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Abstract: We examine a uniform parallel machine scheduling problem with dedicated machines,
job splitting, and limited setup resources for makespan minimization. In this problem, machines
have different processing speeds, and each job can only be processed at several designated machines.
A job can be split into multiple sections and those sections can be processed on multiple machines
simultaneously. Sequence-independent setup times are assumed, and setup operations between
jobs require setup operators that are limited. For the problem, we first develop a mathematical
optimization model and for large-sized problems a constructive heuristic algorithm is proposed.
Finally, we show that the algorithm developed is efficient and provides good solutions by experiments
with various scenarios.

Keywords: uniform parallel machine; scheduling; dedicated machines; job splitting; setup resource;
heuristic algorithm

1. Introduction

In recent manufacturing industries, increasing productivity and minimizing production costs are
essential for a sustainable business. Thus, scheduling is becoming more important to minimize
production costs by reducing production completion times and allocating resources efficiently.
Furthermore, manufacturing industry is directly relevant to energy sustainability. For instance, energy
consumption in manufacturing industry accounts for a huge proportion of total energy consumption
in the world; in China, about 50% of energy is consumed by manufacturing industry [1]. From this
perspective, scheduling has been considered as a viable and effective way to improve both productivity
and energy efficiency, and hence there have been many recent studies applying scheduling at the
interface with sustainability in various areas (see, e.g., [2–5]).

In this study, we consider a uniform parallel machine scheduling problem with dedicated
machines, job splitting properties, and limited setup resources, which can be easily observed in
practice. In uniform parallel machines, all jobs can be processed on machines in parallel, but machines
have different speeds. Dedicated machines enforce that a certain job can only be processed on a set of
designated machines. Jobs can be split into multiple sections that can be processed on several machines
simultaneously. When a job type is changed in a machine, a setup is needed by one of the operators
who are generally insufficient in number to set up all of machines at the same time. The setup time for
a job is sequence-independent, which indicates the setup time only depends on the job to be processed,
whereas sequence-dependent setup times are determined by the combination of preceding and next
jobs. The objective of our problem is to minimize the maximum of machine completion times, typically
denoted as Cmax.

This problem is motivated from real systems that manufacture fan or equipment filter units
(FFUs or EFUs), automotive pistons, bolts and nuts for automotive engines, textiles, printed circuit
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boards, and network computing [6,7]. FFUs are used to supply purified air to clean rooms, laboratories,
and medical facilities by removing harmful airborne particles from recirculating air. The factory we
consider in Korea is producing many different types of FFUs and EFUs for semiconductor, automotive,
and food industry companies such as Samsung Electronics, SK Hynix, LG, Texas Instruments, and so
on. The factory mainly assembles outsourced components and tests the assembled products before
delivering them to customers. There are five assembly lines; two of them are automatic and the others
are manual, where automatic lines are faster than manual ones. FFUs or EFUs can be assembled
in one of dedicated machines, and setups are performed when job types are changed, which are
sequence-independent and require a setup operator. In addition, since many units are made for each
type of FFUs or EFUs, they can be split into arbitrary sections.

Figure 1 illustrates a simplified example in FFU manufacturing. In the example, there are three
job types; many FFUs of Types 1–3 (see the left part of Figure 1). Jobs of each job type can be slit into
multiple job sections, and they are assigned to machines. In this example, jobs of Types 1 and 2 can
be processed on Machines 1 and 2, and jobs of Type 3 can only be processed on Machine 3 due to the
dedicated machine constraint. In each machine, when job types change, a setup is required and it
is performed by a human operator, as shown in Figure 1. In the example, there is only one human
operator for setups and at most two setups can be required at the same time. In that case, one of two
setups should be delayed, which makes the scheduling problem complicated.
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Figure 1. An example in FFU manufacturing.

Another factory we introduce is producing automotive pistons for Hyundai Motor Group, BMW,
GM, and so on. Automotive pistons are first cast from aluminum alloys in uniform parallel machines,
and then go through machining and assembly process steps. The multiple parallel machines for
casting processes are classified into automatic, semi-automatic, and manual machines, and each of
them can handle a set of certain piston types because machines are equipped with different tools and
some pistons have specific process requirements. In addition, high quality pistons should be tracked
in each unit so that all process parameters for each unit are checked. In this case, pistons for those
customers should be processed on the machines that have the tracking system, which introduces
dedicated-machine constraints. A piston type consists of thousands of units so that they can be divided
into several lots, and multiple piston types are produced at the same time. Setups when product
types change are performed by an operator, and the setup times do not depend on the preceding
product type.

As introduced, the problem considered in this paper has many real applications and is constrained
by various scheduling requirements such as parallel machines with different speeds, dedicated
machines, and limited setup operators. To the best of our knowledge, no study has considered
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this problem. Therefore, this paper is intended to contribute to this end by presenting a mathematical
optimization model and developing efficient heuristic algorithms.

2. Literature Review

In this section, we review papers related to our problem. Since a uniform parallel machine
scheduling problem with dedicated machines, job splitting, and setup resources is considered, relevant
literature can be classified into three groups: studies considering parallel machines, job splitting,
and resources.

First, there have been numerous papers on scheduling identical parallel machines. Many early
studies have analyzed list schedules and the longest processing time (LPT) first rule with the makespan
minimization measure on either identical or uniform parallel machines [8–13]. The authors of [8,9]
analyzed the worst-case bound of an arbitrary list schedule and the LPT rule on identical parallel
machines. In the work by Garey and Graham [10], bounds of list schedules on identical parallel
machines with a set of resources where each job requires specified units of each resource at all times
during its execution were provided. In the paper by Gonzalez et al. [11], the performance of the LPT
schedules on uniform parallel machines was analyzed, and the study by Friesen [12] provided tighter
bounds for the same problem. The work by Cho and Sahni [13] analyzed the worst-case bound of list
schedules for uniform parallel machine scheduling problems. All of them assumed the nonpreemptive
schedules for minimizing the makespan. From these papers, we can have insights to develop priority
rules for heuristic algorithms presented in this paper.

For uniform parallel machine scheduling, the work by Dessouky et al. [14] developed many
efficient algorithms with scheduling criteria that are nondecreasing in the job completion times, such as
makespan, total completion time, maximum lateness, and total tardiness. The study by Dessouky [15]
proposed a branch and bound algorithm for uniform parallel machine scheduling with ready times
in order to minimize the maximum lateness. The work by Balakrishnan et al. [16] examined uniform
parallel machine scheduling problems with sequence-dependent setup times in order to minimize the
sum of earliness and tardiness costs. They provided a mixed integer formulation that has substantially
small 0-1 variables for small-sized problems. In the study by Lee et al. [17], two heuristic algorithms
for uniform parallel machine scheduling were developed to derive an optimal assignment of operators
to machines with learning effects in order to minimize the makespan. The work by Elvikis et al.
[18] also considered a uniform parallel machine scheduling problem with two jobs that consist of
multiple operations, and derived Pareto optima with makespan and cost functions. In the study
by Elvikis and T’kindt [19], the problem with multiple objectives related with the job completion
times was investigated by developing a minimal complete Pareto set enumeration algorithm. The
work by Zhou et al. [20] considered a batch processing problem on uniform parallel machines with
arbitrary job sizes in order to minimize the makespan. They developed a mixed integer programming
model and an effective differential evolution-based hybrid algorithm. In the work by Jiang et al. [21],
a hybrid algorithm that combines particle swarm optimization and genetic algorithm was developed
for scheduling uniform parallel machines with batch transportation. The study by Zeng et al. [22]
examined a bi-objective scheduling problem on uniform parallel machines by considering electricity
costs under time-dependent or time-of-use electricity tariffs. All of these studies are not directly
applicable to our problem since we consider more complicated problem settings. However, some ideas
and approaches used in this paper were inspired by these previous works.

