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Abstract: The primary objective of this study is to explore spatio-temporal effects of the built
environment on station-based travel distances through large-scale data processing. Previous studies
mainly used global models in the causal analysis, but spatial and temporal autocorrelation and
heterogeneity issues among research zones have not been sufficiently addressed. A framework
integrating geographically and temporally weighted regression (GTWR) and the Shannon entropy
index (SEI) was thus proposed to investigate the spatio-temporal relationship between travel behaviors
and built environment. An empirical study was conducted in Nanjing, China, by incorporating
smart card data with metro route data and built environment data. Comparative results show GTWR
had a better performance of goodness-of-fit and achieved more accurate predictions, compared to
traditional ordinary least squares (OLS) regression and geographically weighted regression (GWR).
The spatio-temporal relationship between travel distances and built environment was further analyzed
by visualizing the average variation of local coefficients distributions. Effects of built environment
variables on metro travel distances were heterogeneous over space and time. Non-commuting
activity and exurban area generally had more influences on the heterogeneity of travel distances.
The proposed framework can address the issue of spatio-temporal autocorrelation and enhance our
understanding of impacts of built environment on travel behaviors, which provides useful guidance
for transit agencies and planning departments to implement targeted investment policies and enhance
public transit services.

Keywords: metro; travel distance; smart card data; built environment; spatio-temporal
analysis; heterogeneity

1. Introduction

The transit-oriented development (TOD) strategy, proposed to maximize the number of residential,
business, and leisure spaces within the catchment area of high-quality public transit system, has been
implemented to reduce automobile usage and improve the sustainability of transportation activities
by many cities worldwide in the past few decades. The metro (urban rail) system, as a high-capacity
carrier, has become the fastest-growing mode in public transportation in major Chinese cities and
contributed to creating an accessible, livable, sustainable, and vibrant environment. By the end of 2018,
36 cities had built and operated metro systems in China. In the context of rail-based TOD, the metro
now accounts for the largest share of public transit ridership in many metropolises of China, such as
Nanjing, Beijing, and Shanghai [1–3]. Due to its efficient and reliable characteristics, researchers have
found metro system can inhibit people’s enthusiasm to drive and reduce automobile dependency for
mobility [4,5]. Thus, considering the boost in metro ridership, it is crucial to investigate metro travel
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behavior and identify the spatio-temporal influences of the built environment on station-based travel
distances at the station level. It contributes to developing targeted investment practice and creating
compact, mixed land-use, and pedestrian-friendly communities.

In the field of research on metro trip and urban travel distance, several research gaps need to be
filled. First, studies exploring the influences of built environment on station-based travel distance
remain scarce. Research on vehicle miles traveled (VMT) or vehicle kilometers traveled (VKT) has
been a major focus in the existing literature [6–11]. Trip distances accomplished by metro differ from
those accomplished by the automobile. A previous study found that car ownership (number of cars
per household) is positively correlated with travel distances [12]. People who own a car are inclined
to have a long-distance trip [13]. In contrast, as metro provides mobility for almost all ages with or
without a car, trip distance by metro is more diverse, which may have less car ownership self-selection
bias. In addition, the existing literature on travel distance has mainly been conducted in Western
countries characterized by high car ownership. However, in a high-density city with rail-based TOD,
metro is more attractive for travelers than other modes and takes the largest share of public transit
ridership in developing countries. In this sense, research on station-based travel distance could be
more important for policymaking in the context of TOD planning movement.

Second, revealed preference (RP) and stated preference (SP) investigations have been widely
adopted to collect descriptive data in the existing literature [7,14–18]. Due to the limited sample size
and subjective tendencies of interviewees, these descriptive data probably have inaccurate information
and bias. Smart card data from metro automated fare collection (AFC) system provides an alternative to
investigating metro travel behavior in urban space [19]. By virtue of its large sample size, the quality of
trip data can be substantially improved with comprehensive spatial and temporal coverage. However,
efforts have been mainly made on enhancing the understanding of transit ridership patterns using
smart card data in the existing literature [20–23]. As smart card data does not include the information
of the distance between the origin and destination, station-based travel distance has rarely been taken
into account in past studies. In conjunction with metro route data that contain detailed geographical
information of metro service, the continuous mixed dataset could provide us with an alternative to
studying consistent travel distances over space and time.

Third, spatial and temporal issues (e.g., spatio-temporal autocorrelation and heterogeneity) of
travel distances from origin locations have been scarcely examined in previous studies. In the process
of urban development, regional agglomeration is gradually shaped by adjacent areas sharing similar
land use. Households’ behaviors may be interacted with other households in the geographical
proximity [11]. It results in certain areas with longer travel distances and some areas with shorter
travel distances. Moreover, influenced by non-commuting and commuting demand, travel distance
exhibits a similar pattern during a certain period and its overall pattern varies over time throughout a
day. Global models, such as ordinary least squares (OLS) regression model and structural equation
model (SEM) were widely applied to explore impacts of built environment on travel distances in the
existing literature [10,12,15,18,24]. However, these studies did not consider the spatial and temporal
issues of travel distance, which may influence the empirical results. As global models are based on
the assumption that travel behavior is spatially and temporally stationary, the non-stationarity of
travel behaviors will cause calibrated coefficients of potentially contributing factors vary over space
and time. Some existing studies have indicated that erroneous conclusions could be drawn if spatial
relationship in travel behavior modeling is not fully examined [9,16]. As to the temporal variability of
travel behaviors, it is imperative to account for the temporal autocorrelation and heterogeneity when
analyzing the relationship between travel distance and built environment.

