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Abstract: Technological changes in water use efficiency directly influence regional sustainable
development. However, few studies have attempted to predict changes in water use efficiency
because of the complex influencing factors and regional diversity. The Chinese Government has
established a target of 0.6 for the effective utilization coefficient of irrigation water, but it is not
clear how the coefficient will change in different provinces in the future. The purpose of this study
is to predict irrigation water use efficiency changes using a conditional convergence model and
combined with the shared socioeconomic pathways (SSPs) scenario settings and hydro-economic
(HE) classification to group 31 Chinese provinces by their different economic and water resources
conditions. The results show that the coefficient exponentially converges to 0.6 in half the provinces
under SSP1 (sustainability), SSP2 (middle of the road), and SSP5 (conventional development) by 2030,
whereas SSP3 (fragmentation) and SSP4 (inequality) are generally inefficient development pathways.
HE-3 provinces (strong economic capacity, substantial hydrological challenges) achieve the greatest
efficiency improvements (with all coefficients above 0.6), and SSP1 is a suitable pathway for these
provinces. HE-2 provinces (strong economic capacities, low hydrological challenges) have relatively
low efficiency because they lack incentives to save water, and SSP1 is also suitable for these provinces.
For most HE-1 provinces (low economic capacity, low hydrological challenges), the coefficients
are less than 0.6, and efforts are required to enhance their economic capacity under SSP1 or SSP5.
HE-4 provinces (low economic capacity, substantial hydrological challenges) would improve efficiency
in a cost-efficient manner under SSP2.

Keywords: technological change prediction; shared socioeconomic pathways (SSPs); hydro-economic
classification (HE); conditional convergence model; irrigation water use efficiency; Chinese provinces

1. Introduction

When considering the issue of the sustainability of economic growth, the constraints of natural
resources and climate change are always present, and the interaction between climate change and
economic growth is of increasing concern [1,2]. Technological change, including changes in the
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utilization efficiency of natural resources, is a possible way to solve the current dilemma of sustainable
development [3,4], because it has a direct impact on the total scale of natural resource utilization, and
thus directly influences whether the regional social economy is in a sustainable development state [5,6].
Technological change in agriculture irrigation water use efficiency is of fundamental significance for
solving water scarcity and increasing crop productivity, and achieving highly efficient irrigation is
crucial to balancing water resources input and sustainable agricultural economic growth [7–9].

The theory of technological change generally distinguishes two types of technological change:
technological catch-up and technological diffusion. Technological catch-up concerns the knowledge
production function and occurs through the mechanism of learning by doing. It requires continuous
additional capital inputs and manufacturers, and the labor force must constantly learn and master new
skills in the production process, which brings about extensive progress in social productivity [3,10–12].
Technological diffusion is brought about by technological transmission and is mainly realized through
open trade, technology transfer, information flows, and spatial spillover effects [13–16]. It is generally
believed that technological change will gradually converge to an optimal efficiency level at a certain
stage of development. At the same time, the speed of improvement of an advanced region is slower
than that of a backward region, which is relevant to the distribution of a conditional convergence
model. In this study, the conditional convergence model refers to an exponential model that reflects the
long-term changes in technological efficiency of economies with similar structural characteristics [17–20].

The coefficient of the effective utilization of irrigation water is a comprehensive technological
efficiency indicator that reflects the quality of irrigation projects, the level of irrigation technology,
and the level of water management, which generally refers to the ratio of the amount of water that
can be absorbed and utilized by crops in the field and the total amount of water introduced by the
canal head from the perspective of irrigation scientists [21–24]. The coefficient summarizes the basic
data used for evaluating the efficiency and potential of agricultural irrigation, ensuring the scientific
allocation of regional resources and undertaking development planning for water-saving irrigation.
In addition, it provides an important basis for government departments to make macro decisions [25].
The influencing factors in water use efficiency involve many disciplines, such as climatology, hydrology,
agronomy, engineering, economy, management, and institutions. The following three factors broadly
summarize the key influences. (1) Natural conditions: it is recognized that complex and variable
natural conditions (including climatic conditions, soil conditions, hydrological conditions, and the
evolution of the irrigation area) can have a direct impact on regional water resources, and thus
affect the water use efficiency of agricultural irrigation [26–29]. A typical example is that of southern
China, with its humid climate and abundant rainfall, as well as lack of incentives and motivation
to implement water-saving irrigation [30]. (2) The construction and management of the irrigation
area: modernization of the construction and management of the irrigation area (which encompasses
engineering construction, management systems and mechanisms, and the application of advanced
irrigation technology) is an important component in improving irrigation water use efficiency, extreme
natural disaster governance, and regional ecological sustainable development, thus providing strong
support for the development of modern water-saving agriculture [25,31–35]. (3) Economic policy:
an increasing number of studies have found that economic policy (including subsidy policies, water
price policies, and water use restrictions) can affect the preferences and behaviors of peasant households,
and provide them with incentives to use water-saving irrigation technology and to change their crop
planting structure, which leads to changes in the water use efficiency of agricultural irrigation [36–38].
In addition, some scholars have found that other factors such as geographic spatial distribution [30,39],
irrigation strategies and planting patterns [40–42], and crop types [9,43] have an impact on the water
use efficiency of agricultural irrigation.

The diversity and complexity of influencing factors make it difficult to predict irrigation water use
efficiency and, to our best knowledge, there are few predictive studies on irrigation water use efficiency.
Most studies take a biological perspective and measure the water use efficiency of specific crops under
different irrigation conditions [44–46] or predict the irrigation water demand for a period of time in
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the future through complex multidisciplinary models [47–50]. Moreover, because the technological
change of water resources utilization efficiency is often determined by exogenous forces, there is no
mechanism to support the predictive theoretical derivation.