One of the important features of our problem is job splitting. Some papers have considered
the job splitting property on parallel machines. Several polynomial time algorithms for scheduling
parallel identical, uniform, and unrelated machines with job splitting were developed in order to
minimize maximum weighted tardiness [23]. In the work by Yalaoui and Chu [6], an efficient heuristic
algorithm for parallel machine scheduling with job splitting and sequence-dependent setup times
was proposed and its performance was evaluated. They transformed the problem into a traveling
salesman problem and solved with Little’s method. It was further analyzed with a linear programming
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approach [24]. Kim et al. [7] developed a two-phase heuristic algorithm for parallel machine scheduling
with job splitting where an initial sequence is constructed by an existing heuristic method for parallel
machine scheduling in the first phase and then the jobs are rescheduled by considering job splitting
in the second phase. Shim and Kim [25] further analyzed the same problem by developing a branch
and bound algorithm with several dominance properties. In the study by Park et al. [26], heuristic
algorithms for minimizing total tardiness of jobs on parallel machines with job splitting were presented.
Wang et al. [27] also examined a parallel machine scheduling problem with job splitting and learning
with the total completion time measure, and used a branch and bound algorithm for small-sized
problems and heuristics for large-sized ones. Even though most of these previous studies considering
job splitting assume simpler manufacturing environment than that of our problem, they provide an
idea of algorithm design for the heuristics developed in this paper.

Lastly, many papers have also considered resources in scheduling parallel machines, which is
an important scheduling requirement of our problem. In the work by Kellerer and Strusevich [28],
a parallel dedicated machine scheduling problem with a single resource for the makespan minimization
was examined. They analyzed the complexity of different variants of the problem and developed
heuristic algorithms employing the group technology approach. Kellerer and Strusevich [29] further
considered the problem with multiple resources, and developed polynomial-time algorithms for special
cases. In the study by Yeh et al. [30], several metaheuristic algorithms for uniform parallel machine
scheduling were developed given that resource consumption cannot exceed a certain level. These
studies assumed that resources are required to process jobs on machines. For setup resource constraints,
the study by Hall et al. [31] dealt with nonpreemptive scheduling of a given set of jobs on several
identical parallel machines with a common server was considered. In detail, they considered many
classical scheduling objectives in this environment and proposed polynomial or pseudo-polynomial
time algorithms for each problem considered. The work by Huang et al. [32] addressed a parallel
dedicated machine scheduling problem with sequence-dependent setup times and a single server.
Several papers have examined two-parallel machine scheduling problems with a server and proposed
efficient heuristic algorithms [33–35]. The study by Cheng et al. [36] considered a common server
and job preemption in parallel machine scheduling with the makespan measure and provided a
pseudo-polynomial time algorithm for two machine cases and analyzed the performance ratios of
some natural heuristic algorithms. Hamzadayi and Yildiz [37] also considered the same problem
with sequence-dependent setup times and derived metaheuristic methods to minimize the makespan.
For multiple servers, the study by Ou et al. [38] examined a parallel machine scheduling problem
where servers perform unloading tasks of jobs and proposed a branch and bound and heuristic
algorithms. Unlike the problem in this paper, most of studies considering resources in scheduling
parallel machines assume a single resource (or server) or do not take into account other scheduling
requirements considered in this paper such as job splitting and dedicated machines. Therefore,
methods developed in the previous papers cannot be applied to our problem. For interested readers,
reviews on parallel machine scheduling can be found in [39–41].

In summary, even though there have been numerous papers on parallel machine scheduling,
no study has been performed for our problem; uniform parallel machine scheduling with dedicated
machines, job splitting, and setup resource constraints. As explained above, this problem is motivated
from real-world systems, and there are many other applications in which the proposed approach can
be useful. We first describe the problem in detail and develop a mathematical programming model
for the first time. We then provide four lower bounds and propose efficient heuristic algorithms.
The performance of the algorithms is evaluated by comparing with lower bounds. An application of
our algorithm to a real problem from industry is also introduced.
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3. Problem Description & Analysis

In this study, we consider a uniform parallel machine scheduling problem with dedicated
machines, job splitting properties, and limited setup resources, which can be easily observed in practice.
In uniform parallel machine scheduling, n jobs are processed on m machines in parallel, but machines
can have different speeds. The processing speed of machine i where i ∈ M, M = {1, 2, .., m}, is denoted
by vi, which can be regarded as relative speeds. For example, if v1 = 2× v2, Machine 1 is twice as
fast as Machine 2. Job j, j ∈ N, N = {1, 2, ..., n}, has the processing time of pj if the machine speed is
1. Therefore, in general, the processing time of job j on machine i is

pj
vi

. When all machines have the
same speed, e.g., vi = 1 for all i, the environment is the same as identical parallel machine scheduling
which is a special case of our problem. Dedicated machines enforce that job j can only be processed
on a set of designated machines, denoted as Mj, and can be split into multiple sections that can be
processed on several machines simultaneously. When a job type is changed in a machine, a setup is
needed by one of r (< m) operators that are generally insufficient to set up all of m machines at the
same time (see Figure 1). The setup time for job j, sj, is sequence-independent; that is, the setup time is
not affected by the preceding job, and it only depends on the job to be processed. The objective is to
minimize the maximum of machine completion times, Cmax where Cmax = maxi Ci and Ci indicates
the completion time of machine i.

The problem considered in this paper can be easily proven to be NP-hard because parallel machine
scheduling problems with two machines, which are a special case of our problem with vi = 1 for
all i ∈ M, r = m, sj = 0 for all j ∈ N, and Mj = M for all j ∈ N, are proven to be NP-hard [42].
We assume that jobs processed on machines for the first time do not require setup operations. This
is because once all jobs are completed for a given period, mostly one or several weeks, preventive
maintenance for machines is performed and then they are set up for the next desired states [6]. Setup
times are not affected by different speeds of machines since they are performed by setup operators.
The lengths of jobs processed on each machine and their sequence should be determined by considering
setup resources and dedicated machines with different speeds in order to minimize the makespan.
For a better understanding, we provide the following example.

Example 1. Suppose that there are three machines and seven jobs where (pj, sj) for all j where 1 ≤ j ≤ 7 are
given as (14, 5), (12, 4), (11, 4), (15, 3), (7, 3), (10, 2), (5, 2). Figure 2 shows three Gantt charts for production
schedules in identical or uniform parallel machines with one setup operator. In the Gantt chart, numbers in white
bars indicate job indices, and black bars represent setup operations. Numbers in the bottom denote time stamps;
for example, in Figure 2a, Machine 2 finishes at 31 while completion time of Machines 1 and 3 is 29. Assume
that jobs are processed in their index order, the jobs processed for the first time on each machine do not require
setups, and there is no dedicated machine constraint. When jobs are processed on identical parallel machines,
their makespan is 31, as illustrated in Figure 2a. However, when the machines have different speeds, i.e., v1, v2,
and v3 are 0.9, 1, and 1.1, respectively, the schedule becomes the same as the Gantt chart in Figure 2b, and the
makespan is 30. In this case, the schedule can be improved by splitting Job 7 into two sections and assigning
one section with the processing time of 0.73 to Machine 3. Since v3 is 1.1, it takes 0.66 for the section to be
completed on Machine 3 and the makespan becomes 29.27. If Job 7 can only be processed on Machines 1 and 2,
i.e., M7 = {1, 2}, splitting the job cannot improve the schedule. Hence, special considerations on scheduling
uniform parallel machines with dedicated machines, job splitting, and setup resource constraints are required.
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Figure 2. Schedules in parallel machines.