This study attempts to fill these research gaps and model the potential effects of built environment
on station-based travel distances at the spatial and temporal scale using smart card data. Specifically,
this study proposed a comprehensive framework that integrates the geographically and temporally
weighted regression (GTWR) and Shannon entropy index (SEI). GTWR model was used to examine
spatio-temporal dynamics of travel distances that are related to built environment configurations.
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To measure the spatio-temporal heterogeneity of impacts of built environment on travel distances,
SEI was applied to decompose estimated coefficients of built environment at the spatial and temporal
scale. An empirical study in Nanjing was conducted to validate the GTWR model by incorporating
smart card data with metro route data and built environment data. This study could enhance the
understanding of characteristics of urban mobility and influences of built environment on people’s
daily travel distances for transit agencies and planning departments. It may help them find feasible
solutions to reduce daily travel distances in commuting and non-commuting activities, which is
expected to be conducive to the sustainable development of cities.

The remainder of the paper is organized as follows. The second section presents the literature
review on travel distances and theoretical methods. Study area and data preparation are presented in
the third section. The fourth section introduces the methodology to model metro travel distances at
the station level. The results, including model calibrations, comparative analysis of different models,
GTWR estimates, as well as spatial and temporal heterogeneity, are described in the fifth section.
The final section concludes the paper.

2. Literature Review

In the context of TOD, urban built environment transformation coupled with soaring metro
ridership and decreasing automobile dependency has offered a great opportunity for studying
station-based travel distances and potentially contributing factors. Sun, Ermagun, and Dan [18]
investigated the commuting choice and found that the share of transit travel was over 60% and
commuting distances in transit were the most diverse among all commuting modes, which was
consistent with the results of the fourth comprehensive traffic survey in Shanghai, China. Holz-Rau,
Scheiner, and Sicks [15] examined different types of travel distances and found that distances traveled
on daily trip and long-distance trips were influenced by socio-demographic factors in much the same
way, while the effects of built environment characteristics on travel distances significantly varied in
different directions. Chen, Wu, Chen, and Wang [25] found that the differences of travel distances in
TOD and non-TOD neighborhoods are much more a matter of built environment than residential choice.
Nearby built environment plays an important role in determining urban travel distance [6,8,9,14,17,26].
Hong, Shen, and Zhang [16] modeled the relationship between travel behavior and built environment
at different geographical scales. Their findings indicated that people are inclined to choose metro over
driving where transit services are well provided. Singh et al. [11] analyzed the contributing factors to
household VMT and concluded that dense urban environment could reduce household VMT and even
the need for owning a car or driver’s license, by transferring daily trip mode to mass transit. Choi [7]
investigated household VKT in Calgary, Canada, and the modeling result revealed that rail transit
coverage and station density are key factors in reducing VKT in the established area of the city.

The data of previous studies on travel distance were mainly collected from descriptive
investigations. Most studies were based on national or urban household survey data sources that
provide mobility information for studying travel behaviors [7,11,15,16,27,28]. Some studies designed
and delivered the questionnaires randomly in the neighborhood and public parks to collect commuting
and non-commuting behaviors [17,18]. Due to its large sample size, smart card data has received
increasing interest for discovering the spatio-temporal dynamics of transit ridership based on its
large-scale space and time records. Loo, Chen, and Chan [21] analyzed the impacts of land use,
station characteristics, and other factors on weekday metro ridership using citywide smart card data at
the station level. Tao, Rohde, and Corcoran [22] created flow-comaps to explore the spatio-temporal
pattern of boarding and alighting ridership at a network level by extracting the trip information from
the smart card data. Zhong et al. [23] measured the variability of ridership pattern at aggregated and
individual levels through correlation and network-based clustering methods based on smart card data.
Gong, Lin, and Duan [20] used the eigendecomposition method to capture temporal trip pattern for
different passenger groups and spatial heterogeneity of dynamic urban space for metro stations using
smart card data.
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Global models are widely used to identify the impacts of built environment on travel distance
in previous studies. Multiple OLS regression is the most representative method among global
analytical methods, which was developed by many researchers to analyze travel distance and its
determinants [7,10,15,29]. To explore indirect and total effects of built environment on travel behaviors,
the application of SEM gained great popularity in simultaneously estimating the relationship between
endogenous and exogenous variables [27,28]. However, the spatial distribution of residences and work
places has a great impact on determining household travel distances, along with other contributing
built environment, such as leisure services [8]. Spatial issues cannot be addressed by global models,
which may cause significant biases in modeling travel distance. Multilevel/hierarchical modeling
frameworks were then proposed by some studies to solve the spatial autocorrelation and model VMT
by estimating the coefficients in different geographical levels [9,16]. Other studies also used spatial
lag model and spatial error models to investigate how household VMT are dependent on each other
geographically in different locations by constructing distance-based weighting matrix [8,11].

Similar to spatial issues, temporal autocorrelation and heterogeneity also exist in daily travel
behaviors. The existing literature has identified the dynamic variations in transit ridership by time
of day and day of the week using smart card data [20,22]. For travel distance, some studies focused
on impacts of built environment on commuting VMT during peak periods in order to investigate the
commuter trip between residence and workplaces [9,10]. Other studies extended the range of research
on travel distance to cover both commuting and non-commuting periods. Ma et al. [30] measured
the spatio-temporal regularity of individual travel behavior and found a clear disparity in transit
travel distance for commuting and non-commuting travel. However, they did not conduct further
research on its determinants at the spatial and temporal scale. Ding et al. [27] observed the influences
of built environment on VMT that significantly vary between commuters and non-commuters when
controlling personal and household variables.