The shared socioeconomic pathways (SSPs) recently proposed by the Intergovernmental Panel on
Climate Change can assist in analyzing the change and future evolution of the effective utilization
coefficient of irrigation water, a key indicator of water resources technological change, from the broader
perspective of climate change and the selection of socioeconomic development pathways. Thus, it can
provide a new basis for the prediction of irrigation water efficiency [51]. The SSPs quantitatively
describe five typical development pathways of the future social economy and distinguish coping
capacity and adaptive capacity for different emission concentrations and climate change scenarios
caused by the different development pathways. Thus, they can assist in predicting the change in the
effective utilization coefficient of irrigation water in the future from the perspective of different social
and economic development pathways [52–54]. At present, studies considering the impact of economic
policy and development patterns on technological change under the influence of climate change are
relatively rare, and the setting of future scenarios is subjective. There is no systematic and comparable
unified standard for setting scenarios. Moreover, in terms of model settings, the classification of
the simulated objects involved is oversimplified. For example, often, the simulated objects are only
grouped by income level, without establishing a multi-dimensional index system to evaluate and
group the simulated objects [55–57].

The Water Futures and Solutions (WFaS) extended the original SSPs framework and proposed the
hydro-economic (HE) classification method, which can be combined with the scenario settings of the
SSPs to group regions by their different economic and water resources conditions [58]. The extended
SSPs–HE framework inputs more important features into the model, and assists in accurately setting
optimal efficiency target values, convergence speeds, convergence time, and other parameters
for the different regions. It also assists in simulating the curves demonstrating the technological
change in water resources utilization in different regions under various scenarios, and thus lays
a solid scientific foundation for predicting water resources utilization. Compared with the previous
studies, which focused excessively on small-scale water-saving effects and the field of engineering,
the extended SSPs–HE framework combines a broad perspective on the entire hydrographic basin with
comprehensive management of water resources to evaluate different social and economic pathways
selections from the angle of water use efficiency. It assists in choosing a suitable way to realize the
Chinese Government’s requirements for a strict water resource management system. It can also be
used to analyze the influence of different socioeconomic development pathways on water use efficiency
and to determine suggestions for socioeconomic improvement [47,58–60].

The scale of agricultural production in China is large and agricultural water accounts for 61.4% of
total water use [61]. The study of irrigation water efficiency is of profound significance for solving
the complex water resources problem in rural areas and realizing sustainable economic and social
development. Since the implementation of the strict water resources management system was clearly
proposed in the No. 1 document of the Communist Party of China (CPC) Central Committee in 2011,
China has attached great importance to water use efficiency for agricultural irrigation, and it has
been elevated to the macro and strategic level of national economic development. In the specific
implementation opinions subsequently issued by the CPC, three red bottom lines on water resources
management were clearly established, one of which requires China’s effective utilization coefficient
of irrigation water to be raised to more than 0.6 by 2030 [62]. In 2015 and 2016, the national average
coefficients were 0.536 and 0.542, respectively [63,64]. To put this in context, in Israel, which has
advanced water-saving irrigation technology, the effective utilization coefficient of irrigation water is
above 0.9 [65].

The objective of this study is to group 31 Chinese provinces according to their different economic
and water resources conditions by HE classifications. The water use scenario and parameters can be
determined combined with the SSPs scenario settings and HE classification characteristics. The equation
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of technological diffusion mechanism, the conditional convergence model, is the core tool to predict
irrigation water use efficiency. The principle is to set the optimal efficiency target value, the convergence
speed, convergence time, and other parameters, in order to simulate the curve for the effective utilization
coefficient of irrigation water. The parallel aim is to understand the technological level of the water
resources utilization of each province under different scenarios for specific years in the future, and find
the improvement pathways for irrigation water use efficiency for specific regions.

This study attempts to solve three key scientific problems: (1) establishing an HE classification
method for the evaluation of each province, (2) combining the HE classification results with the SSPs
framework to set parameters for the future scenarios, and (3) establishing a conditional convergence
model and using the parameters in the model for simulations.

2. Material and Methods

2.1. Study Area

At the end of 2016, China’s agricultural irrigation area reached 67.13 million ha and the area of the
national water-saving irrigation project reached 32.87 million ha, 9.5 of which was the low-pressure
pipeline water delivery irrigation area. It accounted for 29% of the water-saving irrigation project area.
The sprinkler irrigation area was 4.1 million ha, accounting for 12% of the water-saving irrigation
project area. The micro irrigation area was 5.9 million ha, accounting for 18% of the water-saving
irrigation project area. The highly efficient water-saving irrigation area with pipeline accounted for
59% of the water-saving irrigation area [64]. Table 1 summarizes the basic situation of agricultural
irrigation in different administrative regions in 2016 [64,66].

Table 1. Basic situation of agricultural irrigation of different administrative regions in 2016.