We now propose a mathematical programming model for uniform parallel machine scheduling
with dedicated machines, job splitting, and setup resources for the first time. Table 1 lists the symbols
and their descriptions used in the following mathematical programming model. Especially, H indicates

a given scheduling horizon which can be determined by ∑j∈N pj
mini∈M vi

+ ∑j∈N sj.

Table 1. Symbols and descriptions for the mathematical programming model.

Symbol Description

Cmax maximum completion time of machines
H scheduling horizon; a given parameter

xijt 1 if a setup for job j starts on machine i at time t, and 0, otherwise
yij 1 if a section of job j is processed on machine i, and 0, otherwise
Lij length of a section of job j processed on machine i
zijk 1 if a section of job k is processed right after a section of job j on machine i, and 0, otherwise
Rijt 1 if machine i is under the setup for a section of job j between t and t + 1, and 0, otherwise
pj processing time of job j when the machine speed is 1
vi relative processing speed of machine i
sj setup time for job j; sequence-independent
N set of jobs; {1, . . . , n}
Mj set of machines that can process job j
Ji set of jobs that can be processed on machine i

Minimize Cmax (1)

Subject to
H

∑
t=0

xijt ≤ 1, j ∈ N, i ∈ Mj (2)

∑
i∈Mj

H

∑
t=0

xijt ≥ 1, j = 1, 2, ..., n (3)

H

∑
t=0

xijt = yij, j ∈ N, i ∈ Mj (4)
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H

∑
t=0

txijt + (
Lij

vi
+ sj)yij + D(zijk − 1)− zi0jsj ≤

H

∑
t=0

txikt j ∈ N, i ∈ Mj, k ∈ Ji (5)

Cmax ≥
H

∑
t=0

txijt + (
Lij

vi
+ sj)yij − zi0jsj, j ∈ N, i ∈ Mj (6)

H

∑
t=0

xijt = ∑
k∈Ji∪{n+1}

zijk, j ∈ N, i ∈ Mj (7)

H

∑
t=0

xikt = ∑
j∈Ji∪{0}

zijk, k ∈ N, i ∈ Mk (8)

∑
k∈Ji

zi0k = 1, i ∈ M (9)

∑
j∈Ji

zi,j,n+1 = 1, i ∈ M (10)

zijj = 0, j = 1, 2, ..., n, i ∈ Mj (11)

∑
i∈Mj

Lij = pj, j ∈ N (12)

yij ≤ Lij, j = 1, 2, ..., n, i ∈ Mj (13)

yij ≥
Lij

pj
, j ∈ N, i ∈ Mj (14)

(xijt − zi0j)sj ≤
t+sj−1

∑
u=t

Riju, j ∈ N, i ∈ Mj t = 0, 1, ..., H −max
j

sj (15)

H

∑
t=0

Rijt ≤ sj

H

∑
t=0

xijt, j ∈ N, i ∈ Mj (16)

H

∑
t=0

Rijt ≤ sj(1− zi0j), j ∈ N, i ∈ Mj (17)

n

∑
j=1

∑
i∈Mj

Rijt ≤ r, t = 0, 1, ..., H (18)

xijt, zijk, yij, Rijt ∈ {0, 1}, Lij ∈ Z+ (19)

The objective is to minimize Cmax, which indicates the maximum completion time of machines.
The constraint in Equation (2) is used for ensuring that a section of job j can be assigned to machine i,
i ∈ Mj, only once; multiple assignments of sections of the same job type to a certain machine are not
allowed. The constraint in Equation (3) is developed for job splitting property, which indicates that
multiple sections of job j can be processed on different machines in Mj. The constraint in Equation (4)
associates xijt and yij so that if a section of job j is assigned to machine i, yij and the sum of xijt for all t
should be the same. In the constraint in Equation (5), when a section of job j starts to be processed

on machine i, the next job k in Ji should start after t +
Lij
vi

+ sj time units where D is a large number.
The term zi0jsj is used to eliminate the setup time of the first job on machine i. The objective, Cmax,
is obtained with the constraint in Equation (6). Once a section of job j is processed on machine i, it
should have its succeeding and preceding jobs as indicated by the constraints in Equations (7) and (8),
respectively. The constraints in Equations (9) and (10) ensure that dummy jobs 0 and n + 1 are the
first and last jobs, respectively, on each machine. Since a section of job j cannot precede or success the
same job type, zijj = 0 as in the constraint in Equation (11). The sum of processing times for job j on
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machines in Mj should be equal to pj from the constraint in Equation (12), and a section of job j is
assigned to machine i, then Lij should be larger than 0 from the constraints in Equations (13) and (14).
The constraints in Equations (15)–(18) are used for the setup resource constraints. If a section of job j
starts to be processed on machine i at time u, Rijt should be 1 for all t where u ≤ t ≤ u + sj − 1, which
is constrained by the constraints in Equations (15) and (16). The constraint in Equation (17) is used
for the first jobs on machines because setup times for those jobs are ignored. Since there are r setup
operators, the sum of Rijt at each time t should be less than or equal to r. Since Lijyij is nonlinear,
we introduce Gij, Gij = Lijyij, which indicates the length of a section of job j that is actually processed
on machine i. Then, the commercial solvers such as CPLEX can be used to obtain optimal solutions
with the proposed formulation. The following inequalities are added where D is a large number:

Gij − Lij ≤ D(1− yij), j ∈ N, i ∈ Mj (20)

Gij − Lij ≥ D(yij − 1), j ∈ N, i ∈ Mj (21)

Gij ≤ Dyij, j ∈ N, i ∈ Mj (22)

Optimal solutions from the mathematical formulation can be used to evaluate the performance
of the proposed algorithm. However, large size problems cannot be solved within an acceptable
time even with three machines and four jobs as our problem is NP-hard. Thus, lower bounds are
derived and used for the performance evaluation. We define a job set N1 as one that contains m jobs so
that ∑j∈N1

sj is maximized and those m jobs in N1 can be assigned to m machines one by one while
satisfying dedicated machine constraints. Suppose that there are two machines and three jobs, and
s1, s2, and s3 are 2, 1, and 3, respectively. If M1 = M3 = {1} and M2 = {1, 2}, N1 contains Jobs 2 and
3 instead of Jobs 1 and 3 even though s2 + s3 < s1 + s3 because Jobs 1 and 3 must be processed on
Machine 1. A job set N2 includes jobs that are in N\N1. We used the Hungarian method to obtain set
N1 with n jobs and n machines (m machines + (n−m) dummy machines) [43]. Sl indicates a set of
jobs that have the same set of dedicated machines, i.e., Mj = Mk if jobs j and k are in Sl . In the above
example, Jobs 1 and 3 are in the same set. We now present several lemmas to derive lower bounds.

Lemma 1. A job-based lower bound LB1 is maxj
pj

∑i∈Mj
vi

.

Proof. Since job j can only be processed on machines in Mj, the minimum time required to complete
job j is

pj
∑i∈Mj

vi
. Hence, the maximum value among

pj
∑i∈Mj

vi
becomes a job-based lower bound.

Lemma 2. A machine-based lower bound LB2 is
∑n

j=1 pj

∑m
i=1 vi

+ ∑j∈N2

sj
m .

Proof. For a basic parallel machine scheduling problem, a lower bound is
∑n

j=1 pj
m . In our problem,

since m machines have different speeds, it takes at least
∑n

j=1 pj

∑m
i=1 vi

to complete all of n jobs. In addition,

the setup time of ∑j∈N2
sj for n−m jobs is required. Hence, a machine-based lower bound is

∑n
j=1 pj

∑m
i=1 vi

+

∑j∈N2

sj
m .