To sum up, there are inherent limitations in the existing literature. (1) Although numerous
studies have quantified the external influencing factors to VMT/VKT, impacts of built environment
on station-based travel distance have not yet been thoroughly addressed. In the context of TOD,
some studies have found that larger transit service coverage and high service quality have a strong
appeal for travelers, especially in high-density areas, which spurs metro use and decreases VMT/VKT.
(2) Almost all previous studies on travel distance relied on descriptive data from traffic surveys,
which are not sufficiently large to establish analytical models differentiate spatial and temporal effects
in great details. Smart card data was mainly applied to identify the ridership pattern, but metro travel
distance has arguably yet to be taken into account. (3) The spatial and temporal issues of urban travel
distance have been discussed independently but has not been addressed in one unified model. More
importantly, spatial and temporal issues cannot be explained with the traditional global models under
the stationary assumption.

3. Study Area and Data Preparation

3.1. Study Area

Nanjing, the capital city of Jiangsu province, is the second largest city in East China, after Shanghai.
It has a prominent place in Chinese politics, culture, history, education, and commerce. As of 2016,
Nanjing accommodated 10.23 million citizens within an area of 6600 km2. The Yangtze River, the longest
river in China, flows through Nanjing. Historical relics, monuments, mountains, natural scenic lakes,
the Olympic Sports Center, and much more are situated in this both ancient and modern city.
Besides, the city also boasts an efficient metro system. With the successful operation of Metro Line 1,
Nanjing metro service first started in 2005. By the end of May 2019, the total length of metro lines was
378 km, ranked fourth in China, and seventh in the world. By 2023, fifteen metro lines will be built in
Nanjing, with a total length of 578 km [31]. The metro system carried a daily average of 2.7 million
passengers in 2017 [2]. The system consists of seven metro lines, covering 118 non-transfer stations and
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10 transfer stations, as shown in Figure 1. According to the administrative districts of Nanjing, urban,
suburban, and exurban areas were then designated [32,33]. Gulou, Xuanwu, and Qinhuai districts
were designated as urban areas. Jianye, Yuhuatai, Pukou, Jiangning, and west of Qixia were suburban
areas. Luhe, Lishui, and east of Qixia were exurban areas.
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3.2. Data Source

The AFC system records every ride of the metro passenger and provides a large quantity of
detailed information concerning passenger ID, card type, payment, boarding and alighting stations,
boarding and alighting time, and count of card usage. Three weeks of smart card data with over
20 million records, collected from 4 September 2017 to 24 September 2017, were used in this study.
Smart card data are stored in the Oracle database and we could obtain a complete origin-designation
(O-D) pair of each trip through data transformation. Passenger rides of each station were aggregated
by station number and card swiping time.

Baidu Map, one of the largest digital maps in China, could provide the route of each trip in its
“route search” module based on the shortest path [34]. We may obtain the network distance of each
trip by inputting the origin station and the destination station. Researchers have found this module
is very reliable and intelligent in outputting up-to-date traffic information [35]. We thus designed a
program to connect massive O-D pairs with the “route search” module and automatically calculated
the network distance of each trip through the Baidu Map application programming interface (API).
Figure 2 shows an example of a typical search. The network distance from Fuqiao Station (origin) in
Subway Line 3 to Yunjinlu Station (destination) in Subway Line 2 is 5.817 km.

In recent years, point of interest (POI) data characterizing built environment have been used
in some studies [36–38]. Generally, each POI record includes its own classification, name, address,
coordinate, postcode, and administrative area [39]. Compared to traditional land use data, POI data
have a greater flexibility in scale transportation. Massive POI data could fully reflect urban functions
and greatly improve the explanatory power in modeling impacts of built environment on travel
behaviors. Considering the pedestrian-friendly transit network in the planning of TOD, the radius of
a pedestrian catchment area (PCA) was set to 500 m in many previous studies [37,40,41]. A PCA is
generally defined as a geographical circle area where a great majority of pedestrians arrive on foot.
It is determined by the maximum walking distance of passengers from/to the metro station [42,43].
Detailed information of POI data within a 500 m radius circle of each metro station was fetched through
Gaode Map, a popular digital map service in China. A crawling program was written in Python to
automatically gain POI data through the Gaode Map API. The date of crawling time was 12 September
2017, which remained consistent with the time of smart card data.
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3.3. Variability of Station-Based Travel Distance

The variability of station-based travel distances is of fundamental importance to understand
mobility patterns and the influences of the built environment. To identify the travel distance from
place to place and from time to time, each trip record was projected into the spatial and temporal scale
by aggregating station number and swiping time, respectively. Due to the space limitation, Figure 3
shows the bar graphs of travel distances from 08:00 to 09:00 and from 18:00 to 19:00 on weekdays and
weekends. The x-axis is the station number and the y-axis is the average travel distance from the metro
station in three weeks.

The overall tendencies of travel distances were similar on weekdays and weekends. Travel distances
at some stations reached the highest during different periods. Spatial distributions of metro stations
may be a major factor influencing the travel distances. In addition, there also existed moderate temporal
variations. Travel distances on weekends were larger than those on weekdays at most stations. Free of
work pressure, people were more willing to have long-distance travel with plenty of time on weekends,
which was consistent with previous studies [15,44]. Meanwhile, as a station serves different groups of
people throughout a day, differences in travel distance also exist during different periods. For example,
boarding time for commuters is mainly distributed in the morning and afternoon. A station may serve
a group of people from home to work in the morning and another group of people from work to home
in the afternoon.