Administrative
Region

Annual
Average

Precipitation
(mm)

Total Water
Resources

(100 million m3)

Total Agricultural
Irrigation Water

Consumption (TAIWC;
100 million m3)

Irrigation Water
Consumption per ha

(IWCPH; m3)

Effective Utilization
Coefficients of

Irrigation Water
(EUCIW; Scalar)

China 730.0 32466.4 TAIWC = 3318.9 IWCPH = 5700 EUCIW = 0.542
Beijing 660.0 35.1 TAIWC < 100 IWCPH < 4500 EUCIW > 0.60
Tianjin 622.1 18.9 TAIWC < 100 IWCPH < 4500 EUCIW > 0.60
Hebei 595.9 208.3 100 < TAIWC < 200 IWCPH < 4500 EUCIW > 0.60
Shanxi 615.4 134.1 TAIWC < 100 IWCPH < 4500 0.60 > EUCIW > 0.50

Inner Mongolia 283.0 426.5 100 < TAIWC < 200 4500 < IWCPH < 7500 0.60 > EUCIW > 0.50
Liaoning 755.4 331.6 TAIWC < 100 4500 < IWCPH < 7500 0.60 > EUCIW > 0.50

Jilin 731.1 488.8 TAIWC < 100 4500 < IWCPH < 7500 0.60 > EUCIW > 0.50
Heilongjiang 564.2 843.7 TAIWC > 200 4500 < IWCPH < 7500 0.60 > EUCIW > 0.50

Shanghai 1566.3 61.0 TAIWC < 100 4500 < IWCPH < 7500 EUCIW > 0.60
Jiangsu 1410.5 741.7 TAIWC > 200 4500 < IWCPH < 7500 EUCIW > 0.60

Zhejiang 1953.8 1323.3 TAIWC < 100 4500 < IWCPH < 7500 0.60 > EUCIW > 0.50
Anhui 1612.7 1245.2 100 < TAIWC < 200 IWCPH < 4500 0.60 > EUCIW > 0.50
Fujian 2503.3 2109.0 TAIWC < 100 7500 < IWCPH < 12000 0.60 > EUCIW > 0.50
Jiangxi 1996.7 2221.1 100 < TAIWC < 200 7500 < IWCPH < 12000 0.50 > EUCIW > 0.40

Shandong 658.3 220.3 100 < TAIWC < 200 IWCPH < 4500 EUCIW > 0.60
Henan 787.1 337.3 100 < TAIWC < 200 IWCPH < 4500 EUCIW > 0.60
Hubei 1423.4 1498.0 100 < TAIWC < 200 4500 < IWCPH < 7500 0.60 > EUCIW > 0.50
Hunan 1668.9 2196.6 100 < TAIWC < 200 7500 < IWCPH < 12000 0.60 > EUCIW > 0.50

Guangdong 2357.6 2458.6 100 < TAIWC < 200 7500 < IWCPH < 12000 0.50 > EUCIW > 0.40
Guangxi 1631.6 2178.6 100 < TAIWC < 200 IWCPH > 12000 0.50 > EUCIW > 0.40
Hainan 2341.5 489.9 TAIWC < 100 IWCPH > 12000 0.60 > EUCIW > 0.50

Chongqing 1236.8 604.9 TAIWC < 100 4500 < IWCPH < 7500 0.50 > EUCIW > 0.40
Sichuan 921.3 2340.9 100 < TAIWC < 200 4500 < IWCPH < 7500 0.50 > EUCIW > 0.40
Guizhou 1213.7 1066.1 TAIWC < 100 4500 < IWCPH < 7500 0.50 > EUCIW > 0.40
Yunnan 1295.9 2088.9 TAIWC < 100 4500 < IWCPH < 7500 0.50 > EUCIW > 0.40

Tibet 611.6 4642.2 TAIWC < 100 7500 < IWCPH < 12000 0.50 > EUCIW > 0.40
Shaanxi 626.2 271.5 TAIWC < 100 IWCPH < 4500 0.60 > EUCIW > 0.50
Gansu 290.9 168.4 TAIWC < 100 4500 < IWCPH < 7500 0.60 > EUCIW > 0.50

Qinghai 304.7 612.7 TAIWC < 100 7500 < IWCPH < 12000 0.50 > EUCIW > 0.40
Ningxia 301.0 9.6 TAIWC < 100 7500 < IWCPH < 12000 0.60 > EUCIW > 0.50

Notes: The administrative regions exclude Hong Kong, Macao, and Taiwan in this study.
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2.2. Methodology and Data for Hydro-Economic Classification

2.2.1. Conceptual Approach and Overview

The hydro-economic classification is a classification system for regions and watersheds that
describes different conditions pertaining to water security (or its reverse, water challenges). Regions
(and watersheds) are classified into a two-dimensional hydro-economic quadrant space with
a compound indicator (Figure 1), which is composed of or represents the following factors [58–60]:

(1) Economic–institutional coping capacity (y-dimension): This represents the regional economic and
institutional capacity to deal with water challenges. It also represents the social adaptability of
a region, that is, the amount of social resources available for a region to adapt to the scarcity of
natural resources. For example, Israel is short of water resources (per capita water resources are
389 m3), but it can maintain a developed modern society with a per capita gross domestic product
of over 10,000 U.S. dollars because of its strong economic capacity and social adaptability [67].

(2) Hydro-climatic complexity (x-dimension): This represents the magnitude/complexity of water
challenges in terms of water availability and variability within and across years in a region.
The hydrological system is an open, dynamic, and nonlinear complex system, which is influenced
by multiple factors, such as climate, hydrometeorology, physiography, and human activity, and its
long-run evolution involves both certainty and uncertainty [68]. Therefore, a region’s water
challenges are dynamic and variable, with the relative location of a region in the HE quadrant
tending to shift over time.