Lemma 3. A resource-based lower bound LB3 is
∑j∈N2

sj
r .

Proof. Except the first m jobs assigned, n − m jobs require setups that take at least ∑j∈N2
sj as we

defined previously. Since those setups are performed by r operators, a resource-based lower bound is
∑j∈N2

sj
r .
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Lemma 4. A job set-based lower bound LB4 is maxSl{
∑j∈Sl

pj

∑i∈MSl
vi
+ ∑j∈S′l

sj
|MSl

|} where MSl is a set of machines

that can process jobs in Sl , and S′l is a set of jobs in Sl that does not contain |MSl | jobs with the largest setup
times among jobs in Sl .

Proof. For each job set, Sl , a lower bound can be obtained similarly as LB2 in Lemma 2. Jobs in Sl can

only be processed on machines in MSl , which takes at least
∑j∈Sl

pj

∑i∈MSl
vi

. The setups for |Sl | jobs require

at least as much as ∑j∈S′l
sj since |MSl | jobs can start at first on |MSl |machines. Hence, the maximum

value among
∑j∈Sl

pj

∑i∈MSl
vi
+ ∑j∈S′l

sj
|MSl

| for all Sl becomes a job set-based lower bound.

Corollary 1. A lower bound of the makespan of the problem, LB, is max{LB1, LB2, LB3, LB4}.

4. Heuristic Algorithms

Since no setup is required for the first jobs on machines, assigning jobs with large setup times as
the first ones can lead to the makespan reduction. However, sorting jobs in order of nonincreasing
setup times and assigning the first m jobs to m machines may not be feasible or may lead to less setup
time reductions due to the dedicated machines. Hence, we assign m jobs in N1 to m machines so that
the sum of setup times of those jobs is maximized. As mentioned above, the optimal assignment of m
jobs to m machines can be found with the Hungarian method. In the method, n−m dummy machines
are made and setup times of n jobs on those machines are set to 0. The setup time of job j on machine
i, i /∈ Mj, is also set to 0. Then, the Hungarian method is applied with n jobs and n machines. It is
known that the complexity of the Hungarian method is O(n3). With this method, we can maximize
the sum of setup times of jobs that are first assigned to each machine.

After assigning m jobs, each time machines become available, jobs are chosen according to some
of well-known priority rules. The first one is the least flexible job (LFJ) first rule. When machine
i finishes processing a job, the job with the smallest |Mj| among jobs in Ji is chosen and assigned.
The LFJ performs well for dedicated parallel machine scheduling. The second one is the LPT rule that
selects the job with the largest processing time among jobs in Ji. After assigning all of n jobs, the loads
of machines are balanced by splitting last jobs on each machine and assigning those sections to other
machines by considering dedicated constraints and different speeds of machines.

We provide the procedures of the two priority rules for assigning n−m jobs. Let Li as the earliest
start time in which a job can be assigned to machine i by considering the setup resource constraints
after assigning m jobs by the Hungarian method. The following rules are only applied to jobs in N2.

LFJ rule

- Step 1: For machine l where l = arg mini∈M Li, select job k in Jl
⋂

N2 that has the smallest |Mk| and
assign the job to the machine. Ties are broken according to the LPT rule. Update Ll to Ll + sk +

pk
vl

,
N2 to N2\{k}, and Ji to Ji\{k} where i ∈ Mk.

- Step 2: If N2 = ∅, terminate. Otherwise, update Li for all i ∈ M and go to Step 1.

LPT rule

- Step 1: For machine l where l = arg mini∈M Li, select job k in Jl
⋂

N2 that has the longest pk and
assign the job to the machine. Ties are broken according to the LFJ rule. Update Ll to Ll + sk +

pk
vl

,
N2 to N2\{k}, and Ji to Ji\{k} where i ∈ Mk.

- Step 2: If N2 = ∅, terminate. Otherwise, update Li for all i ∈ M and go to Step 1.

It is worth noting that another priority rule that combines the LPT and LFJ was also tested but
provides a poor performance in the preliminary experiments; when a machine with a high speed
becomes idle, a job is assigned according to the LPT rule, and, otherwise, the LFJ rule is applied to
select a job.
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We now propose a heuristic algorithm that combines the Hungarian method for assigning first
m jobs, one of priority rules (LFJ or LPT) for assigning n − m jobs and the load balancing step on
machines. We tested the above two priority rules and show their performance in Section 5.

Algorithm 1: An iterative algorithm for uniform parallel machine scheduling

- Step 1: Using the Hungarian method, select m jobs and assign them to each machine so that the
sum of setup times of such m jobs is maximized, and define a set N1 that contains these first m jobs.

- Step 2: Assign n−m jobs in N2 where N2 = N\N1 according to the LFJ or LPT rule.
- Step 3: Select machine l where l = arg maxi∈M Li. If maxReducibleTime(l) > 0, assign a section

of the last job on machine l to machine bestAssignableMachine(l) so that Ll = Li∗ where i∗ =
bestAssignableMachine(l), and repeat Step 3. Otherwise, go to Step 4.

- Step 4: Consider Mkl
where l = arg maxi∈M Li and kl is the last job on machine l. For each

machine i ∈ Mkl
, update Li to Li− maxReducibleTime(i) temporarily, and store its original

value. If maxReducibleTime(l) = 0, stop. Otherwise, let j = bestAssignableMachine(l) and
restore Li to its original value. Assign a section of the last job on machine j to machine k where
k =bestAssignableMachine(j) so that Lj = Lk, and go to Step 3.

Algorithm 2: Splitting jobs with long processing times to further improve solutions

- Step 1: Let both N and N∗ be the initial job list and Cmax = ∞.
- Step 2: Apply Algorithm 1 with jobs in N and update Cmax to the resulting makespan. If Cmax is

equal to the lower bound, stop. Otherwise, go to Step 3.
- Step 3: If N∗ = ∅ or all of the jobs in N∗ have the processing time less than ε (ε is a very small

positive real number to avoid an infinite loop), stop. Otherwise, select job l in N∗ according to the
LPT rule. Split job l into two sections, l1 and l2, with the same processing time. Apply Algorithm 1
with jobs in (N\l) ∪ {l1, l2}. Let the makespan obtained with the updated N be C

′
max.

- Step 4: If C
′
max < Cmax, set Cmax = C

′
max and update both N and N∗ by eliminating job l and

adding jobs l1 and l2. Otherwise, update N∗ by eliminating l. Go to Step 3.

Function: maxReducibleTime(l)

For a given machine l and its last job kl , return ∆ where ∆ = maxi∈Mkl

[
max

{
Ll−Li−di,kl

−skl
1+

vl
vi

, 0
}]

.

Function: bestAssignableMachine(l)

For a given machine l and its last job kl , return machine i where i = arg maxi∈Mkl

[
Ll−Li−di,kl

−skl
1+

vl
vi

]
.

Assign m jobs with the Hungarian method and n − m jobs with one of the priority rules in
Steps 1 and 2, respectively. Then, the schedule is updated by balancing the loads of machines in
Steps 3 and 4. In Step 3, the machine with the largest Li which currently determines the makespan is
chosen, and for all other machines compute maximum reducible times by splitting and reassigning
the last job of the machine with the largest Li to another machine. This step is repeated until there
is no further improvement in makespan. Step 4 is specially designed to improve the solution under
dedicated machine constraints. Figure 3 shows an example where Step 4 of Algorithm 1 is effective.
In Figure 3, Machine 3 has the longest completion time and the last job of Machine 3 is Job 3. In Step 3
of Algorithm 1, it is virtually impossible to have any improvement in makespan because Job 3 can
be processed in Machines 1 and 3, but completion time of Machine 1 is almost the same as that of
Machine 3. However, if the last job of Machine 1, Job 1, is split and reassigned to Machine 2 since
M1 = {1, 2}, the completion time of Machine 1 is decreased and thus we can have an additional chance
to reduce the makespan. Based on this idea, Step 4 of Algorithm 1 is designed.