3.4. Dimensions of the Built Environment

Built environment data used in this study are derived from POIs. Based on our insights and
determinants identified by previous studies, built environment variables were divided into two types to
reflect the land use and transport facility. Land use is closely connected to travel behaviors, which has
been proved by many studies [6,8,11,14]. According to the category of POI, this study extended the
explanatory variables characterizing land use to a commuting group of variables and a non-commuting
group, respectively. Within the commuting group, employment, residential buildings, education areas,
and accommodation services were considered. In large cities, non-commuting activities also constitute
an integral part of city life. Catering services, shopping services, leisure services, medical services,
and scenic spots were thus included in this study. In addition, a dummy variable indicating whether a
station is in the central business district (CBD) was also added to reflect the mixed land use.
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Transport facility is also an important category that influences travel distance. Considering
the multi-modal transferring completed by travelers, transport facilities relating to private car, bus,
and public bicycle were all taken into account to explore the influences on metro travel distances.
Thus, the number of public parking lots, public bicycle stations, bus stops, and bus lines within the
catchment area of the station were calculated, respectively. Enhancing the level of connectivity is also
significantly connected to metro use [43]. Urban roads and intersections were added to reflect the
connectivity of metro stations. In addition, the characteristics of metro stations were also investigated
by introducing the transfer dummy variable and the terminal dummy variable.

4. Methodology

4.1. Geographically and Temporally Weighted Regression

Station-based travel distances from the metro station vary over space and time. It is important to
investigate spatial and temporal characteristics of travel behaviors in one unified model. The GTWR
model is an expansion of the GWR model, which extends the traditional regression to address spatial
and temporal heterogeneity simultaneously by estimating coefficients locally [45]. In this study,
we applied the GTWR model to examine the spatio-temporal relationship between station-based travel
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distance and built environment. The fundamental formula of the GTWR model can be expressed
as follows:

yi = βi0(ui, vi, ti) +
∑
k=1

βik(ui, vi, ti)xik + εi i= 1, . . . , n, (1)

where yi is the average travel distance from the ith metro station. (ui, vi, ti) denotes the spatio-temporal
coordinate of the ith station; βi0(ui, vi, ti) and βik(ui, vi, ti) are the intercept value and the local regression
coefficients between travel distance and the kth built environment variable (explanatory variable),
respectively; xik and εi are the value of the kth built environment variable and the random error,
at station i, respectively.

Based on the assumption that closer observation to station i has a greater influence on the
estimation of local coefficients, the estimated parameter βi(ui, vi, ti) is expressed as

βi(ui, vi, ti) = (XTW(ui, vi, ti)X)
−1

XTW(ui, vi, ti)Y, (2)

where W(ui, vi, ti) = diag[wi1, . . . , wim] is the diagonal weighting matrix calibrated for station i. βi(ui,
vi, ti) = (βi0, βi1, . . . , βim)T is the vector of m + 1 local regression coefficients for an intercept and m built
environment variables. X = [x1

T, . . . , xn
T]T is the matrix of built environment variables. Y denotes

the vector of travel distances. Decay-based Gaussian distance is employed as the kernel function to
calculate the weighting matrix, which is defined as follows:

wi j = exp(−
d2

i j

b2 ), (3)

where wij is the calculated weighting parameter in the diagonal weighting matrix. Different from the
GWR model, b and dij measure the spatial and temporal distance simultaneously. b is the bandwidth
which determines the spatio-temporal range in the kernel function by producing a decay of influence
with distance dij between stations i and j. dij is calculated as follows:

di j =

√
λ[(ui − u j)

2 + (vi − v j)
2] + µ(ti − t j)

2. (4)

If the parameter λ equals zero, no spatial variation is estimated in the weighting function.
This transforms the GTWR to the temporally weighted regression (TWR). On the other hand, if µ is set
to zero, only spatial heterogeneity is analyzed in the model. This will lead to the traditional GWR
model. Considering neither λ nor µ equals zero in most cases, this paper models the effect of built
environment variables at both the spatial and temporal scales [45].

Let τ be the ratio parameter of µ/λ with λ , 0. Then, the above equation can be transformed
as follows:

d2
i j

λ
= [(ui − u j)

2 + (vi − v j)
2] + τ(ti − t j)

2. (5)

To reduce computational complexity, λ can be set to one. τ is an essential parameter,
which determines spatio-temporal effects of built environment on travel distances. wij depends on the
bandwidth b that is an important parameter in calibrating the model. The minimum cross-validation
(CV) criterion was employed to select an optimal value for the above parameter. The general
mathematical form can be written as follows:

CV(b) =
∑

i

(yi − ŷi(b))
2, (6)

where ŷi(b) is the predicted distance of yi referred as the function of bandwidth b in the GTWR model.



Sustainability 2019, 11, 7069 9 of 22

4.2. Spatial and Temporal Autocorrelation Test

In statistics, Moran’s I is used to detect the spatial autocorrelation of station-based travel distances
and built environment variables among adjacent metro stations. For example, if stations are attracted
by each other, it means nearby observations are spatially dependent. Moran’s I is defined as

Moran′s I =
N

N∑
i=1

N∑
j=1

ci j

·

N∑
i=1

N∑
j=1

ci j(zi − z)(z j − z)

N∑
i=1

(zi − z)2
, (7)

where N is the number of metro stations. cij is an element of a spatial weighting matrix with zeros on
the diagonal, which indicates the relationship of observations between two adjacent stations. zi and z
denote the variable of interest at station i, and the mean of z, respectively. The values of Moran’s I
range from −1 to 1. If the observed value is significantly lower than −1/(N − 1), then it will represent
spatial dispersion. When values are significantly larger than −1/(N − 1), it indicates a greater degree of
spatial autocorrelation, suggesting a good GWR fit.