(3) Hydro-economic quadrant: A two-dimensional hydro-economic quadrant space is divided
into four parts. Taking the provincial scale as an example, provinces in the HE-1 quadrant
(water secure, poor) are at a low-to-middle income level and face moderate hydrological challenges;
provinces in the HE-2 quadrant (water secure, rich) are at a middle-to-high income level and face
moderate hydrological challenges; provinces in the HE-3 quadrant (water stressed, rich) are at
a middle-to-high income level and face substantial hydrological challenges; and provinces in the
HE-4 quadrant (water stressed, poor) are at a low-to-middle income level and face substantial
hydrological challenges.
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Each major dimension is measured using normalized indicators for classification. For the
y-dimension, personal disposable income (PDI) is selected as a measure of economic strength and the
financial resources that could be invested in risk management. The x-dimension is decomposed into
three subindexes: total water resources per capita (TWRPC), which is a measure of water availability in
each province; the ratio of annual total water withdrawal to the total water resources of each province,
which is a measure of the intensity of water use (IWU); and the proportion of external water resources
(from outside the regional boundaries) in the total water resources of each province, as a measure of
the dependency share of external to total water resources (DS). These subindexes are standardized,
weighted, and integrated into a compound index that measures the conditions and complexity of local
water resources.

2.2.2. Methodology for Indicator Calculation

After selecting the relevant study scale and indicator variables for the x- and y-dimensions of the
HE classification scheme, the classification process proceeds as follows [58,59]:

(1) For each indicator variable, five classes are defined by a relevant scale (with linear or logarithmic
scales determined as appropriate), and the initial index value of each class is converted into the
corresponding normalized interval [0, 0.2], [0.2, 0.4], . . . , [0.8, 1].

(2) Then, we map each initial index/variable Bi of i = 1,..., n, to the standardized index value Zi by
the following:

a. determining the range of the initial index value bi for a province, b ∈ [B j, B j+1], and
b. calculating the standardized index value Zi(b i) according to the following formula:

Zi(b)= Zi
(
B j

)
+[0, min

(
1,

b− B j

B j+1−B j

)
][Z i

(
B j+1

)
−Zi

(
B j

)
]. (1)

(3) Following the World Resources Institute’s aqueduct approach [69], an appropriate weight Wi is
set for each subindex in a nonlinear way according to the perceived importance of several classes.
We selected the following weight scale:

Weight: 1 = Very Low; 2 = Low; 4 = Medium; 8 = High; 16 = Very high.

In this case, high importance (indicated by a weight of 8) was assigned to two indicators,
the TWRPC and the IWU, and medium importance (a weight of 4) was assigned to the DS.

The weighted sum of the standard subindex Zi is calculated using the following formula and
expressed as the compound index I :

I(B) =

∑n
i=1 WiZi(bi)∑n

i=1 Wi
, (2)

where B = (b1,..., bn) is the vector of observed (or simulated) indicators for each province.
Table 2 shows the range values of five classes used for the normalized subindex function for 2016.

Data sources include the National Bureau of Statistics (PDI and population numbers), the China
water resources bulletin (total water resources and total water withdrawal), and the water resources
bulletins of each province (inbound water resources, outbound water resources, the south-to-north
water diversion, and the Yellow River water diversion). Range values are based on the observed
(or simulated) indicators and Shiklomanov’s study [70]. Note that the mapping value is set to one
when PDI is greater than 13,550 dollars/cap/year, which indicates very strong economic capacity,
whereas a value of zero indicates very low economic capacity. To achieve the same orientation when
combining the subindexes Zi, the range value of TWRPC is set in reverse order (i.e., a larger TWRPC
value corresponds with lower hydrological complexity and a smaller mapping value). The mapping
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value is set to zero when TWRPC is greater than 20,000 m3/cap/year, which indicates very low pressure
on regional water sources, whereas it takes a value of one when TWRPC is less than 100 m3/cap/year,
which indicates very high pressure on regional water sources. The mapping value is set to one when
DS is greater than 0.95, which indicates very high external dependence of regional water use, whereas
it is set to zero when DS is less than 0.03, which indicates very low external dependence of regional
water use.

Table 2. Range values of five classes used for the normalized subindex function.

Class &
Corresponding

Normalized
Interval

Personal
Disposable Income

(PDI; Dollars/Cap/Year)

Total Water Resources
per Capita

(TWRPC; m3/Cap/Year)

Intensity of
Water Use

(IWU; Scalar)

Dependency Share of
External to Total Water
Resources (DS; Scalar)

CL1, [0,0.2] 0 < PDI < 2258 10000 < TWRPC < 20000 0 < IWU < 0.05 0.03 < DS < 0.30
CL2, [0.2,0.4] 2258 < PDI < 3011 5000 < TWRPC < 10000 0.05 < IWU < 0.15 0.30 < DS < 0.45
CL3, [0.4,0.6] 3011 < PDI < 4517 2000 < TWRPC < 5000 0.15 < IWU < 0.30 0.45 < DS < 0.55
CL4, [0.6,0.8] 4517 < PDI < 7528 1000 < TWRPC < 2000 0.30 < IWU < 0.60 0.55 < DS < 0.70
CL5, [0.8,1] 7528 < PDI < 13550 100 < TWRPC < 1000 0.60 < IWU < 1.00 0.70 < DS < 0.95

2.3. A Water Use Scenario under SSPs Framework

The original SSPs framework does not include a water use scenario. It depicts five typical global
situations with different socioeconomic conditions: SSP1 (sustainability), SSP2 (middle of the road),
SSP3 (fragmentation), SSP4 (inequality), and SSP5 (conventional development) [52–54]. However,
we can infer that irrigation water use must vary among these scenarios. Following Hanasaki’s and
Wada’s studies [51,58], the clues provided by various narratives on the scenarios enable us to develop
appropriate corresponding water use scenarios. Table 3 summarizes the key details of each water use
scenario under the SSPs framework.