With Algorithm 1, we can obtain a feasible and acceptable solution. The solution is updated
further by splitting jobs with long processing times at a time in Algorithm 2.
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Figure 3. An example of Step 4 in Algorithm 1.

Example 2. Suppose that there are three machines and eight jobs in which v1, v2, and v3 are 0.8, 1.0, and
1.2, respectively, and (pj, sj) = (7, 2), (8, 1), (9, 4), (5, 1), (4, 1), (7, 4), (2, 1), (6, 3) for 1 ≤ j ≤ 8. Assume
that J1 = {1, 2, 3, 4, 6, 8}, J2 = {2, 5, 7, 8}, and J3 = {1, 3, 4, 5}. Figure 4a,c shows Gantt charts of schedules
obtained from the LFJ and LPT rules, respectively, with r of 1. In Algorithm 1, the Hungarian method is first
applied, and Jobs 6, 8, and 3 are assigned as the first jobs to Machines 1–3, respectively. Then, Machine 2
becomes idle at 6 time units, and Job 7 is selected since |M7| is the smallest one among jobs in J2 according to
the LFJ rule. After that, Machines 3 chooses Job 1 because all jobs in J3 have the same value of |Mj| where j ∈ J3

and p1 is the largest one. In a similar way, a complete schedule from the LFJ is obtained and its makespan is
20.5, as illustrated in Figure 4a. When the LPT rule is applied, Job 2 is first selected after Job 8 on Machine 2,
and then Jobs 1 and 4 are assigned to Machines 3 and 1, respectively. The makespan is 23 since |Mj| is not
considered in the LPT rule. In Figure 4a, the last job, Job 4, on Machine 3 cannot be processed on Machine 2,
and splitting the job into two sections and assigning one section to Machine 1 cannot improve the makespan.
Hence, Job 2 on Machine 1 is split into two sections, and one is assigned to Machine 2. The schedule is further
updated by splitting Job 4 on Machine 3 and assigning one section to Machine 1, as illustrated in Figure 4b.
In this schedule, the makespan is 20. The schedules from the LPT rule cannot be improved by splitting the last
jobs on machines. After maintaining the schedule, Algorithm 2 is applied.

Machine 1

Machine 2

Machine 3

6 9

4

2

20.511.5 15.3

6

8

3

7

1

5

(a) Schedule from the LFJ rule

Machine 1 4

Machine 2

Machine 3

6 9 18.3

3 1

11.5 15.3

4

20

6 2

8 7 5 2

(b) Schedule after load balancing from the LFJ schedule

Machine 1

Machine 2

Machine 3

6 9 20 23

4

5 7

1

15.3

6

8

3

2

(c) Schedule from the LPT rule

Figure 4. Schedules of proposed priority rules.

5. Experimental Results

The proposed algorithms were tested with various scenarios. The machine speed was determined
randomly between 0.8 and 1.2, and the setup times for jobs were generated with αpj where α was
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selected randomly within [0.01, 0.1], [0.1, 0.2], and [0.1, 0.5]. Processing times were generated between
10 and 100. There were three levels of machine dedications, namely high, medium (i.e., mid), and low,
and, in each level, jobs could be processed on a machine with the probability of 50%, 50–90%, and
90%, respectively. The scenarios had 5, 10, and 20 machines, each of which had 40, 60, and 80 jobs,
respectively. The four algorithms, Algorithm 1 with LFJ (A1 (LFJ)), Algorithm 1 with LPT (A1 (LPT)),
Algorithm 2 with LFJ (A2 (LFJ)), and Algorithm 2 with LPT (A2 (LPT)), were compared with lower
bounds from Corollary 1. Average gaps were computed as follows:

makespan from the proposed algorithm− lower bound
lower bound

× 100(%). (23)

For each problem with a certain range of setup times, a dedication level, and the specific number of
resources, 100 instances were generated, and the average gaps are shown. Note that the mathematical
formulation model can only solve small instances with two machines and four jobs to optimality within
1 h. We do not think it is meaningful to compare with such very small-sized instances, and furthermore
for such cases gaps between makespans from our algorithm and lower bounds are extremely small.

Figures 5–7 show the experimental results with m of 10 and n of 40, 60, and 80, respectively.
Each figure has nine graphs for the different setup time ranges and dedication levels. The graphs in
those figures are labeled with (a), (b), (c) and H, M, and L according to setup ranges α ∈ [0.01, 0.1],
∈ [0.1, 0.2], and ∈ [0.1, 0.5], and the dedication levels, respectively. For example, Figure 5a-H indicates
the result with α ∈ [0.01, 0.1] and the high dedication level. The number of servers, r, was set to be
less than m

2 to reflect the resource constraints in the schedule. Each graph shows the average gaps
of the four algorithms with r of 3, 5, 7, and 9. In Figure 5, the average gaps tend to increase as the
setup time range is larger and the dedication level becomes high. In addition, as r becomes large, the
gaps become smaller. A1 (LFJ) performs better than A1 (LPT) in Figure 5a-H,b-H whereas the average
gaps of A1 (LPT) are smaller in other cases because LFJ rule works well with the high dedication level.
In the case of Figure 5c-H, A1 (LPT) is slightly better than A1 (LFJ) because the machine loads may be
well-balanced with LPT rule under the large setup times. When the machine dedication level is mid or
low, A1 (LPT) is always better than A1 (LFJ). The average gap of A1 (LPT) is decreased significantly in
Figure 5c-M compared to Figure 5c-H. The difference between A1 (LFJ) and A1 (LPT) becomes large
under mid and low dedication levels as the setup time ranges increase whereas the difference is small
with the high dedication. A2 (LFJ) and A2 (LPT) have patterns similar to A1 (LFJ) and A1 (LPT) in
Figure 5. It is interesting to note that the average gaps of A1 (LFJ) and A2 (LFJ) in Figure 5c-M,c-L
are slightly larger than those in Figure 5c-H, respectively, when r is small, whereas the average gaps
are mostly large when the dedication level is high. This may indicate that when setup times are large
and resource constraints are tight, LFJ rule provides good solutions with the high dedication level.
This feature can also be found in Figures 6 and 7. A2 (LPT) provides the smallest gaps among the
four algorithms for all cases except Figure 5a-H. A2 (LPT) has the largest average gap of 3.88% in
Figure 5c-H, and the smallest average gap of 0.48% in Figure 5a-L.

The nine graphs in Figure 6 have the features similar to those in Figure 5, but the average gaps
are smaller as n increases. The large gaps are obtained when α ∈ [0.1, 0.5] and r is small. A1 (LFJ)
performs better than A1 (LPT) in Figure 6a-H but it is outperformed in all the other cases. A1 (LFJ) and
A2 (LFJ) work poorly especially with large setup times and small resources compared to A1 (LPT) and
A2 (LPT). A2 (LPT) performs well in most cases, and its largest and smallest average gaps are 2.57%
and 0.29% in Figure 6c-H,b-L, respectively. Figure 7 shows the results with n of 80. We can see that A1
(LPT) performs better than A1 (LFJ) in Figure 7a-H unlike the previous results. The average gaps of
the four algorithms are smaller than those in Figure 6 except for A1 (LFJ) with large setup times and
small resources. This may indicate less tight lower bounds or poor performance of LFJ rule with large
n. A2 (LPT) provides the largest and smallest average gaps that are 1.88% and 0.21% in Figure 7c-H
and in Figure 7b-L, respectively. It is good to use A2 (LFJ) with small n, high machine dedication, and
small setup times. Otherwise, A2 (LPT) is better.
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Figure 5. Experimental results with m of 10 and n of 40; in each graph, the x-axis indicates the number
of setup resources, r, and the y-axis denotes gaps as defined in Equation (23).
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Figure 6. Experimental results with m of 10 and n of 60; in each graph, the x-axis indicates the number
of setup resources, r, and the y-axis denotes gaps as defined in Equation (23).