To detect the temporal autocorrelation of station-based travel distances throughout a day,
this study applied Durbin-Watson (DW) test to measure the first-order temporal autocorrelation that
is characterized by the similarity of a time series over successive time intervals [46,47]. The DW test,
developed to test the null and alternative hypotheses, is shown as follows:

H0 : ρ = 0.0, Ha : ρ , 0.0, (8)

where the null hypothesis means that the errors of travel distances are not serially correlated. This will
lead to no first-order autocorrelation. The alternative hypothesis of Ha means that the error item is
correlated to the other error item in the previous period. The test statistic is formulated with the
following equation:

d =

∑n
t=2 (et − et−1)

2∑n
t=1 et2 , (9)

where d is the DW statistic with a value from zero to four, and n is the number of observations.
et and et−1 are the residuals from the ordinary least squares regression in the time period t and the
time period t − 1, respectively. Each time period is set to an hour. When d-values equal to 2, there
exists no autocorrelation in station-based travel distances. If d-values range from 0 to 2 (less than 2),
positive temporal autocorrelation exists in the dataset. If d-values are between 2 (larger than 2) to 4,
negative temporal autocorrelation is present in station-based travel distances.

4.3. Shannon Entropy Index

The Shannon entropy index (SEI), also known as Shannon’s diversity index, has been a popular
quantitative index to study the level of heterogeneity in many fields [48]. The GTWR generally
produced positive and negative local coefficients at different spatial and temporal scales after model
estimations. Only using average values may not be enough to analyze spatial and temporal variations
in built environment impacts, because positive and negative impacts may be compensated when
coefficients were averaged. To overcome the problem, this paper thus used SEI to decompose the
spatial and temporal heterogeneity of the coefficients estimated by GTWR models. This method could
measure different types of built environment impacts and calculate how evenly built environment
impacts are distributed among these types. The general equation of the SEI can be expressed as

h = −p1 ln(p1) − p2 ln(p2), (10)
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where p1 is the proportion of coefficients of built environment variables above zero, and p2 is the
proportion of coefficients below zero. The larger the h-value is, the greater the heterogeneity is.
According to the theory of Limits, h approaches zero based on the above equation, if all coefficients are
concentrated to one type of impacts and the other type is rare. As ln(0) is undefined, SEI is defined to
be zero when p1 or p2 equals one.

5. Results

5.1. Model Calibrations

The GTWR models were calibrated based on the dependent and explanatory variables shown
in Table 1. Before the weighted regression was developed, a stepwise regression was conducted
based on the Akaike Information Criterion (AIC), in order to reduce multicollinearity and acquire
a properly specified OLS model. Then, Moran’s I was calculated to identify spatial autocorrelation
among metro stations. As shown in Table 1, coefficients of Moran’s I were significantly greater than
expected values for all dependent variables and explanatory variables, with p-values being 0.000.
This indicated that the values of dependent and explanatory variables were positively autocorrelated
at the spatial scale. To further measure the temporal autocorrelation of traveling distance, a DW test
was conducted to calculate the statistic parameters. d-values for travel distances on weekdays and
weekends equaled 0.492 and 0.454, respectively. d-values were all between zero and two, with p-values
being 0.000. Positive temporal autocorrelations existed for travel distances over successive time
intervals. In addition, we conducted the Two-Sample t-test to examine the difference in station-based
travel distances on weekdays and weekends. The result shows travel distances on weekdays are
significantly different from ones on weekends at the 0.01 level.

5.2. Comparative Analysis of Different Models

When exploring the potential effects of built environment on metro travel distances, OLS, GWR,
and GTWR were all developed to compare the performance of different models for each scenario.
Parameters estimated in the OLS represent the general effects of the explanatory variables on travel
distances. One direct model was developed for all metro stations. While using GWR and GTWR,
different distance prediction models were developed simultaneously for each station. Meanwhile,
GTWR considers the temporal variation throughout a day, compared to the GWR. Coefficients for each
variable have spatially and temporally variations in GTWR.

The goodness-of-fit for each model are summarized in Table 2. It is observed that 37.8% of the
variation in the travel distance values can be explained by the global OLS models in light of R2. Taking
the weekday as an example, it should be noted that the proportion of explanation of variation in the
travel distance increased from 0.378 in the global OLS model to 0.874 in GWR, and 0.894 in GTWR.
By comparing the AICc in these models, the values decreased from 12867.41 in the global OLS model
to 9637.35 in GWR, and 9399.63 in GTWR. Taking the residual sum of squares (RSS) into account,
GTWR produced more accurate predictions. It is posited that GTWR captured the spatial and temporal
heterogeneity of travel distances with better predictions. Simultaneously, comparative results also
indicate that the improvement of GTWR over GWR was less than that of GWR over OLS in the model
performance. A possible explanation for this finding is that the temporal heterogeneity of travel
distance is less significant than spatial heterogeneity.
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Table 1. Descriptions of variables and descriptive statistics.

Category Variable Description Min Max Mean S.D. Moran’s I Expected Value p

Travel
distance

DIS_WD Travel distance from the metro station on weekdays (km) 0 43.426 15.242 5.865 0.207 −0.00046 0.000
DIS_WK Travel distance from the metro station on weekends (km) 0 46.327 15.740 6.164 0.217 −0.00046 0.000

Land
use

Catering service Number of Chinese, foreign restaurants, etc. 0 840 121 167 0.150 −0.00046 0.000
Shopping service Number of supermarkets, stores, appliance stores, etc. 0 888 161 228 0.136 −0.00046 0.000

Leisure service Number of entertainment venues, gymnasiums, etc. 0 186 17 27 0.160 −0.00046 0.000
Medical service Number of hospitals, clinics, pharmacies, etc. 0 44 5 7 0.174 −0.00046 0.000

Accommodation service Number of hotels and guest houses 0 187 19 31 0.109 −0.00046 0.000
Employment Number of government agencies, corporations, etc. 0 974 110 182 0.213 −0.00046 0.000
Scenic spot Number of parks, plazas, tourist attractions, etc. 0 20 3 6 0.259 −0.00046 0.000