Table 3. Summary of the water use narrative scenarios under the shared socioeconomic pathways
(SSPs) framework.

Path-Way Irrigated Area &
Crop Intensity

Water Use
Efficiency

Convergence
Level & Speed Scenario Description

SSP1 Low growth High
efficiency

High level &
low speed

•A long-run development concept of openness, equality,
and mutual benefit.
•Rapid urbanization and fast technological diffusion.
•Sustainable food systems: high agricultural production
efficiency and a strong preference for low-meat diets.
•The whole society has a good atmosphere of energy
conservation and emission reduction.

SSP2 Medium growth Medium
efficiency

Medium level &
very fast speed

•Moderate income growth and moderate urbanization.
•Limited technological innovation and environmental
protection policies and could not get rid of the
middle-income trap.
•Low agricultural production efficiency and a strong
preference for meat consumption.
•Growth in irrigation water use efficiency has slowed,
and barely meets the 2030 target.

SSP3 High growth Low
efficiency

Low level &
fast speed

•Regional fragmentation and incompatibility.
•Backward economy and ineffective environmental
policies, and technology is stuck in a groove.
•High population growth, low urbanization, and
unscientific urban planning.
•High water consumption leads to less water use for
irrigation and decrease in agricultural production.
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Table 3. Cont.

Path-Way Irrigated Area &
Crop Intensity

Water Use
Efficiency

Convergence
Level & Speed Scenario Description

SSP4 Low growth

High
(developed)/

low
(developing)

Medium level &
medium speed

•For the regions with low hydro-climatic complexity
and low income, the irrigation water use efficiency is
low owing to the backward economy and limited
investment in irrigation facilities.
•For the regions with high income, the irrigation water
use efficiency could maintain a high level owing to the
strong economic coping capacity.
•For the regions with the dual pressure of backward
economy and hydro-climatic complexity, the irrigation
water use efficiency is in a low level.
•Technologies diffuse across the regions with different
economic development level.

SSP5 High growth High
efficiency

High level &
very low speed

•A conventional fossil-fueled pathway with the rapid
capital accumulation and massive greenhouse gas
emissions.
•Strong technological progress in the agricultural sector.
•Highly managed and resource intensive
agro-ecosystems and water systems.

2.4. Conditional Convergence Model

The conditional convergence for predicting water use efficiency is based on the following
three assumptions:

(1) The efficiency level in a specific region gradually converges to the optimum.
(2) There are two modes of technological development, namely technological transmission in

advanced regions and technological catch-up in backward regions.
(3) In the same period of time, the speed of improvement in the region with advanced technology is

slower than that in the region with backward technology.

The specific calculation formula is as follows [71–73]:

Er(t) = EL
A +

(
Er(0) − EL

A

)
· e−∆tβ(r), (3)

where Er(t) (scalar) represents water use efficiency in convergence time t (years), EL
A (scalar) represents

water use efficiency for medium- to long-term targets, Er(0) (scalar) represents initial water use efficiency
in a region, and β(r) (scalar) represents the convergence control parameters in a specific region.

3. Scenario Determination and HE Evaluation

3.1. Scenario and Parameter Setting Under the SSPs–HE Framework

Combining water use narrative scenarios under the SSPs framework (the five specific pathways)
and various HE classifications enables us to determine different convergence targets, convergence
rates, and other parameters for provinces in different quadrants of the hydro-economic quadrant space.

The 2030 national target for the coefficient of effective utilization of irrigation water is established
in Views on the implementation of the strictest water resources management system. The 2030 target value of
each province can be converted by the 2015 coefficient of each province [63], which can be taken as
a benchmark of the convergence target for further simulation.
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Table 4 provides a qualitative description of irrigation water use efficiency under the SSPs.
It describes the level of irrigation water use efficiency in various quadrant provinces under the
five different socioeconomic pathways defined above. For example, SSP2 is a medium scenario in every
HE classification; SSP5 presents high efficiency in every HE classification. SSP2 is also more pessimistic
about the target of convergence than SSP5 and has a shorter convergence time than SSP5. Table 5 shows
the quantitative transformation of the convergence parameters used for further simulations. It describes
the convergence targets (multiples of the benchmark target) and the convergence times (years) in
various quadrant provinces under different socioeconomic pathways.

Table 4. Qualitative description of irrigation water use efficiency under SSPs.

Pathway HE-1 HE-2 HE-3 HE-4

SSP1 High Medium-high Medium-high High
SSP2 Medium Medium Medium Medium
SSP3 Medium-low Low Medium Medium-low
SSP4 Low Medium-high Medium-high Low
SSP5 High High High High

To our best knowledge, there have been few studies on the impact of economic and social
development modes on technological change. Thus, setting the future scenario assumptions could
be subjective because of the lack of a systematic and comparable unified scenario-setting standard.
Thus, the relevant parameter settings in this study are largely based on the classical theory of
technological change and the previous experience of multifactor and total factor productivity
in Organization for Economic Co-operation and Development (OECD) and major non-OECD
economies [71–74].

3.2. HE Classification Evaluation

Following the calculation process for the HE classification, we obtain the results in Tables 5
and 6, which show the mapping values of economic–institutional capacity (the y-dimension) and
hydro-climatic complexity (the x-dimension), respectively, for 31 Chinese provinces (excluding Hong
Kong, Macao, and Taiwan) for 2016. Then, the quadrants scatter diagram and the national distribution
of the HE classification of the 31 Chinese provinces for 2016 are depicted in Figure 2.
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Table 5. Quantitative transformation of convergence parameters for simulation.

