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Abstract: Swordfish (Xiphias gladius) are a highly migratory keystone species, found in tropical and
temperate seas that are influenced by environmental parameters. In the Bay of Bengal, the Arabian Sea,
and the ocean region around Sri Lanka, the environment is gradually changing as a result of climate
change. In this study, we identified the preferable environmental conditions for swordfish using
satellite-derived environmental data and in-situ fish catch data. We modeled the relationships between
fish distribution and the environment changes using Boosted Regression Trees (BRT) and Generalized
Additive Model (GAM) methods. The monthly mean fishing effort is comparatively high from October
to March and the fish catch rates are high from September to November. Chlorophyll-a concentration
has a positive relationship with catch rates while sea surface temperature (SST), sea salt surface
mass concentration (SSS), and effort show negative relationships. Approximately 0.3–0.4 mgm−3 of
chlorophyll-a, 28–28.5 ◦C SST, and (3–5)10−8 kgm−3 of SSS were significantly correlated with high
swordfish catch rates. According to the optimum environmental conditions identified using the above
models, the suitable environmental spatial and temporal distribution was mapped. The results show
that the optimum conditions for swordfish are in the eastern region of Sri Lanka, around Thailand and
Myanmar, from June to August, and around Bangladesh, Myanmar, Pakistan, the west coast of Sri
Lanka, and the east coast of India during September to November.
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1. Introduction

Swordfish (Xiphias gladius) (Figure A1 of Appendix A) is a kind of billfish that belongs to the
family Xiphiidae found in tropical and temperate oceans. They are highly migratory and can grow
to over 540 kg in weight and 445 cm in length [1]. Swordfish are carnivorous and adult fish feed
on many types of prey such as anchovies, squid, hake, jack mackerel, rockfish, barracudas, black
smelt, ribbonfish, sea birds, small sea mammals, and shrimp; while at the larval stage, they depend
on zooplankton [2]. In the Indian Ocean, swordfish spawn in the coastal waters southwest of the
Reunion Island (21◦ S, 55.5◦ E, east of Madagascar) during the austral spring and summer (October to
April) [3], off the northwestern coast of Somalia, and in the Bay of Bengal (BoB) [4]. The main type of
swordfishing gear used in the Indian Ocean is the longline [5]. High catches of swordfish have been
reported during the spawning period [3].

Swordfish fishery is an important activity for the North Indian Ocean fishing industry [6]. With
global warming and climate change, physical environmental parameters such as temperature [7], wind
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and waves [8], and cyclone frequency [9,10] are changing significantly in the North Indian Ocean, and
many fish species have been affected by these changes [11–13]. Swordfish are highly migratory and
may change their habitat ranges in response to changes in the environment. The swordfish is a keystone
species in the Indian Ocean [14]. The distribution change of the keystone species can significantly
affect sustainable fishery management as well as the balance of the ecosystem. Some previous studies
have identified the environmental variables that affect swordfish in the Atlantic Ocean [15] and the
Indian Ocean [16]. Some studies identified their feeding habits and habitats [2]. However since these
changes depend on the particular regions being studied [17], detailed regional studies are useful.

The present study focuses on the BoB, the ocean area around Sri Lanka and the southeastern
Arabian Sea (AS). Net evaporation in the western part of the North Indian Ocean and net precipitation
in the eastern part result in a salinity difference between the AS and the BoB [18]. The ecosystems of the
BoB play a significant role in providing a livelihood and diet to the coastal human population of the
nearby countries [19]. These ecosystems are highly productive, due to the nutrient input from rivers
and from vertical mixing driven by wind, waves, and currents. In this study, we test the hypothesis
that physical environmental variables influence swordfish pelagic habitats and distribution in the
North Indian Ocean. The goal is to identify the quantitative ranges of the environmental variables
that are correlated with swordfish distribution patterns in the BoB, the seas around Sri Lanka, and the
southeastern AS.