Table 2 summarizes all of the results in Figures 5–7 according to the different dedication levels,
setup ranges, resources, and the number of jobs. Table 2 also shows the results with different machine
speed ranges, 0.5–1.5. We can see that the average gaps tend to become smaller as the dedication level
becomes lower, setup time ranges are smaller, the number of resources is larger, and the number of jobs
becomes large. The average gaps of the four algorithms are 3.12%, 1.99%, 2.58%, and 1.33%, and hence
we can obtain solutions close to optimal ones with A2 (LPT), respectively. The performances of A1
(LFJ) and A1 (LPT) are improved as much as 17% and 33% by using Algorithm 2, respectively. When
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the variation of machine speeds is larger, the average gaps also increase. Even if the machine speed is
selected between 0.5 and 1.5, the average gaps are less than 5%. We note that the computation times of
A1 (LFJ) and A1 (LPT) are less than 1 s, and it takes at most 61 s for A2 (LFJ) and A2 (LPT) with n of 80.
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Figure 7. Experimental results with m of 10 and n of 80; in each graph, the x-axis indicates the number
of setup resources, r, and the y-axis denotes gaps as defined in Equation (23).

The detailed experimental results for m of 5 and 20 with n of 40, 60, and 80 are given in Appendix A.
Tables 3 and 4 show the summary of the results with m of 5 and 20, respectively, with the speed between
0.8 and 1.2. We can see the features similar to the results in Table 2. When m is 5, A1 (LFJ) and A2 (LFJ)
have the largest average gaps when the number of resources is small, whereas A1 (LPT) and A2 (LPT)
perform poorly when the dedication level is high. On the other hand, A1 (LFJ) and A2 (LFJ) provide
the largest average gaps when the number of jobs is small as m increases. When m is 20, the average
gaps of A1 (LPT) and A2 (LPT) are also large with n of 40 compared to other scenarios. By comparing
the results in Tables 2–4, we can see that the average gaps tend to increase as m increases. The average
gaps of the four algorithms with m of 5 and 20 are 1.33%, 1.70%, 1.06%, and 0.92%, and 4.71%, 3.21%,
4.07%, and 2.43%, respectively. The gaps are not large by considering the fact that they are computed
with lower bounds not the optimal ones. The performance of Algorithm 1 is improved significantly by
applying Algorithm 2. We can conclude that practical problems can be solved efficiently especially
with A2 (LPT). The computation time for the scenarios with m of 20 and n of 60 is 89.43 s on average,
and the maximum computation time is 100.17 s.

We further evaluated the four algorithms with extreme cases in which the number of resources
is about 20% of the number of machines. In practice, r was set to be larger than 50% of m to increase
the efficiency of the system. For each of setup time ranges, dedication levels, and the number of jobs,
100 instances were generated. Table 5 shows the average gaps of the four algorithms with m of 5, 10,
and 20. The large gaps are mostly obtained when α ∈ [0.1, 0.5] and the dedication level is high. When
m is 5, the gaps tend to decrease as n increases, whereas the gaps are large with the large number of
jobs when m is 10, especially with A1 (LFJ) and A2 (LFJ). When m is 20, the instances with n of 60
provide the smallest gaps. We can see that, even in the extreme cases, A2 (LPT) provides the maximum
average gaps of 7.13% when m and n are 5 and 40, respectively.

We finally tested our algorithms with a practical instance from an FFU factory in Korea. There
were seven parallel machines in which three machines had the speed of 1.2 and the rest had the speed
of 1. The setup times were not large, α ∈ [0.1, 0.2]. The number of jobs was 20, 30, and 40, each of which
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had processing times of 1–30, 1–20, or 1–10, respectively, to have a one-week production schedule.
The number of setup operators was 2, and the dedication level was mid. Table 6 shows the results with
m of 7 and n of 20, 30, and 40. We can see that the average gaps are less than 4% with the A2 (LPT).
As shown in the table, A2 (LPT) provides very efficient solutions in this case.

Table 2. Summary of computational results with m of 10.

Instances A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

Machine Speed 0.8–1.2 0.5–1.5 0.8–1.2 0.5–1.5 0.8–1.2 0.5–1.5 0.8–1.2 0.5–1.5

Dedication High 3.48 4.28 3.05 4.55 2.79 3.45 1.80 2.84

level Mid 3.28 3.86 1.52 2.30 2.80 3.29 1.17 1.90
Low 2.58 3.24 1.25 2.00 2.16 2.71 1.02 1.74

Setup range
α ∈ [0.01, 0.1] 1.17 1.52 1.12 1.74 0.87 1.15 0.57 0.99
α ∈ [0.1, 0.2] 2.87 3.63 1.74 2.77 2.35 3.03 1.21 2.08
α ∈ [0.1, 0.5] 5.31 6.23 2.96 4.34 4.53 5.28 2.21 3.42

Resources

3 4.59 4.96 2.82 3.48 3.86 4.13 1.98 2.63
5 2.77 3.48 1.70 2.87 2.28 2.88 1.17 2.05
7 2.56 3.40 1.60 2.70 2.10 2.81 1.09 1.99
9 2.54 3.33 1.64 2.75 2.10 2.77 1.08 1.97

No. of jobs
40 3.87 4.70 2.85 4.23 3.23 3.87 1.88 2.93
60 2.94 3.58 1.71 2.56 2.42 2.97 1.20 1.94
80 2.53 3.10 1.27 2.06 2.10 2.61 0.92 1.62

Table 3. Summary of computational results with m of 5.

Instances A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

Dedication High 1.73 3.17 1.36 1.45

level Mid 1.40 1.20 1.12 0.73
Low 0.85 0.71 0.70 0.59

Setup range
α ∈ [0.01, 0.1] 0.46 1.30 0.34 0.50
α ∈ [0.1, 0.2] 1.18 1.54 0.95 0.83
α ∈ [0.1, 0.5] 2.33 2.25 1.90 1.45

Resources

2 2.27 2.25 1.79 1.41
3 1.17 1.60 0.94 0.82
4 0.95 1.49 0.78 0.75
5 0.91 1.44 0.74 0.71

No. of jobs
40 1.69 2.55 1.37 1.38
60 1.24 1.45 0.98 0.78
80 1.05 1.09 0.83 0.61

Table 4. Summary of computational results with m of 20.

Instances A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

Dedication High 5.14 3.85 4.29 2.76

level Mid 4.61 2.98 4.03 2.32
Low 4.38 2.79 3.89 2.21

Setup range
α ∈ [0.01, 0.1] 2.05 1.55 1.61 1.02
α ∈ [0.1, 0.2] 4.79 2.95 4.11 2.29
α ∈ [0.1, 0.5] 7.30 5.13 6.49 3.98

Resources

7 4.86 3.38 4.20 2.54
10 4.69 3.17 4.03 2.41
13 4.65 3.16 4.02 2.38
16 4.66 3.14 4.02 2.39

No. of jobs
40 5.94 5.32 5.11 4.01
60 4.47 2.65 3.89 1.98
80 3.72 1.66 3.21 1.30
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Table 5. Computation results of extreme cases.

