normal range,
which indicates the robustness of our proposed method.
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5. Conclusions

The whole-decoration residential house has become the main form of residential products in
the current Chinese housing market. The construction of these live-directly products involves many
interior functional fit-out materials. On the one hand, materials account for nearly half of the total
cost in construction, and the green level of a residential product closely related to the environmental
performance of its building materials; on the other hand, customer satisfaction of material and
its suppliers, especially of these interior functional fit-out materials, is of great importance for the
success sells of the residential products. Thus, a framework should be established to comprehensively
evaluate the performance of building-material suppliers and help property developers select a green
customer-oriented supplier. This study constructed a multiphase QFD-based decision framework
for the selection of the optimal building-material suppliers, by taking into account customers’ voices.
Compared with the supplier evaluations in previous QFD studies, the proposed framework constructed
the relationship matrix between CRs and TAs based on the neighborhood rough set theory, which can
respond to customers’ voices more objectively. Then, the ranking method of rough number-based
DNMA method, which considered two types of normalization methods, three aggregation models,
and a comprehensive score function by integrating the subordinate utility values with their ranks,
was employed to determine the ranking of alternatives. Finally, comparative analysis was conducted
both before and after considering CRs in the rough set-based DNMA method. The corresponding
results showed that the proposed approach effectively took the customers’ voices into consideration,
and the similar results were found in the rough set-based VIKOR method. Moreover, a sensitivity
analysis was conducted by changing the parameters related to the neighborhood rough set. The result
further validated the reasonability and robustness of the proposed approach.

Of course, our studies also have certain limitations that present opportunities for further study.
The number of the attributes and candidate suppliers can be increased to provide more comprehensive
and accurate research results than the current study. Besides, the hesitant fuzzy linguistic term set [40]
can be incorporated into the proposed framework to tackle the inaccurate and fuzzy judgments of
DMs, which will be an interesting research topic for a future study.
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