2. Materials and Methods

2.1. Environmental Variables

The study area (Figure 1) is located between 70◦ E and 98.5◦ E longitudinally, and 0◦ N to 22◦ N
latitudinally, including the BoB, the AS and the Sri Lankan Exclusive Economic Zone (EEZ). The remote
sensing data of Chlorophyll-a concentration (Chl-a) and sea surface temperature (SST) at 4 km resolution
were obtained from the Moderate-resolution Imaging Spectroradiometer (MODIS)-Aqua L3m. Surface
wind at 0.5◦ × 0.667◦ resolution and sea salt surface (SSS) mass concentration at 0.5◦ × 0.625◦ resolution
were obtained from the Modern-Era Retrospective analysis for Research and Applications, Version
2 (MERRA-2) Model. The sea surface height (SSH) and sea surface height anomaly (SSHA) were
obtained from Environmental Research Division’s Data Access Program (ERDDAP). Wind speed data
at a 1◦ resolution were from the Aquarius Combined Active Passive (CAP) Level 3 products, and
mixed layer depth (MLD) at 0.67◦ × 1.25◦ resolution from the NASA Ocean Biogeochemical Model
(NOBM). These environmental data were monthly averaged and, together with the monthly swordfish
catch per unit effort (CPUE) distribution, were used to study their seasonal co-variability.

2.2. Swordfish Fish Catch Data

We used the Indian Ocean Tuna Commission (IOTC) and the National Aquatic Resources Research
and Development Agency (Sri Lanka) fisheries data from 2002 to 2015. For the detailed analysis the
long line fisheries data from 2002 to 2015 were obtained from the fisheries harbors with fishing effort
(number of hooks), fishing date, vessel capacity, location, and catch amount (in number of swordfish).
Both daily catch data and the monthly means were used in our analysis. CPUE was calculated as a
number of fish captured per 5000 hooks.
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Figure 1. Study area (70◦ E to 98.5◦ E, and 0◦ N to 22◦ N) indicated in blue.

2.3. Statistical Models for Spatial Predictions of Catch Rate

Initially, Boosted Regression Trees (BRT) were used to identify the influencing parameters on
swordfish catch distribution using the ‘gbm’ function in the ’gbm’ package [20]. Boosted regression trees
perform well in predictive and descriptive studies [20] and their predictive performance surpasses most
traditional modelling methods [21]. The authors in reference [22] have identified that BRT performs
better than the generalized linear model in climate-related studies. BRTs are really advantageous
in tree-based methods, studying various types of predictor variables, and in identifying missing
data [21]. In BRT, prior data transformation or elimination of outliers is not necessary [21]. The
complex nonlinear relationships, and interaction effects between predictors are automatically handled
by the BRT model [23]. The poor predictive performance of single tree models can be ameliorated by
fitting multiple trees in BRT. The BRT can be summarized in ways that provide influential ecological
insights [21].

Then the generalized additive models (GAMs) were used to predict potential swordfish pelagic
spatial habitats according to the relationships between environmental variables identified with BRT
and swordfish CPUEs using the ‘gam’ function of the mgcv package [24]. Several base models were
prepared and the final model was selected according to the highest R-squared value, the least Akaike
information criterion (AIC) value, generalized cross-validation (GCV) value, and the diagnostic plots
(residuals distribution plot, quantile-quantile plot, and response vs. fitted values plot). GAMs deal
with non-linear relationships of ecological variables well and describe the variance of a response
variable effectively [25]. Both BRTs and GAMs were constructed in R (Version i386 3.4.2). The GAM
formula structure is

log (CPUE + c) = a0 + s(x1) + s(x2) + s(x3) + . . . s(xn) (1)

Here, s(xn) is the smoothing function of covariates (xn) and a0 is the model constant. All covariates
were treated as continuous, and the effective degrees of freedom were assessed for each main factor [26].
We added 0.1(c) to all catch rates, as the log-link function is incapable of handling zeroes [27]. A constant
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value of 0.1(c) can be used to standardize the catch rate of swordfish [27]. The fish CPUE and the
distribution of the environmental variables were mapped using the ArcGIS 10.5 software.

