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Abstract: This study investigated how changes in land surface temperature (LST) during 2004 and
2014 were attributable to zoning-based land use type in Seoul in association with the building
coverage ratio (BCR), floor area ratio (FAR), and a normalized difference vegetation index (NDVI).
We retrieved LSTs and NDVI data from satellite images, Landsat TM 5 for 2004 and Landsat 8 TIRS
for 2014 and combined them with parcel-based land use information, which contained data on BCR,
FAR, and zoning-based land use type. The descriptive analysis results showed a rise in LST for
the low- and medium-density residential land, whereas significant LST decreases were found in
high-density residential, semi-residential, and commercial areas over the time period. Statistical
results further supported these findings, yielding statistically significant negative coefficient values
for all interaction variables between higher-density land use types and a year-based dummy variable.
The findings appear to be related to residential densification involving the provision of more high-rise
apartment complexes and government efforts to secure more parks and green spaces through urban
redevelopment and renewal projects.
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1. Introduction

An urban heat island (UHI) is a phenomenon that occurs when urban areas have a significantly
higher surface temperature than surrounding non-urban areas, primarily due to excessive heat energy
created by human activities. The UHI issue has recently drawn much scholarly attention because it is
considered as an important factor associated with climate change and global warming, heat-related
health and mortality, and adverse effects on ecosystems such as drought, forest fires, water pollution, and
air pollution [1–5]. Abundant examples of adverse UHI effects can be found globally [6–8]. For example,
the African, Eurasian, North American, and South American continents all experienced extreme heat
waves in the summer of 2018, with new temperature records in Seoul, Korea and Tokyo, Japan, as well
as record-breaking forest fires in California and deadly wildfires in Greece, resulting in hundreds of
fatalities (https://edition.cnn.com/2018/07/23/world/global-heatwaves-climate-change-wxc/index.html:
accessed 15 August 2018).

The existing research literature has attempted to identify the spatio-temporal factors impacting
UHI effects and related mitigation strategies and focused on the relationship between urban spatial
configurations and the spatio-temporal distributions of land surface temperature (LST). Prior studies
and several comprehensive reviews such as Gago et al. [9] and Deilami et al. [10] have offered several
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points that are directly relevant to this study. First, a variety of factors have been identified as
determinants of LST, ranging from temporal factors such as seasonal and diurnal effects to spatial
factors such as urban form and land use/cover patterns (see reference [10] for the list of factors affecting
UHI intensity). Deilami et al. [10] reported that temporal factors including season and day/night effects
are considered in many studies they reviewed (33% and 25% of 75 reviewed papers, respectively),
while spatial factors such as vegetation cover (44% of reviewed papers), built up area (28%), and
population density (14%) are also addressed. They further noted that among land use/cover patterns,
prior studies focused on impervious surfaces (IPS), vegetation, water, buildings, and bare soil.

Second, Gago et al. [9], in a comprehensive review of strategies to mitigate the adverse effects of
UHI, noted that the three most impactful land use and land cover (LULC) factors on UHI are buildings,
green spaces, and pavement, and suggested that these factors be considered during the urban planning
process. They argued that the urban form and distribution of buildings are critical factors impacting
UHI effects. For example, the combination of high buildings and narrow streets contributes to an
increase in LST by capturing hot air and reducing air flux. They suggested the provision of parks and
green spaces as key components for mitigating the heat island effect and reducing energy consumption
for cooling buildings. However, they found no clear association between the characteristics of parks
and the formation of cold islands. Wang et al. [11] also emphasized that the urban form strongly affects
the duration of direct sun and mean radiant temperature. They concluded that a high-rise area is cooler
than a low-density area (detached housing area) due to having a deep urban canopy. But they consider
only the urban canopy, ignoring the arrangement and surface condition of residential land.

Third, the majority of previous studies have used LULC attributes and LST extracted from remote
sensing images and investigated the association of LULC and LST [12–20]. It is generally agreed that
LST is positively correlated with the IPS fraction, and negatively correlated with the green vegetation
fraction [12,21–23]. In particular, they found that land use conversion from non-urban to urban
use significantly affects the land cover conditions by replacing soil and vegetation with IPS such as
concrete, asphalt, and buildings of various heights and densities; in turn, these contribute to LST
increase [13,22,24–27].