Pathway

HE-1 HE-2 HE-3 HE-4

Convergence Target
(Multiple of

Benchmark Target)

Convergence
Time (Years)

Convergence Target
(Multiple of

Benchmark Target)

Convergence
Time (Years)

Convergence Target
(Multiple of

Benchmark Target)

Convergence
Time (Years)

Convergence Target
(Multiple of

Benchmark Target)

Convergence
Time (Years)

SSP1 1.1 100 1.1 50 1.1 50 1.1 100
SSP2 1.0 15 1.0 15 1.0 15 1.0 15
SSP3 0.9 30 0.9 30 1.0 15 0.9 50
SSP4 1.0 50 1.1 50 1.1 50 1.0 50
SSP5 1.1 100 1.1 100 1.1 100 1.1 100

Table 6. Mapping results of the economic–institutional capacity of 31 provinces in 2016.

Province
Personal Disposable
Income (PDI) in 2016

(Dollars/Cap/Year)

The Mapping Value of the
Y-Dimension

(Economic–Institutional Capacity)
Province

Personal Disposable
Income (PDI) in 2016

(Dollars/Cap/Year)

The Mapping Value of the
Y-Dimension

(Economic–Institutional Capacity)

Anhui 3010.72 0.400 Liaoning 3920.28 0.521
Beijing 7908.46 0.813 Inner Mongolia 3632.27 0.483
Fujian 4156.38 0.552 Ningxia 2835.20 0.353
Gansu 2208.62 0.196 Qinghai 2604.78 0.292

Guangdong 4561.04 0.603 Shandong 3716.37 0.494
Guangxi 2755.83 0.332 Shanxi 2867.81 0.362
Guizhou 2276.49 0.205 Shaanxi 2841.45 0.355
Hainan 3109.38 0.413 Shanghai 8175.68 0.822
Hebei 2969.67 0.389 Sichuan 2831.59 0.352
Henan 2776.61 0.338 Tianjin 5129.92 0.641

Heilongjiang 2986.69 0.394 Tibet 2053.39 0.182
Hubei 3279.98 0.436 Xinjiang 2763.30 0.334
Hunan 3178.84 0.422 Yunnan 2517.19 0.269

Jilin 3006.04 0.399 Zhejiang 5800.55 0.685
Jiangsu 4828.16 0.621 Chongqing 3317.25 0.441
Jiangxi 3027.50 0.402 - - -
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Figure 2. (a) HE classification quadrants of 31 Chinese provinces for 2016; (b) national distribution of
HE classification for 31 Chinese provinces for 2016.

In Table 6, PDI (dollars/cap/year) ranges from 2053.39 for Tibet to 8175.68 for Shanghai.
The mapping values for Tibet and Shanghai are 0.182 and 0.822, respectively. In Table 7, the observed
values of the subindexes (TWRPC, IWU, and DS) are converted into the corresponding mapping values
and the compound weighted index I ranges from zero for Tibet to 0.886 for Tianjin.

Figure 2a shows the relative location of all provinces in the HE quadrant space. A total of
14 provinces are in the HE-1 quadrant (Anhui, Guangxi, Guizhou, Hainan, Hubei, Hunan, Jilin,
Jiangxi, Qinghai, Sichuan, Tibet, Xinjiang, Yunnan, and Chongqing); three provinces are in the HE-2
quadrant (Fujian, Guangdong, and Zhejiang); five provinces are in the HE-3 quadrant (Beijing, Jiangsu,
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Liaoning, Shanghai, and Tianjin); and nine provinces are in the HE-4 quadrant (Gansu, Hebei, Henan,
Heilongjiang, Inner Mongolia, Ningxia, Shandong, Shanxi, and Shaanxi). Figure 2b shows the
distribution of these provinces. Provinces in southwestern China generally face low hydrological
challenges, whereas most provinces in northeastern China face substantial hydrological challenges.
A few provinces in the coastal area of eastern China have strong economic capacity, whereas most
provinces inland have comparatively low income levels. These classification results are consistent with
an intuitive assessment. Note that, for simplicity, this study follows the WFaS analysis [58] and retains
the classification results only in 2016.

Table 7. Weighted and mapping results for the hydro-climatic complexity of 31 provinces in 2016.

Subindex of
X-Dimension TWRPC IWU DS

The Compound Index
(Hydro-Climatic

Complexity)

Subindex of
X-Dimension TWRPC IWU DS

The Compound Index
(Hydro-Climatic

Complexity)

Province

Weight

8 8 4 I Province

Weight

8 8 4 I

Tianjin 0.995 1.000 0.440 0.886 Anhui 0.599 0.511 0.000 0.444
Beijing 0.986 1.000 0.204 0.835 Guangdong 0.584 0.436 0.000 0.408

Shandong 0.973 0.986 0.088 0.801 Hubei 0.564 0.451 0.000 0.406
Ningxia 0.991 1.000 0.000 0.796 Chongqing 0.603 0.356 0.000 0.384

Shanghai 0.966 1.000 0.000 0.786 Zhejiang 0.576 0.374 0.000 0.380
Hebei 0.960 0.938 0.006 0.761 Hunan 0.519 0.401 0.000 0.368
Henan 0.944 0.837 0.007 0.714 Sichuan 0.544 0.328 0.000 0.349
Gansu 0.879 0.852 0.000 0.692 Guizhou 0.533 0.288 0.000 0.329
Shanxi 0.941 0.775 0.000 0.687 Guangxi 0.433 0.367 0.000 0.320
Jiangsu 0.816 0.889 0.000 0.682 Jiangxi 0.411 0.321 0.000 0.293