3. Results

3.1. The Swordfish Catch Distribution in North Indian Ocean

The spatial and temporal distribution of the swordfish nominal CPUE (Figure 2) shows that the
catch distribution is low from April to June and high from September to November. Throughout the
year, high catches can be observed from 0◦ N to 5◦ N latitudes. The monthly mean variation of the effort
and the catch rate of the swordfish (Figure 2) indicate comparatively high fishing effort from October
to March. The fish catch rates do not show a considerable variation with the fishing effort. According
to the data, longline fisheries have been operating continuously throughout the year, although there
are seasonal variations.

Figure 2. Monthly variations of the Swordfish (SWO) catch per unit effort (CPUE) and effort (number
of hooks).

3.2. Identification of Influencing Variables for Swordfish Catches Distribution with BRT Model

Table 1 shows the selected variables and their influencing rates on the swordfish catch distribution.
Variable selection in BRT is attained according to the relative influence. The model basically ignores
non-informative predictors while fitting trees. Hence, the results are fairly reasonable as the measures
of relative influence compute the importance of predictors, and irrelevant ones have a minimal effect
on prediction [21]. The relative influence of predictor variables is estimated by the formulae developed
by reference [28] and implemented in the gbm library. The measures are grounded on the number of
times a variable is selected for splitting, weighted by the squared improvement to the model as a result
of each split, and averaged over all trees [29].

The total number of observations used in the BRTs and GAMs was 3887. Out of them, 3685
data were less than or equal to 1 swordfish catch per 5000 hooks. According to the relative influence
calculated in BRT, the three main influencing variables for the swordfish catch rate are time (year)
(38.16%), SST (10.89%) and chl-a concentration (10.28%). Longitude (2%) and latitude (0.41%) have
the least relative influence. Thus, inter-annual variations have a dominant influence on CPUE, as
shown in Figure 3, which plots the nonlinear changes of the identified parameters with the CPUEs.
Fitted functions for main effects of the swordfish CPUE, by influencing variables in the BRT model, are
indicated as a plot in Figure 3.



Sustainability 2019, 11, 7070 5 of 19

Figure 3. Fitted functions for main effects of the swordfish CPUE (y) in the BRT model. (a) Year.
(b) Chlorophyll-a. (c) SST. (d) Effort. (e) Wind speed. (f) Mixed layer depth. (g) SSHA. (h) SSS mass
concentration. (i) Month. (j) SSH. (k) Eastward wind component. (l) Longitude (Lon). (m) Latitude
(Lat).

According to the results of the BRT model (Figure 3) 28–28.5 ◦C SST, 0.3–0.4 mg m−3 Chl-a,
2–2.5 m s−1 wind speed, (3–5)10−8 kg m−3 SSS mass concentration, 0.03–0.05 m SSHA, 2–5 m s−1

eastward wind component, 0.9–0.92 m SSH, and 27–32 m MLD were significantly related environmental
conditions with swordfish CPUE distribution. Other than the environmental variables, the factors
such as the years from 2004 to 2005, 50,000–200,000 measures of effort, the June to October months, 73◦

E and 83◦ E longitudes, and 2◦ N latitude also show significantly strong relationships with swordfish
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catch rates. In the BRT model, the location (latitude and longitude), SSH, and SSHA were significant
parameters; however, in the GAM they did not show a significant contribution to the model.

Table 1. The influencing rate of the boosted regression trees (BRT) simplified model variables.

Variable Relative Influence (%)

Year 38.16
Sea surface temperature (SST) 10.89

Chlorophyll-a 10.28
Effort 9.02

Wind speed 7.47
Sea Salt Surface Mass Concentration 4.99
Sea surface height anomaly (SSHA) 3.81

Month 3.43
Eastward wind component 3.28

Sea surface height (SSH) 3.18
Mixed layer depth 3.08

Longitude 2.00
Latitude 0.41

3.3. GAM Selection and the Influencing Variables on Swordfish Distribution

The identified variables with BRT were tested in GAMs. The details of the selected model are
indicated in Table 2.