Fourth, a wide range of urban spatial components from the micro to macro scale has been identified
in the literature. Zhou et al. [22] classified urban land use features at the micro level with the landscape
composition into six land cover features (coarse- and fine-textured vegetation, bare soil, pavement,
buildings, and water) and areas of landscape configuration, including the average size of buildings,
the standard deviation of patch sizes, the patch density of the buildings, and the average distance
of a building patch from its nearest neighboring building patch. Stone and Norman [28] focused on
the effects of the size and material composition of residential land use on the UHI, and Stone and
Rodgers [3] investigated the effects of the design of single family residential parcels on the UHI. On the
other hand, some studies analyzed the effects of macro urban features on UHI. For example, Schwarz
and Manceur [29] analyzed the effects of urban forms on UHI in European cities, and Benas et al. [30]
examined LST changes in the Mediterranean area, while Stone et al. [8] used a sprawl index as a proxy
for metropolitan-wide urban spatial structures in the United States.

Previous research has revealed connections between urban spatial configurations and LST and its
influencing factors, drawing conclusive results on issues such as the effects of NDVI and IPS on the LST.
However, few studies have investigated the impact of urban land use planning tools such as zoning on
LST. Furthermore, a better understanding of this relationship is critical for developing sustainable land
use planning measures for mitigating increases in LST. This study aims to investigate the relationship
between LST and land use types as classified by a zoning ordinance and land use, using Seoul as a case
study. To accomplish this, we classified land uses into six types according to the Korea zoning rules:
low-density, medium-density, and high-density residential areas, semi-residential areas, commercial
areas, and semi-industrial areas. Specifically, we use descriptive and multivariate statistical methods to
analyze how differences in the LST have changed by land use type over the 2004–2014 period through
an association with the building coverage ratio (BCR) which is the ratio of the building area divided by
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the land (site) area, floor area ratio (FAR) which is the ratio of total floor area divided by land (site)
area, and normalized difference vegetation index (NDVI). For these empirical analyses, we retrieved
LSTs and NDVI from satellite images for both years and combined them with parcel-based land use
information, which contains BCR, FAR, and land use type classified by zoning ordinance.

This study has several features that distinguish it from previous studies. First, to the best of the
authors’ knowledge, this is the first attempt to investigate the relationship between zoning-based land
use types and changes to LST. Furthermore, we use regression models to statistically test how LST
has changed over time by land use type in the association with the BCR, FAR, and NDVI. The second
distinction of the study is related to the characteristics of the study area and is described below.

Seoul is a good testbed for investigating the relationship between land use patterns and LST
because Seoul has experienced marked UHI effects due to its urban configuration and land use patterns.
In addition, the city has been highly built up, leaving little land space for new development over the
last several decades. Therefore, Seoul provides an appropriate setting to examine the LST effects of
urban redevelopment and renewal projects initiated by the Seoul metropolitan government (SMG)
over the last decade to restore natural resources and enhance the quality of citizen life. The results of
our analyses can provide empirical evidence of how the SMG’s efforts to enhance natural amenities
with greater provision of parks and green spaces contribute to a reduction in LST. We utilized satellite
images, Landsat TM 5 for 2004 and Landsat 8 OLI TIRS for 2014, to retrieve LSTs and NDVI.

This article is divided into three sections. The first section provides an overview of the case study
areas and explains the data sources used in the analysis. The second section presents analysis results
derived from descriptive methods, and then presents multivariate analysis results from the statistical
models. The third section summarizes all results and addresses their implications.