Instances n A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

m = 5, r = 1
40 9.96 8.75 8.67 7.13
60 9.66 7.86 8.45 6.77
80 9.02 7.23 7.81 6.29

m = 10, r = 2
40 8.49 6.34 7.38 4.54
60 9.46 5.84 8.35 4.64
80 10.20 5.86 9.08 4.89

m = 20, r = 4
40 7.16 6.01 6.20 4.44
60 6.83 4.34 6.01 3.17
80 7.47 4.48 6.60 3.25

Table 6. Performance of the algorithm with a real application.

Instances n A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

m = 7, r = 2, α ∈ [0.1, 0.2]
20 6.40 5.35 6.02 3.68
30 5.01 4.24 3.91 2.61
40 4.84 3.98 3.27 2.41

6. Conclusions

We investigate a parallel machine scheduling problem for makespan minimization with various
scheduling requirements such as different processing speeds of machines, dedicated machines, job
splitting, and limited setup operators. We first present a mathematical model, which clearly describes
our problem and can be used to obtain optimal solutions for small-sized problems. Since the problem
considered is NP-hard, we develop an efficient heuristic algorithm for practical problems, which first
obtains a feasible solution and then improves the solution in a constructive way. The performance
of the algorithm was tested with various scenarios and a real problem from industry. Finally, we can
conclude that the algorithm proposed is very efficient and provides highly acceptable solutions for
most practical cases.

In future research, analytical results of the heuristic algorithm such as wort-case performance
bounds need to be derived. In another direction, the problem can be extended to cover other scheduling
requirements; for example, sequence-dependent setup times.
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Appendix A

Table A1. Computation results of m of 5 and n of 40.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 2

α ∈ [0.01, 0.1]
High 1.11 4.68 0.78 1.77
Mid 0.75 1.11 0.56 0.43
Low 0.37 0.40 0.28 0.28

α ∈ [0.1, 0.2]
High 2.60 4.39 1.92 2.10
Mid 2.37 2.19 1.91 1.36
Low 1.45 1.16 1.18 1.00

α ∈ [0.1, 0.5]
High 5.35 6.77 4.20 4.32
Mid 5.28 3.66 4.40 2.77
Low 3.70 3.04 3.18 2.54
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Table A1. Cont.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 3

α ∈ [0.01, 0.1]
High 0.98 5.59 0.69 1.96
Mid 0.72 1.21 0.55 0.44
Low 0.30 0.35 0.23 0.23

α ∈ [0.1, 0.2]
High 1.87 5.20 1.57 2.22
Mid 1.71 1.40 1.43 0.80
Low 0.72 0.71 0.63 0.59

α ∈ [0.1, 0.5]
High 2.97 5.10 2.49 2.74
Mid 2.82 2.27 2.38 1.49
Low 1.57 1.22 1.30 1.07

r = 4

α ∈ [0.01, 0.1]
High 0.94 4.39 0.68 1.79
Mid 0.70 1.36 0.54 0.50
Low 0.32 0.36 0.24 0.23

α ∈ [0.1, 0.2]
High 2.14 4.55 1.62 2.28
Mid 1.39 1.52 1.22 0.83
Low 0.67 0.58 0.57 0.51

α ∈ [0.1, 0.5]
High 2.74 5.49 2.27 2.92
Mid 2.46 1.54 2.07 1.09
Low 1.07 0.92 0.90 0.76

r = 5

α ∈ [0.01, 0.1]
High 1.01 4.11 0.68 1.56
Mid 0.69 1.23 0.53 0.45
Low 0.31 0.37 0.25 0.23

α ∈ [0.1, 0.2]
High 1.79 4.71 1.44 2.23
Mid 1.51 1.31 1.24 0.77
Low 0.63 0.63 0.55 0.53

α ∈ [0.1, 0.5]
High 2.60 5.51 2.26 2.88
Mid 2.28 1.71 1.86 1.12
Low 0.92 0.97 0.78 0.82

Table A2. Computation results of m of 5 and n of 60.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 2

α ∈ [0.01, 0.1]
High 0.58 2.16 0.43 0.71
Mid 0.45 0.73 0.31 0.28
Low 0.27 0.30 0.19 0.20

α ∈ [0.1, 0.2]
High 1.91 2.83 1.41 1.36
Mid 1.87 1.30 1.43 0.88
Low 1.35 0.96 1.10 0.82

α ∈ [0.1, 0.5]
High 4.87 4.54 3.74 2.77
Mid 4.71 3.03 3.79 2.28
Low 3.64 2.50 2.98 2.15

r = 3

α ∈ [0.01, 0.1]
High 0.65 1.82 0.46 0.68
Mid 0.42 0.70 0.29 0.28
Low 0.19 0.23 0.14 0.16

α ∈ [0.1, 0.2]
High 1.47 2.05 1.14 0.84
Mid 0.98 0.88 0.78 0.50
Low 0.51 0.49 0.43 0.43

α ∈ [0.1, 0.5]
High 2.49 2.80 2.01 1.43
Mid 2.04 1.38 1.61 0.99
Low 1.24 0.90 0.98 0.78
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Table A2. Cont.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 4

α ∈ [0.01, 0.1]
High 0.56 2.55 0.43 0.88
Mid 0.36 0.66 0.26 0.27
Low 0.19 0.22 0.15 0.15

α ∈ [0.1, 0.2]
High 1.21 2.36 1.00 0.95
Mid 0.81 0.83 0.66 0.48
Low 0.41 0.44 0.37 0.37

α ∈ [0.1, 0.5]
High 2.04 2.83 1.73 1.16
Mid 1.26 0.99 1.02 0.65
Low 0.67 0.63 0.58 0.52

r = 5

α ∈ [0.01, 0.1]
High 0.65 2.17 0.45 0.79
Mid 0.40 0.58 0.26 0.23
Low 0.19 0.23 0.15 0.16

α ∈ [0.1, 0.2]
High 1.24 2.52 0.98 0.88
Mid 0.81 0.77 0.66 0.45
Low 0.40 0.41 0.36 0.35

α ∈ [0.1, 0.5]
High 1.95 2.89 1.69 1.27
Mid 1.18 0.91 0.94 0.64
Low 0.61 0.60 0.51 0.51

Table A3. Computation results of m of 5 and n of 80.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 2

α ∈ [0.01, 0.1]
High 0.50 1.64 0.40 0.59
Mid 0.32 0.48 0.22 0.22
Low 0.22 0.20 0.15 0.14

α ∈ [0.1, 0.2]
High 1.89 2.02 1.43 0.98
Mid 1.69 1.08 1.26 0.79
Low 1.24 0.83 0.98 0.73

α ∈ [0.1, 0.5]
High 4.74 3.44 3.59 2.33
Mid 4.45 2.74 3.52 2.15
Low 3.61 2.62 2.94 2.17

r = 3

α ∈ [0.01, 0.1]
High 0.45 1.84 0.35 0.56
Mid 0.26 0.42 0.19 0.17
Low 0.15 0.17 0.11 0.12

α ∈ [0.1, 0.2]
High 1.08 1.63 0.88 0.64
Mid 0.66 0.66 0.53 0.40
Low 0.49 0.39 0.40 0.34

α ∈ [0.1, 0.5]
High 2.12 1.95 1.63 0.97
Mid 1.62 1.03 1.25 0.74
Low 1.10 0.76 0.86 0.66

r = 4

α ∈ [0.01, 0.1]
High 0.46 1.77 0.35 0.46
Mid 0.25 0.49 0.18 0.18
Low 0.14 0.18 0.11 0.12

α ∈ [0.1, 0.2]
High 0.94 1.40 0.78 0.54
Mid 0.52 0.56 0.42 0.32
Low 0.32 0.32 0.28 0.28