Table 2. Expected Default Frequency (Edf), reference degree of freedom (ref.df), F and p-values of the
influencing variables in the generalized additive model (GAM) and the adjusted R-squared, deviance
explained and generalized cross-validation (GCV) of the selected GAM models. Akaike information
criterion (AIC).

edf Ref.df F p-Value R-sq.
Adjusted

Deviance
Explained GCV AIC

s(Year) 8.18 8.82 6.369 3.45× 10−7 ***

0.33 40..30% 0.31996 214.26 Model 1

s(Month) 1 1 0.075 0.7847
s(Effort) 1 1 4.773 0.031 *
s(Chl-a) 1 1 5.992 0.0159 *
s(SST) 1 1 5.897 0.0167 *
s(Sea
Salt) 1 1 1.733 0.1907

Significance codes: 0 *** 0.001 ** 0.01 *.

Out of many models prepared with GAM, model 1 was selected as the best model as it had a
comparatively high deviance explained (40.3%) and R2 value (0.33), and the lowest Akaike information
criteria (AIC) (214.26) and generalized cross-validation (GCV) value (0.31996). R2 is the percentage of
the total variation of the dependent variable accounted by the independent variables. An R2 value
close to 1 indicates that the data perfectly fit the model [30]. GCV is an estimate of the parameters in the
context of inverse problems and regularization techniques. It determines the smoothness parameter
in splines [31,32]. AIC is an estimator of the relative quality of statistical models. The model with
the lowest AIC can be considered as the best model [33,34]. Log (CPUE) were used in both models
because the log transformation made the data normalized. Quintile–quintile plots of both models
indicated that the distributions of residuals confirm the assumption of a Gaussian distribution. The
year and month were contributed to the model as a spline parameter. The year was a major contributor
in the model (p-values 3.45 × 10−7). Effort (0.031), SST (0.0167), and Chl-a (0.0159) were also significant
variables. The location (longitude and latitude) did not contribute in the model to increase the deviance
explained or the adjusted R- squared values. The modeled effect of environmental variables on catch
rates according to model 1 is shown in Figure 4.
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Figure 4. Modeled effect of (a) year, (b) month, (c) effort, (d) Chlorophyll-a, (e) SST, and (f) sea surface
salt (SSS) mass concentration on swordfish catch rates in the study region. The black solid line indicates
the fitted GAM function and the ash color area indicates 95% confidence intervals. The relative density
of data points is shown by the rug plot on the x-axis and the data are indicated by black dots.

After considering the significance of AIC, GCV, and R-square values, model 1 was selected for
further examination. According to model 1, Chl-a and the month show positive relationships with
catch rates while SST, SSS mass concentration, and effort show negative relationships with CPUE.
Approximately 0.3–0.4 mg m−3 of Chl-a (Figure 4d), 28–28.5 ◦C SST (Figure 4e) and (3–5)10−8 kg m−3 of
SSS mass concentration (Figure 4f) were significantly correlated with the swordfish catch rates. Other
than these environmental variables, 75,000–150,000 hooks, the June–November months, and the years
2003–2005 are significant in the GAM model.

3.4. Inter-Annual and Seasonal Variability of the Environmental Variables

According to the inter-annual variability plots and the maps (Figure 5), Chl-a (a) and Sea salt (c)
have decreasing trends and SST (b) has an increasing trend during 2002–2015. The minimum CPUE
during 2002–2015 was reported in 2005 (0.21) and maximum was reported in 2014 (1.01). The Chl-a has
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well bloomed in 2002 (0.41 mg m−3) and declined up by to 0.29 mg m−3 by 2015. Proving the negative
relationship between Chl-a and SST the minimum SST within this period can be seen in 2002 (28.25 ◦C),
and maximum, in 2015 (28.8 ◦C). The swordfish annual mean CPUE in 2002 is 0.3 and in 2015, 0.95. The
minimum SSS mass concentration is shown in 2008 (4 × 10−8) and the maximum in 2005 (4.73 × 10−8).