Residential building Number of residential buildings 0 22 6 6 0.156 −0.00046 0.000
Education area Number of schools, universities, etc. 0 80 6 10 0.084 −0.00046 0.000

CBD station Station in the CBD (1 = yes, 0 = no) 0 1 N/A N/A 0.054 −0.00046 0.000

Transport
facility

Public parking lot Number of parking lots 0 120 27 24 0.235 −0.00046 0.000
Public bicycle station Number of docked public bicycle stations 0 10 2 2 0.104 −0.00046 0.000

Bus stop Number of bus stops 0 10 4 2 0.070 −0.00046 0.000
Bus line Number of bus lines 0 78 24 17 0.102 −0.00046 0.000

Urban road Number of roads 0 20 5 5 0.222 −0.00046 0.000
Urban intersection Number of intersections 0 57 13 12 0.194 −0.00046 0.000

Transfer station Transfer station (1 = yes, 0 = no) 0 1 N/A N/A -0.005 −0.00046 0.000
Terminal station Terminal station (1 = yes, 0 = no) 0 1 N/A N/A -0.004 −0.00046 0.000
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Table 2. Comparison of goodness-of-fit for each scenario.

Scenario Goodness-of-Fit OLS GWR GTWR

Weekdays
R2 0.378 0.874 0.894

AICc 12867.41 9637.35 9399.63
RSS 46528.97 9430.47 7920.91

Weekends
R2 0.378 0.865 0.889

AICc 13084.41 9979.75 9747.19
RSS 51361.15 11169.70 9202.34

5.3. GTWR Estimates

The summaries of model estimates in the GTWR are shown in Table 3. Local parameters
for travel distances of each scenario are described by four statistics that represent minimum values,
mean values, maximum values and variables’ significance, respectively. Most variables were statistically
significant at the 1% level, except for the three explanatory variables. It should be noted that
the terminal dummy variable had no significant influence on travel distances for all scenarios.
Travel distances from the terminal stations were not significantly different from ones at non-terminal
stations. The positive/negative signs of the mean coefficients are similar for most variables on weekdays
and weekends. The signs of the mean coefficients of shopping services, leisure services, public parking
lots, bus stops, urban roads, and intersections were positive, which indicated that they were positively
correlated to travel distances on weekdays and weekends. The signs of the mean coefficients of
employment, scenic spots, and residential buildings were negative, which suggested that increasing
their densities would decrease travel distance from the station. However, the absolute values of mean
coefficients on weekends were greater than ones on weekdays, particularly for leisure services and
scenic spots. Free of work pressure, people were more willing to undertake long distance travel for
entertainment purposes on weekends [15,44]. Thus, the influences of these services on travel distances
on weekends were far greater than weekdays.

Spatial relationships between travel distances and built environment can be depicted for visual
analysis through local coefficient estimates. Due to space limitation, leisure services, bus stops,
intersections, employment, residential buildings, and scenic spots were visualized to reflect the effects
of built environment, as shown in Figure 4. In this paper, the Jenks natural breaks classification method
was used to determine the best arrangement of estimated coefficients into different classes. This method
can minimize the average deviation of coefficients within classes and maximize the deviation between
classes. Based on this method, the paper also manually sets zero as a breakpoint to differentiate
the positive effects and negative effects. The general spatial variations of these six variables were
similar between weekdays and weekends. It indicated that the positive and negative effects of built
environment on travel distances were consistent in a week. Suburban and exurban areas imposed
greater influences on travel distances, as depicted by the color of stations in Figure 4. Different from
the mixed land use in the urban areas, suburban and exurban areas are usually characterized by single
land use. Travel distances of people who live in remote areas are more sensitive than those living in
the urban area.
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Table 3. Summaries of local parameters in the geographically and temporally weighted regression (GTWR) for each scenario.

Variable
DIS_WD DIS_WK

Min Mean Max Significance Min Mean Max Significance

(Constant) −30.996 14.898 32.955 0.000 ** −56.485 14.015 44.886 0.000 **
Catering service
Shopping service −13.486 0.845 1.518 0.006 * −18.612 1.488 4.836 0.004 *

Leisure service −5.922 1.654 161.564 0.005 * −29.474 5.305 216.444 0.004 *
Medical service

Accommodation service −6.241 0.069 10.200 0.005 *
Employment −21.640 −0.271 0.296 0.002 * −28.164 −0.749 3.483 0.002 *
Scenic spot −425.749 −4.398 12.171 0.005 * −591.881 −12.982 85.866 0.005 *

Residential building −174.579 −1.957 6.043 0.003 * −240.097 −6.181 28.199 0.004 *
Education area −4.116 −0.028 3.459 0.006 * −10.053 0.073 8.132 0.004 *

CBD station −52.147 11.625 1486.557 0.142 −296.008 35.604 2190.444 0.142
Public parking lot −3.235 0.083 2.072 0.007 * −2.968 0.022 1.877 0.007 *

Public bicycle station
Bus stop −6.051 0.503 54.410 0.003 * −10.739 2.055 76.644 0.004 *
Bus line

Urban road −5.341 0.048 7.729 0.006 * −8.312 0.689 17.946 0.008 *
Urban intersection −2.491 1.035 97.418 0.005 * −16.863 3.164 132.275 0.003 *

Transfer station −17.295 0.898 240.860 0.130 −113.909 5.704 284.608 0.131
Terminal station −261.987 −0.028 29.934 0.083 −356.690 −7.095 52.647 0.082