α ∈ [0.1, 0.5]
High 1.52 2.08 1.27 0.95
Mid 1.07 0.76 0.82 0.52
Low 0.57 0.53 0.49 0.45
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Table A3. Cont.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 5

α ∈ [0.01, 0.1]
High 0.44 1.44 0.34 0.41
Mid 0.26 0.43 0.18 0.18
Low 0.14 0.17 0.11 0.11

α ∈ [0.1, 0.2]
High 0.98 1.39 0.80 0.54
Mid 0.51 0.54 0.42 0.34
Low 0.30 0.32 0.27 0.28

α ∈ [0.1, 0.5]
High 1.45 1.62 1.24 0.68
Mid 0.83 0.76 0.63 0.46
Low 0.48 0.48 0.42 0.42

Table A4. Computation results of m of 20 and n of 40.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 7

α ∈ [0.01, 0.1]
High 3.31 3.26 2.31 2.03
Mid 2.63 2.29 2.06 1.62
Low 2.30 2.12 1.92 1.55

α ∈ [0.1, 0.2]
High 6.93 6.32 5.75 4.40
Mid 6.07 4.84 5.21 3.79
Low 5.52 4.73 4.89 3.70

α ∈ [0.1, 0.5]
High 10.16 9.49 8.69 7.07
Mid 9.13 8.10 8.26 6.26
Low 8.35 7.69 7.67 6.15

r = 10

α ∈ [0.01, 0.1]
High 3.07 3.15 2.19 1.95
Mid 2.59 2.40 1.96 1.64
Low 2.45 2.08 1.92 1.53

α ∈ [0.1, 0.2]
High 6.73 6.63 5.50 4.54
Mid 5.87 4.67 5.00 3.61
Low 5.38 4.45 4.80 3.59

α ∈ [0.1, 0.5]
High 10.28 9.64 8.60 7.27
Mid 8.86 7.77 8.03 6.25
Low 8.36 7.03 7.69 5.94

r = 13

α ∈ [0.01, 0.1]
High 3.20 4.07 2.19 2.00
Mid 2.50 2.24 1.95 1.58
Low 2.35 2.28 1.89 1.52

α ∈ [0.1, 0.2]
High 6.57 5.91 5.50 4.29
Mid 5.98 4.60 5.07 3.54
Low 5.37 4.35 4.84 3.45

α ∈ [0.1, 0.5]
High 9.85 9.27 8.53 6.96
Mid 8.91 7.68 8.09 6.16
Low 8.19 7.08 7.59 6.08

r = 16

α ∈ [0.01, 0.1]
High 3.15 3.63 2.26 1.99
Mid 2.41 2.29 1.96 1.57
Low 2.34 2.18 1.87 1.47

α ∈ [0.1, 0.2]
High 6.71 5.89 5.61 4.51
Mid 5.82 4.80 5.13 3.71
Low 5.52 4.58 4.89 3.48

α ∈ [0.1, 0.5]
High 9.94 9.22 8.46 7.14
Mid 9.05 7.54 8.04 6.22
Low 8.17 7.10 7.56 5.93
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Table A5. Computation results of m of 20 and n of 60.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 7

α ∈ [0.01, 0.1]
High 2.11 1.56 1.65 1.02
Mid 1.79 1.11 1.50 0.76
Low 1.75 0.95 1.46 0.69

α ∈ [0.1, 0.2]
High 5.01 3.08 4.22 2.23
Mid 4.47 2.09 3.91 1.69
Low 4.29 2.02 3.76 1.64

α ∈ [0.1, 0.5]
High 7.77 5.62 6.76 4.14
Mid 7.14 4.72 6.41 3.55
Low 6.95 4.52 6.31 3.27

r = 10

α ∈ [0.01, 0.1]
High 2.10 1.67 1.64 1.01
Mid 1.84 1.11 1.54 0.77
Low 1.75 0.96 1.47 0.73

α ∈ [0.1, 0.2]
High 4.90 2.73 4.16 2.06
Mid 4.42 2.04 3.85 1.70
Low 4.25 1.86 3.70 1.54

α ∈ [0.1, 0.5]
High 7.34 4.94 6.33 3.57
Mid 6.83 4.12 6.09 3.05
Low 6.53 3.87 5.96 2.97

r = 13

α ∈ [0.01, 0.1]
High 2.00 1.58 1.60 1.01
Mid 1.82 1.03 1.49 0.74
Low 1.78 0.97 1.45 0.71

α ∈ [0.1, 0.2]
High 5.06 2.71 4.26 2.08
Mid 4.64 2.07 3.95 1.69
Low 4.27 1.96 3.71 1.59

α ∈ [0.1, 0.5]
High 7.36 4.98 6.39 3.67
Mid 6.77 4.01 6.13 3.13
Low 6.27 4.08 5.73 2.91

r = 16

α ∈ [0.01, 0.1]
High 2.06 1.74 1.63 1.01
Mid 1.82 1.03 1.50 0.74
Low 1.70 0.97 1.44 0.71

α ∈ [0.1, 0.2]
High 5.05 2.69 4.16 2.06
Mid 4.58 2.12 3.95 1.71
Low 4.24 1.87 3.74 1.58

α ∈ [0.1, 0.5]
High 7.11 4.84 6.26 3.60
Mid 6.77 4.07 6.01 3.14
Low 6.47 3.77 5.81 2.92

Table A6. Computation results of m of 20 and n of 80.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 7

α ∈ [0.01, 0.1]
High 1.69 0.95 1.34 0.63
Mid 1.54 0.68 1.25 0.50
Low 1.51 0.62 1.22 0.47

α ∈ [0.1, 0.2]
High 4.09 1.79 3.34 1.41
Mid 3.61 1.42 3.18 1.18
Low 3.75 1.29 3.19 1.12

α ∈ [0.1, 0.5]
High 6.41 3.64 5.53 2.76
Mid 6.19 3.25 5.52 2.57
Low 6.76 2.99 6.13 2.42
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Table A6. Cont.

Resource Setup Dedication A1 (LFJ) (%) A1 (LPT) (%) A2 (LFJ) (%) A2 (LPT) (%)

r = 10

α ∈ [0.01, 0.1]
High 1.72 0.99 1.30 0.64
Mid 1.55 0.67 1.25 0.50
Low 1.50 0.60 1.22 0.46

α ∈ [0.1, 0.2]
High 4.01 1.78 3.36 1.39
Mid 3.66 1.29 3.13 1.12
Low 3.44 1.21 3.01 1.06

α ∈ [0.1, 0.5]
High 6.19 3.18 5.23 2.34
Mid 5.47 2.46 4.98 1.97
Low 5.52 2.31 5.03 1.85

r = 13

α ∈ [0.01, 0.1]
High 1.73 1.01 1.35 0.65
Mid 1.49 0.66 1.19 0.50
Low 1.46 0.62 1.21 0.47

α ∈ [0.1, 0.2]
High 3.97 1.73 3.34 1.38
Mid 3.70 1.27 3.19 1.09
Low 3.48 1.19 3.03 1.02

α ∈ [0.1, 0.5]
High 5.90 3.12 5.06 2.29
Mid 5.51 2.49 4.95 1.98
Low 5.38 2.25 4.89 1.76

r = 16

α ∈ [0.01, 0.1]
High 1.66 1.05 1.34 0.64
Mid 1.50 0.68 1.24 0.51
Low 1.49 0.62 1.21 0.47

α ∈ [0.1, 0.2]
High 4.05 1.72 3.38 1.36
Mid 3.63 1.33 3.16 1.13
Low 3.53 1.16 3.07 1.02

α ∈ [0.1, 0.5]
High 5.88 3.03 5.11 2.30
Mid 5.58 2.50 4.88 1.92
Low 5.47 2.30 4.94 1.80
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