According to the monthly plots (Figure 6), the peak season for swordfish catch is from September
to December. This is preceded by Chl-a, which starts to increase from June and reaches a peak level in
September (0.46 mg m−3). The least Chl-a is in April (0.24 mg m−3), when the study area experiences
the highest SST (29.47 ◦C). The least SST is observed in July (28.18 ◦C). SST and SSS concentration show
an inverse relationship. SSS mass concentration reaches its peak in July (7.37 × 10−8 kg m−3) after a
gradual increase starting from April, after passing its lowest level in March (2.45 × 10−8 kg m−3).

The seasonal maps of the above variables (Figure 7) indicate comparatively high Chl-a distribution
from December to May around the Pakistan, Bangladesh, and Myanmar coastal regions. The Chl-a
concentration seems to be higher during December to February than from March to May. During
June to August, plankton blooming is seen around the South Indian and Sri Lankan coastal regions,
Thailand, and Myanmar. Chl-a shows a high density in Pakistan, Indian, and Bangladeshi coastal areas
from September to November. However, during those months, the West Indian coastal region has a
higher amount of Chl-a than the East Indian coast.

Figure 5. Cont.
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Figure 5. Inter-annual variability of the variables (a) Chl-a, (b) SST, and (c) SSS mass concentration.



Sustainability 2019, 11, 7070 10 of 19

Figure 6. Monthly variations of swordfish (a) CPUE, Chl-a, and (b) SST and SSS mass concentration.

In the seasonal maps (Figure 7), the spatial and temporal distribution of high Chl-a concentrations
is observed when the SST is comparatively low. Low Chl-a is seen when the SST is high. During
December to February, low SST is seen in Pakistan, Bangladesh, and Myanmar coastal regions, and
from March to May, the SST is high in all areas. From June to August there is a low SST distribution
around the South Indian coast and Sri Lanka. From September to November low SST can be seen in
Pakistan, West Indian, and Bangladesh coastal areas.

From September to February, SSS mass concentration is very high around India, and the eastern
region of Sri Lankan waters shows much higher SSS than the western region. From March to May, the
northeast coast of India and the coastal region of Bangladesh show high SSS mass concentration. From
June to August, the Pakistan and West Indian coast show high SSS. Moreover, from June to November,
there is a high SSS dome in the middle of the BoB. The SSS mass concentration increases further and
reaches a maximum in September–November. During the same months, a higher SST can be observed
at the edge of the high SSS dome and a lower SST is seen in the middle.
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Figure 7. Cont.
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Figure 7. Cont.



Sustainability 2019, 11, 7070 13 of 19

Figure 7. The seasonal change of (a–d) Chl-a (mgm−3), (e–h) SST (◦C), and (i–l) SSS (10−8 kgm−3).
(Land masks in ash color. DJF = December–February; MAM = March–May; JJA = June–August; SON =

September–November).

3.5. Predicted Spatial Distribution of Swordfish in the Indian Ocean

The optimum SST, Chl-a, and SSS mass concentration values identified with the GAM were
intersected and the pelagic habitats of swordfish were mapped according to the seasonal variations of
the environment (Figure 8).

According to the maps, the highest distribution of habitats can be observed from June to November.
From June to August the habitats are abundant in the eastern region of Sri Lanka, India, and near the
Myanmar and Thailand coasts. During September to November, the habitats are densely distributed
near Pakistan, the west coast of Sri Lanka, the east coast of India, and around Bangladesh and Myanmar.
The distribution of habitats is very low from March to May.



Sustainability 2019, 11, 7070 14 of 19

Figure 8. The pelagic habitat of swordfish according to the distribution of optimum environmental
conditions. (Habitats are demarcated in red; land masks are indicated with an ash color.).

4. Discussion

4.1. Overview

In many genetic studies and stock assessment studies, physical oceanographic parameters that
affect species distribution are not considered. Moreover, when the studies are conducted in small areas
using only in-situ data, the correlation between the environment variables and fish distribution is
unclear. The relationship between the biological components and the environment variables is expected
to be non-linear. The present study was carried out using the satellite-derived environment data,
in-situ fish catch data, and non-linear BRT and GAM models to identify the influencing parameters
that can affect swordfish habitats.