Liaoning 0.854 0.672 0.000 0.610 Yunnan 0.441 0.244 0.000 0.274
Shaanxi 0.864 0.623 0.000 0.595 Hainan 0.386 0.284 0.000 0.268

Inner Mongolia 0.662 0.697 0.100 0.564 Fujian 0.382 0.279 0.000 0.265
Heilongjiang 0.585 0.679 0.000 0.506 Qinghai 0.193 0.172 0.000 0.146

Jilin 0.642 0.561 0.000 0.481 Tibet 0.000 0.027 0.000 0.011
Xinjiang 0.429 0.745 0.000 0.470 - - - - -

4. Simulation and Results Analysis

4.1. Prediction of the Irrigation Water Use Efficiency of Each Province

On the basis of the HE classification results for each province and the description of irrigation
water use scenarios under different socioeconomic pathways, we can further predict the effective
utilization coefficients of irrigation water in each province under different SSPs, as shown in Figure 3.

Taking an overall view of the five development pathways, the effective utilization coefficients of
irrigation water in half of the provinces converge to 0.6 under SSP1, SSP2, and SSP5 by 2030, whereas
only nine provinces reach 0.6 under SSP3 and 11 provinces do under SSP4. The HE-3 class has the
highest proportion (100%) of provinces that can achieve the irrigation water use efficiency target
under every development pathway in 2030, followed by the HE-4 class (64%), and then the HE-2 class
(53%). The HE-1 class has the lowest proportion (9%) of provinces successfully reaching the 0.6 target.
Provinces with severe hydrological conditions generally have higher water use efficiency than do
provinces with low hydrological challenges.

Comparing the simulation values in 2016 and 2030, HE-3 provinces present the largest improvement
in efficiency. All HE-3 provinces have a coefficient of more than 0.6 under each pathway in 2030.
Indeed, with the except of Liaoning, the coefficients of these provinces are above 0.7, with Shanghai
close to 0.9. Moreover, the differences in the coefficients between the five pathways are relatively small
for the HE-3 provinces, with a standard deviation below 0.02.
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Figure 3. Effective utilization coefficients of irrigation water in each province under different shared
socioeconomic pathways (SSPs) in 2016 and 2030.

For HE-2 provinces, Zhejiang has the highest effective irrigation water use coefficient, followed by
Fujian and Guangdong. Under SSP3, the coefficients of these three provinces are all lower than the
target of 0.6 in 2030. However, under the other pathways, Zhejiang and Fujian do achieve coefficients
higher than 0.6, although Guangdong still fails to reach 0.6 by 2030.

For HE-1 provinces, only Jilin and Hainan reach the 0.6 target under SSP1, SSP2, and SSP5.
The other provinces in the HE-1 class have relatively low efficiency compared with all the HE provinces
because abundant resources mean there is no pressure to reduce water use and there is limited
investment in water-saving facilities.

Provinces in HE-4 are facing large uncertainties regarding water use efficiency in the future owing
to their backward economies and strong pressure on scarce water resources. HE-4 provinces have the
largest fluctuations in water use efficiency under the different pathways of all four HE classifications,



Sustainability 2019, 11, 7103 14 of 19

with a standard deviation of more than 0.02 in 2030. The standard deviation in Hebei and Shandong is
even higher, at 0.03. The effective water use coefficient of most provinces in the HE-4 quadrant would
be above 0.6 in 2030 under SSP1, SSP2, SSP4, and SSP5. Only Ningxia and Inner Mongolia would be
below 0.6, but both would be very close to reaching this target.

4.2. Analysis for Typical HE Provinces

On the basis of the relative location of the provinces in HE quadrant space, Hubei, Guangdong,
Jiangsu, and Gansu are selected as representatives of all provinces in HE-1, HE-2, HE-3, and HE-4
quadrants, respectively, and used to illustrate the convergence of the effective utilization coefficients of
irrigation water in these four classes under different pathways from 2016 to 2030 (Figure 4).
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Jiangsu, a province with high pressure on water use and a strong economy, has a high effective
utilization coefficient of irrigation water under the five pathways, and easily reaches the national
standard of 0.6 by 2030. Jiangsu irrigation water use efficiency is highest under SSP1 and SSP4
(as the two curves coincide), and Jiangsu would remain in the efficient growth period with adequate
potential for technological change. Its irrigation water use efficiency under SSP5 is the third-best case,
with the coefficient reaching 0.68 in 2030, but with relatively narrow scope remaining for technological
change improvements compared with SSP1 and SSP4. Under SSP3, the efficiency of irrigation water
converges quickly but essentially remains unchanged after reaching 0.68, and there is no room for
further technological improvement.

Gansu, which is under strong pressure to reduce water use and has a weak economy, has a generally
lower irrigation water use efficiency compared with that of Jiangsu. Owing to adequate capital and
open channels for technological transmission, the irrigation water use efficiency is at a relatively high
level under SSP1 and SSP5 (the two curves coincide). Not only would the irrigation water use efficiency
target be reached by 2030, but there would remain room for improvement in the future, although the
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improvement rate would be lower than that in Jiangsu. Under SSP2, because recent policies have
placed strong emphasis on water saving, the irrigation water use efficiency would improve rapidly and
then converge to 0.6. However, it would then remain unchanged because of a lack of financial support
and slow technological diffusion. For the highly unbalanced SSP4 scenario, backward provinces
such as Gansu are at a disadvantage because they lack capital and talent. The demonstration effect of
advanced provinces and the diffusion effect of advanced technologies means that the irrigation water
use efficiency can be improved slowly through partial catch-up. The national target will not be reached
by 2030, however, and irrigation water use efficiency in Gansu remains basically stagnant under SSP3.