2. Study Area and Data

2.1. Study Area

Seoul is one of largest and densest cities in the world. It also has highly mixed land use patterns.
The total number of the city’s population was 9.8 million in 2016 and its population density was 16,200
persons per square kilometer with a land size of about 606 square kilometers, which was 5.6 times
higher than that of the Los Angeles County (2910 persons per square kilometer in 2010). The main
reasons for high-density development in Seoul are that land supply for urban development is very
limited due to strict greenbelt regulation, and that it is an attractive location due to a concentration
of employment opportunities as well as urban amenities such as an extensive transit system, and
social and cultural facilities. The majority of land in Seoul (60%) is used for urban purposes such as
residential and commercial use, while about 40% of land remains as green areas, including parks, and
is mainly designated as a green belt.

Little developable land remains available for new development within Seoul. Therefore, despite
high demand for urban development, many redevelopment and revitalization projects have been
implemented by the public and private sectors over the last decades. In particular, the SMG introduced
a “new town in town” project in 2002, which is a large scale urban regeneration project for rejuvenating
old towns mostly to the north of the Han River. It designated 35 neighborhoods with a total area of 27.3
square kilometers for the project, and among them 26 sites were primarily designated for residential
redevelopment, while the remaining nine sites were designated for renewal of the old downtown
district for commercial use [27]. Although many of the regeneration plans were postponed because of
the real estate market downturn after the 2008 global financial crisis, some redevelopment projects,
such as the Eunpyeong district redevelopment, were in the completion phase as of 2015. However,
several sites, such as the Gileum and Mia districts, remain under construction.
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2.2. Data

This study utilizes two sources of the parcel-based GIS data: the Parcel Based Land Information
System (PBLIS) by the Ministry of Interior, and the Land Management Information System (LMIS)
by the Ministry of Land, Infrastructure, and Transport. We retrieved the LST and NDVI in 2004
and 2014 from satellite images and combined these with the parcel-based land use data using a
geographic information system (GIS) for the city of Seoul. The LST and NDVI data in 2004 and 2014
were retrieved from the Landsat thematic mapper 5 (hereinafter “Landsat TM-5”) satellite image and
Landsat operational land imager and thermal infrared sensor (OLI TIRS) 8 (hereinafter “Landsat-8”)
satellite images. As shown in Table 1, we acquired the images for different months (June 2004 and
September 2014) because we could not find clear images during the same month of the year. We
corrected the atmospheric effects to retrieve more reliable LST. It is known that atmospheric correction
is crucial for the reliable LST retrieval with some exceptions [31]. Various correction algorithms
were proposed to remove atmospheric effects from TIRS image data [32–35]. In this study, Thermal
atmospheric correction tool in ENVI 5.3 has been utilized to calibrate Landsat-8 TIRS (2014) data
to brightness temperatures. For Landsat TM 5 (2004) image, ACTOR tool of ERDAS Imagine 2014
software was applied because the brightness temperature option in ENVI 5.3 is not applicable for
the TM 5 image. The LST was measured from the thermal band 6 for the Landsat TM-5, and Bands
10 and 11 for Landsat-8 using the mono window algorithm, following the method of the study by
Qin et al. [36]. In general, four algorithms to retrieve the LST from TM imagery are most frequently
used. They are the mono window method [36,37], the single channel method [38,39], the split-window
method [33], and the temperature/emissivity separation method [40]. This paper adopts the mono
window algorithm partly because the differences in results among these methods are not significant [41]
and partly because best result can be obtained this way [32].

This paper follows two steps to measure the LST: (1) conversion of the digital number (DN)
into the spectral radiance; and (2) conversion of the spectral radiance into the at-sensor brightness
temperature. This paper employs the equation developed by the National Aeronautics and Space
Administration (NASA) for computing the spectral radiance from the DN of the thermal band in a
satellite image. Ultimately, this paper calculates the effective at-sensor brightness temperature (TB)
in Kelvin using Planck’s inverse function for temperature [42]. The basic information on the satellite
images for 2004 and 2014 is presented in Table 1.

Table 1. Basic information on the satellite images for 2004 and 2014.

Attribute 2004 2014

Satellite Image Landsat TM 5 Landsat 8
Sensor TM OLI TIRS

Date/Time Acquired June 3/13:52 September 19/14:11
Projection/Datum UTM zone52/WGS84 UTM zone52/WGS84
Number of Bands 7 11

Thermal Band 6 10, 11
Red Band/NIR Band 3/4 4/5

Source: Jun et al. (2017) [27].