Goodness-of-fit
R2 0.894 0.889

AICc 9399.63 9747.19

Note: * refers to a value significant at the 0.01 level; ** refers to a value significant at the 0.001 level.
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The coefficients for leisure services were mostly positive in urban areas and exurban areas.
Leisure services were densely distributed in urban areas, which attracted people to travel a long
distance from other areas, especially on weekends. Due to the long distance from the urban areas,
people in exurban areas might not travel a long way to urban areas while leisure services were rare.
With cheaper land prices and less traffic congestion, suburban areas (e.g., Pukou) have ushered in a
rapid development to reduce the pressure of urban areas and increase the city vitality in recent years.
They usually have more attractions to exurban areas than urban areas in terms of geographical position.
This also explains why the coefficients in urban areas were relatively small and the coefficients in some
suburban areas were negative. Increasing leisure services in sub-centers would be an effective tool to
decrease travel distance. The coefficients for bus stops were positive in most urban areas and exurban
areas. Although urban areas had a high density of bus stops and population, metro travel distances
were not necessarily short. People who had short-distance travel in the urban area could choose a
public bicycle, bus or taxi. Considering travel time and costs, people who have long-distance travel
might recognize metro as a better choice. As metro travels on segregated tracks, it has no competition
for space with motor vehicles or buses. Efficient operations and low prices may attract long-distance
travel. In most exurban areas, people often take the feeder bus to transfer to the metro, which takes
passengers from an exurban area to an urban area. Thus, more bus stops contributed to longer travel
distances. It should also be noted that the coefficients of some suburban and exurban areas were
negative, probably because traffic conditions in these areas were better than urban areas. As a result,
the bus then accounted for a large percent of long travel distance. The density of intersections was
usually used to represent the street network connectivity [8]. If the number of intersections is larger
within the PCA of a metro station, the catchment area then has greater connectivity. The coefficients of
intersections were positive in Gulou, Xuanwu, Qinhuai, Qixia, and Pukou. It indicated that people
tended to travel a longer distance in these districts, starting from stations with more connected street
networks nearby. However, other districts (e.g., Jianye, Yuhuatai, Jiangning, and Lishui) exhibited the
opposite results. A possible reason for this evidence is that people who travel in these three districts
don’t need to cross the Yangtze River or Zijin Mountain. Other traffic modes (e.g., private car, bus,
and taxi) may also be a good choice in terms of travel time if the connectivity of streets around the
station is high.

The coefficients of the employment were mostly negative, which coincided with the previous study
about VMT in North America [16]. It indicated that increasing job opportunities around residential
buildings would reduce the travel distance between housing and work places. With higher coefficients,
employment imposed greater influences on travel distances in the exurban areas. Few stations exhibited
positive effects on travel distance, but, the corresponding coefficients were so small that they can be
ignored. For residential buildings, the coefficients were also mostly negative in the city, except for
some areas north of Pukou and Gulou. A possible explanation is that urban sprawl results in the
dispersion of residential buildings [49]. Influenced by the problem of the separations between houses
and work places, new areas with high residence densities are usually equipped with a low level of
employment density. For stations with positive coefficients, they are not far away from urban areas and
the land prices are relatively cheaper. High-density residential buildings are often distributed in these
areas. With the limitations of land use, it is difficult to achieve an absolute balance between residence
and employment. Some areas with high-density residence districts in the outer urban areas thus had
long-distance travel characteristics. As the two most important commuting factors, there also existed
some differences between employment and residence. The absolute coefficients of residential buildings
were greater than those of employment, which indicated that the residence had more influence on travel
distances than the employment. This is the image of other cities worldwide [7,50]. The coefficients
of scenic spots were mostly negative, except for Jianye, Yuhuatai, and Luhe. The negative effects
indicated that increasing scenic spots could also reduce travel distances to some degree. People usually
go to scenic spots to alleviate work pressure and recharge the mind, body, and spirit. The influences of
scenic spots on weekends were thus more significant, with the absolute values of coefficients being
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greater. Jianye, Yuhuatai, and Luhe districts all have positive effects on travel distances. A possible
explanation is that many famous scenic spots in Nanjing are centered in these districts, such as Nanjing
Olympic Center, Yuhuatai Scenic Park, Memorial Hall of the Victims in Nanjing, and Jinniu Lake.
Different branches of these main scenic spots are distributed around those stations, which attract
people from a long way away.

As an improvement to the GTWR model, a temporal dimension was incorporated into the
traditional geographical dimension. Time series of coefficients can be obtained through data
transformation. The temporal variations of the effects of built environment on travel distances are
then depicted in Figure 5. Tendencies in the variations of leisure services, bus stops, and intersections
were similar. Almost all coefficients for the three variations were positive in a week. Influenced
by commuting characteristics, values of coefficients began to increase at 8:00. Peak values of travel
distances appeared from 12:00 to 15:00 when built environment had the largest influence on travel
distance. For the rest of the noon, the rate of change was relatively stable. After 15:00, values of
coefficients started to decline until approaching zero at 20:00. During the afternoon, people are
not willing to have long-distance travel, compared to the morning, probably because long-distance
travel is time-consuming. The time they have left in the day may not be enough to satisfy their
needs. Short-distance travel is a better choice for them. After 20:00, many retail services and other
amenities are going to be closed. Thus, the effects of built environment approached to zero. In addition,
the dashed lines in Figure 5 are all above solid lines for positive coefficients. It also indicates that
built environment on weekends has greater influences than weekdays, which is consistent with the
above findings. Different from the weekends, the values of coefficients of weekdays still increased
at noon and began to decline after 15:00. The increasing demand for long-distance travel is more
rigid on weekdays. In addition, employment, residential buildings, and scenic spots all have negative
influences on travel distances in a week. Particularly, the absolute values of employment, residential
buildings, and scenic spots have the same tendencies as the above variables. Given the similarities,
the details will not be discussed.