4.2. Inter-Annual and Seasonal Changes in Environmental Variables and CPUE

The inter-annual changes (Figure 5), monthly changes (Figure 6), and seasonal changes (Figure 7)
clearly indicated the negative relationship between SST and Chl-a. Moreover, there is a considerable
effect from monsoons and the Indian Ocean Dipole (IOD) [16] on the seasonal and annual variations
of the studied variables. From March to May, the tropical ocean waters are warm due to high solar
insolation [35]. Since Chl-a and SST are inversely related [36,37], the low Chl-a spatial and temporal
distributions can be observed when SST is high. According to the fisheries statistics of India, Myanmar,
and Bangladesh, the peak seasons of swordfish fisheries are available in the seasons when comparatively
high Chl-a is observed in those regions (Figure 8) [38,39].

The high salinity dome is visible in the middle of the BoB in the June, July, and August months
due to the Sri Lankan dome created with the westerly winds [40]. The high-density saline water,
high-speed wind, and low SST in this area induce well-developed upward doming isotherms, and
open-ocean Ekman pumping [41]. The nutrient circulation with Ekman pumping in this area promotes
phytoplankton growth (Figure 7). The phytoplankton, which contains the Chl-a pigment, influences
the swordfish distribution.

According to the inter-annual changes (Figure 5), there is a considerable decrease of SST in the
BoB area with the consecutive IOD events that occurred from 2006 to 2008 [42]. Within that period,
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the swordfish CPUE also shows a visible fluctuation. Moreover, there is a significantly positive SST
anomaly visible in 2015 due to the El Niño–Southern Oscillation (ENSO), which occurred from 2014 to
2016 [10]. With the increase of SST, the Chl-a concentration decreased in 2015. Although the effort is
not high in 2014, the swordfish CPUE increased, since the environmental conditions are within the
identified optimum ranges (SST at 28.5 ◦C, Chl-a at 0.3 mg m−3, and SSS at 4.2 kg m−3).

4.3. Environmental Variations Affecting the Swordfish Catch

The results showed that the environmental parameters and swordfish catch rates have changed
seasonally and inter-annually. According to the BRT model (Table 1) and GAMs (Table 2), the major
contributing environmental factors affecting the swordfish habitat were SST and Chl-a (primary
production). The SSS mass concentration also affects swordfish distribution.

The BoB, the AS, and the ocean region around Sri Lanka are highly productive regions of the
world [43]. The coastal areas are much more productive (Figure 6), due to the nutrient input occurring
from rivers and the vertical mixing induced by coastal currents [19]. BRT and model 2 of GAM
identified wind speed as an influencing factor for swordfish distribution. Wind and SST affect the fish
species distribution indirectly since they regulate the vertical pumping of nutrients [44]. An SST drop
coincides with the peak of the vertical pumping velocity [44]. The strong monsoon wind triggers the
mechanical mixing in the surface layer and invigoration of the subsurface nutrients, which leads to
the increase of the Chl-a concentration. The wind stress curl engenders the vertical pumping velocity
and that reduces SST, supplying nutrients to the surface layer [44]. Temperature change affects the
alteration of plankton health. The authors in [45] described that the biogeochemical parameter (e.g.,
temperature, oxygen level, and acidity) changes occurring with climate change have led to changes
in primary productivity, plankton community structure, and plankton physiology (e.g., growth, and
body size) [45].

The relationship of salinity to fish physiology has been identified in many studies. Some
studies have found that saltwater intake through ingestion regulates the growth of fish and the
osmosensitivity [46]. The central nervous system triggers the salt water intake after detection of the
saline level in the fish body. Several hormones, such as, growth hormone [47] and the renin-angiotensin
hormone system [48], influence this phenomenon. Behaviors of fish are also regulated by the central
nervous system and several hormones, such as insulin, glucagon, adrenalin, Cholecystokinine, Peptide
Y Y, growth hormone, and thyroid hormones [49]. These hormones are involved in growth control and
osmoregulatory processes. The increase of plasma sodium levels with external salinity increments
triggers the cellular effects on growth [46]. For many species, their food ingestion rate is also influenced
by the external water salinity level [46]. Hence the salinity level is a major parameter that affects the
growth rate of marine species.