Hubei is in the third place among the four provinces in terms of the overall irrigation water use
efficiency situation, performing below Jiangsu and Gansu, but better than Guangdong. Because it has
abundant water resources, Hubei lacks the motivation to improve water use efficiency and it will not
meet the national target by 2030 under any pathways. It is similar to Gansu province in regard to the
low coefficient for the effective utilization of irrigation water and other conditions.

Among the four provinces with different HE classifications, Guangdong in the HE-2 class has
the lowest irrigation water use efficiency because of the absence of pressure on its water resources,
which limits improvements in water use efficiency. The speed of improvement is highest under SSP1
and SSP4 (the two curves coincide), but even under these pathways, Guangdong is unable to meet
the national target by 2030. Under SSP5, the next best scenario, which is based on fossil fuels, it fails
to reach the convergence state by 2030. Guangdong reaches convergence soonest under SSP2 and its
coefficient value (0.55) is close to SSP5 by 2030. Under SSP3, the province is in a stable state in which
irrigation water use efficiency is stagnant and always lower than 0.5 up to 2030.

5. Conclusions and Suggestions

This study uses a conditional convergence model for predicting technological change combined
with the SSPs scenario settings and HE classification to group 31 Chinese provinces by their different
economic and water resources conditions. On this basis, it presents the results from a new extended
SSPs–HE framework for predicting the change in irrigation water use efficiency of 31 Chinese provinces
by 2030. The conclusions are as follows.

The effective utilization coefficients of irrigation water in half of the provinces converge to 0.6
under SSP1, SSP2, and SSP5 by 2030, whereas SSP3 and SSP4 are generally inefficient development
pathways. The HE-3 class has the highest proportion (100%) of provinces that can achieve the irrigation
water use efficiency target under every development pathway in 2030, followed by the HE-4 class (64%),
and then the HE-2 class (53%). The HE-1 class has the lowest proportion (9%) of successful provinces.

Provinces with severe hydrological conditions generally have higher water use efficiency than
do provinces with low hydrological challenges. Substantial regional hydrological challenges are the
most important incentive or internal driving force to improve water use efficiency. In addition, HE-3
provinces present the largest improvement in irrigation water use efficiency, reflecting the great
importance of economic capacity in improving water use efficiency.

The curves for the effective utilization coefficients of irrigation water have different trajectories in
the different scenarios. Coefficient curves increase rapidly in various provinces under SSP1 and SSP5,
but these pathways do not result in provinces reaching the convergence state by 2030 and room for
further improvement remains. Coefficient curves have the fastest convergence rate under SSP2 among
all the pathways, but this pathway lacks the potential for further development and provinces remains
stagnant once they converge to a certain level. The coefficient curves present an inefficient situation
under SSP3, in which the irrigation water use efficiency is at a low level and does not significantly
improve for a long time. Under SSP4, the coefficient curves reflect a highly imbalanced situation with
coefficient curve trajectories depending on the economic strength of the provinces. The coefficient
curves of the provinces with strong economic capacity rise quickly, whereas those of the provinces
with weak economic capacity rise slowly (i.e., the strong get stronger, but the weak become weaker).
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On the basis of the analysis of the results and conclusions above, we put forward the following
suggestions for improving the irrigation water use efficiency of each province.

A water-saving development pathway for specific regions should be selected in line with the
local conditions. HE-3 provinces have both the motivation and the economic capacity for water-saving
actions, with strong endogenous water-saving powers making SSP1 a suitable pathway for HE-3
provinces. HE-4 provinces are facing the dual pressures of capital shortages and severe hydrological
challenges, and they require policy and financial support from the central government, including
access to the limited funds designated for water-saving projects. SSP2 is likely to be the most suitable
pathway for HE-4 provinces because of its cost-effectiveness. For HE-1 provinces with abundant water
resources but weak economies, efforts should be made to enhance economic capacity under SSP1
or SSP5, with efficiency improved slowly, but continuously over the long term. For HE-2 provinces
with strong economic capacity and water security, a harmonious relationship between maintaining
human living standards and environmental water resources should be the goal of future development,
which aligns with the development concept of SSP1.

Regional rivalry and fragmentation are not wise development choices. It is important to increase
connectivity and openness among the regions and narrow the technological and income gaps. China is
a vast country with complex national conditions and its development is inadequate and unbalanced,
as evidenced by the great variation in hydro-economic conditions among regions and provinces.
Although the hydro-economic conditions of backward regions cannot be changed in the short term,
these regions can benefit from technological diffusion and spillovers, which requires overall irrigation
water use planning at the national level and an open, inclusive, and shared development concept
among all regions to change the situation of imbalance and even regional rivalry.

It is always good to be prepared, even in a province in which pressure on water resources is low, by
improving the management of irrigation and the application and popularization of related technologies.
The low-pressure pipeline water delivery irrigation is likely to be the most suitable technology for
HE-1 provinces (low economic capacity, low hydrological challenges) because of its cost-effectiveness.
For a province in which economic capacity is strong, more advanced technologies can be considered,
such as the sprinkler irrigation and the micro irrigation. Considering that substantial regional
hydrological challenges are the most important incentive or internal driving force to improve water use
efficiency and water resources is so valuable in arid and semi-arid regions in northern China, efforts
should be made continuously to develop highly efficient water-saving irrigation, such as the micro
irrigation, despite the fact that some provinces have a weak economy. In addition to increasing capital
investment in water-saving technology, it is very important to strengthen the belief in technological
innovation and green development [75] and to build a policy and social environment that encourages
technological innovation and water and energy conservation.
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