5.4. Spatial and Temporal Heterogeneity

Average spatial and temporal features of coefficients were studied and discussed in previous
sections. As positive and negative effects may be compensated by averaging, SEI was used in this
paper to further quantify the degree of heterogeneity of built environment effects. The results of spatial
and temporal heterogeneity are shown in Figures 6 and 7, respectively. As to spatial heterogeneity
at the temporal scale, leisure services and intersections both had significant spatial heterogeneity.
The influence of intersections on travel distances remained stable without obvious fluctuations.
The positive and negative effects of intersections around metro stations varied throughout the day.
Different from other variables, connectivity represented by intersections generally did not vary with
time. SEI of leisure services, bus stops, and scenic spots all declined at the beginning and rose up later.
SEI of employment and residential buildings all exhibited an upward trend, then a downward trend.
The findings reflect an obvious difference between non-commuting activities and commuting activities.
The effects of non-commuting activity on travel distances are more heterogeneous than commuting
activity at the spatial dimension. Meanwhile, the commuting activity on weekends also indicated a
different fluctuation range, probably because many people do not have to work as usual on weekends.
Others going to work may not necessarily obey the working time that is more flexibility on weekends.
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Figure 5. Temporal distribution of the coefficients for built environment: (a) leisure service; (b) bus stop; (c) intersection; (d) employment; (e) residential building; (f)
scenic spot.
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Figure 7. Temporal heterogeneity at the spatial scale: (a) weekdays; (b) weekends.
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As for temporal heterogeneity at the spatial scale, the temporal heterogeneity of variables was
projected into the urban, suburban, and exurban areas. SEIs of exurban areas were generally greater
than other areas, followed by suburban areas. This means that higher temporal heterogeneity existed
in exurban areas. Due to inconvenience in exurban areas, people’s demand for travel at different
distances changed significantly throughout a day. As urban areas are equipped with relatively better
facilities and services, people’s travel behaviors are relatively fixed throughout a day.

In addition, employment exhibited a different trend in a week. A possible explanation is the
uneven distribution of industries in different areas. Some industries, such as financial, consulting and
high-tech companies, still require people to work on weekends while others do not. Employment thus
has a different pattern, compared to other variables.

6. Conclusions

This study offers additional analyses and implications for the connections between station-based
travel distances and built environment by applying a framework that integrates GTWR and SEI.
Unlike Western countries characterized by high car ownership, many cities in China are implementing
TOD strategies. Understanding the influence of the built environment on metro travel behaviors is
of vital importance to provide effective guidance for planning departments and transit agencies to
alleviate traffic congestion and reduce transport emissions. Thus, the paper investigated the built
environment and the mechanisms of the differences in station-based travel distances over space
and time.

To the best of our knowledge, no previous study has analyzed travel distance based on smart
card data. This paper used smart card data in modeling station-based travel distances in a broad view
instead of survey data from previous studies. POI data characterizing built environment were also
employed to reflect the land use and the transport facility, which shed light on the detailed information
of urban land use and the understanding of transport facilities used by travelers. Results of the spatial
and temporal autocorrelation tests indicate that it is necessary to take space and time into account in
modeling travel distances. Space and time are two important dimensions for studying travel distances.
To accommodate the spatial and temporal context where people make travel decisions, a GTWR model
was applied to identify the spatial and temporal heterogeneity. The GTWR model showed a better
performance of goodness-of-fit and achieved more accurate predictions, compared to the traditional
OLS and GWR model.

According to the signs of mean coefficients, leisure services, shopping services, public parking lots,
bus stops, urban roads, and intersections were positively correlated to travel distances. Employment,
scenic spots, and residential buildings had negative effects on travel distance on weekdays and
weekends. Meanwhile, the influences of these services on travel distances on weekends were far
greater than weekdays. To visualize the variation patterns of the built environment effects on travel
distances in GTWR models, average values of local coefficients were calculated based on space and
time. People who live in exurban areas tended to travel in a long distance throughout the day.
Built environment had more influences on metro travel distance at midday. Considering positive and
negative effects may be compensated when coefficients were averaged, the paper further proposed SEI
to quantify the degree of heterogeneity of built environment effects at the spatial and temporal scale.
The effects of other factors, such as leisure services, on metro travel distances were more heterogeneous
than residence and employment. Exurban and suburban areas with high heterogeneity can promote
the mixed-use development to increase urban functionality and reduce travel distances and enhance
community connections.

Living environment determines the spatial and temporal distribution of urban vitality as well as
the dynamics of individual activities. On the other hand, the results in this study illustrate that the
spatial and temporal variations of travel distances influenced by built environment also have significant
implications in planning practices that can effectively improve land use and transport facilities at the
local level. Reducing travel distances contributes to effectively cutting travel time, decreasing energy
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consumption, and playing a key role in the economy. Our findings from the perspective of travel
behaviors can be used by planning departments to guide urban planning and neighborhood design.
Based on the empirical study, transit agencies can optimize the metro operation to satisfy people’s
need of traveling at different stations and during different periods. According to individual mobility
and our findings, this study also helps residents choose the location of their home and enhance the
accessibility to daily activities.

It should also be noted that the study only considered metro travel. Although the metro has
accounted for the largest share of public transit ridership in Nanjing, bus and public bicycle modes
should also be considered in future studies. As there is no need to swipe card to alight, the integrated
circuit system in bus transit only records boarding time in most cities in China. Thus, it is difficult
to acquire a complete and accurate O-D trip to calculate the travel distance. To solve this problem,
future studies will focus on optimizing an algorithm of bus O-D pair inference and calculating
multimodal transit travel distances based on smart card data.
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