In addition, SST and SSS indirectly affect fish distribution by regulating stratification and circulation.
Previous studies mentioned that the mean zonal flow in the North Indian Ocean is westward and
supports the westward advection of salt [50]. In the south equatorial currents, there is also a higher
zonal surface salt transport, which flows westward year-round. As there is a salinity difference
between the AS and the BoB due to the low net freshwater input to the AS and high evaporation, the
salty AS waters are pushed northward by the western portion of the cyclonic features off the Somali
coastline and also by the currents within the region associated with the West Indian Coastal Currents.
The thermodynamic structure of the northern BoB has a significant influence on the regional air-sea
interaction due to the thin mixed layers’ sensitivity to the surface fluxes [51]. SST changes by 1–2 ◦C
in response to net cooling and heating associated with cycles of the summer monsoon [52]. During
the active post-monsoon cyclone season, SST cooling does not occur along the cyclone tracks in the
northside of the BoB [51]. Hence storm-induced vertical mixing does not occur due to the warm barrier
layer and the large density gradient across the halocline [53]. This phenomenon limits the SST cooling
and favors cyclone intensification [54]. The MLD is also affected by the salinity and the SST. MLD is
defined as the depth at which the salinity effect on the density variation is equivalent to the variation
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of temperature by ∆T = 1 ◦C from the sea surface [51]. Hence, in addition to their direct effect on
fish physiology, salinity and SST also affect fish distribution by regulating the primary productivity
through nutrient upwelling [55].

In this study, it was identified that the swordfish is strongly related to SST between 28 and 28.5 ◦C.
Swordfish larvae occur in all the tropical seas, and their distribution is closely related to SST from
24 ◦C to 29 ◦C [56]. Moreover, researchers in reference [4] found that the highest gonadal indices are
available in the areas with SSTs ranging between 24 ◦C and 29 ◦C [57]. They further mention that the
reproductive activity of females is restricted to the warmer epipelagic layers with a deeper thermocline.
Moreover, the major fish prey items of swordfish are the nomeid (Cubiceps pauciradiatus) and the
diretmid (Diretmoides parini) [2]. Additionally, Sthenoteuthis oualaniensis, onychoteuthid (Moroteuthis
lonnbergii), ommastrephid (Ornithoteuthis volatilis), and the enoploteuthid (Ancistrocheirus lesueuri) are
the main cephalopod prey [2]. Previous studies have identified that these prey items are also available
within similar temperature ranges and plankton abundant places. For example, the population of
purple back flying squid (Sthenoteuthis oualaniensis) is high in waters with a SST range between 16 ◦C
and 32 ◦C [58]. The maximum abundance can be observed within 20 ◦C to 22 ◦C [58]. Hence, as well
as due to physiological needs, swordfish tend to swim in the identified value ranges of the modeled
environmental conditions due to the prey availability.

5. Conclusions

In this study, we showed that 0.3–0.4 mg m−3 of Chl-a, 28–28.5 ◦C SST, and (3–5)10−8 kg m−3 of
sea salt surface mass concentration are the optimum conditions for swordfish in the Bay of Bengal, the
Sri Lankan ocean region, and the Arabian Sea. Swordfish prefer habitats with these environmental
conditions as they fulfill their physiological and phenological needs and host an abundance of prey
items. The optimum environmental conditions occur in the eastern region of Sri Lanka, in the
Bangladesh and Myanmar coastal regions from June to August, and near Pakistan, the west coast of
Sri Lanka, the east coast of India, and around Bangladesh and Myanmar from September to November.
The maps, prepared according to the identified optimum environmental condition distribution, can be
used to demarcate marine protected areas in order to increase fish recruitment and to make swordfish
fisheries sustainable in the future.
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Appendix A

Figure A1. Swordfish [59].
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