In order to calculate the LST change between 2004 and 2014, we first calculate mean LST values

by parcel from the satellite images and convert them into Z-scores (z =
(x−µ)
σ where x = raw score,

µ is the mean of the population, σ is the standard deviation of the population) in order to take the
seasonal variations between the image capture dates into account, as suggested by Rogan et al. [43].
Z-scored LST, known as a standard LST score (hereafter named ZLST), is computed by dividing the
difference between the observed LST value and the mean by the standard deviation. We retrieve the
NDVI from the satellite image by calculating the ratio of near infrared (NIR) and red band in the
spectral information, as shown in Equation (1).
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NDVI =
(NIR−RED)

(NIR + RED)
(1)

where NIR is the near infrared band value for a cell and RED is the red band value for the cell. We use
bands 4 and 3 in the Landsat TM-5 image, and bands 5 and 4 in the Landsat-8 for calculating NDVI. To
remove atmospheric effects from the satellite images, the ACTOR tool in the ERDAS Imagine 2014
software has been used.

3. Empirical Analyses

3.1. Descriptive Analysis

Our primary concern was the impact of urban land use on LST. Therefore, for our empirical
analysis, we selected parcels for residential, commercial, and industrial use with 222,253 observations
for each year. Table 2 presents the means and standard deviations for FAR, BCR, LST, and NDVI from
the combined data set for 2004 and 2014. Maps (a)-(d) in Figure 1 show visual changes of the four
measures, respectively. The figure illustrates that there seems to be a significant relationship between
green areas and LST changes. In order to emphasize the relationship, an example of a zoom-in image
was added in Figure 2. Figure 2 illustrates a redevelopment site that has experienced a significant LST
reduction possibly due to residential densification from low-density (a) to high-density residential
development (b).

Our data shows that the average ZLST in the study area decreased by 0.01 over the last decade,
while the average NDVI increased by 0.09 during the same period, implying an increase in green
vegetation and a slight decrease in ZLST. Increases in BCR and FAR over the last decade are also
notable and indicate a greater building coverage ratio and higher density in 2014 than in 2004.

Table 2. Summary statistics for parcels for residential, commercial, and industrial use.

2004 2014

Mean S.D. Mean S.D.

Z-scored land surface
temperature (ZLST) 0.024 0.987 0.013 0.997

Normalized difference
vegetation index (NDVI) 0.211 0.108 0.302 0.203

Building coverage ratio (BCR) 0.403 0.131 0.410 0.130
Floor area ratio (FAR) 1.950 1.172 2.126 1.282

N 222,253 222,253
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Figure 2. An example of redevelopment site having a significant LST reduction due to densification:
(a) single-family housing units in 2008, (b) apartment complexes in 2014. The figure (a) and (b)
are captured from Google images (Latitude longitude coordinates for Seoul are 37◦33′57.6′′ N,
126◦58′42.24′′ E).

For the empirical analysis, we classified the urban land use parcels into six categories according to
the FAR, as shown in Table 3. To protect the good living environment and designate areas that need to be
in harmony with nearby residential and neighborhood living facilities, residential areas were subdivided
into three residential areas depending on residential building heights: (1) Low-density residential area
(R-1); (2) Medium-density residential area (R-2), and High-density residential areas (R-3).

The designation “semi-residential area” indicates the land for mixed residential and commercial
use, while the “commercial area” designation includes central and general commercial areas as well as
neighboring and circulating commercial areas as defined by the zoning ordinance. Semi-industrial area
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is the land for light industry or other industries, but needs supplementation of residential, commercial
and business functions.

Table 3. Land use classification and FAR in Korean zoning ordinance.

Land Use Classification Floor Area Ratio (FAR), %

Low-density residential area 50–200
Medium-density residential area 150–250

High-density residential area 200–300
Semi-residential area 200–500

Commercial area 200–1500
Semi-industrial area 200–400

Table 4 presents changes in ZLST and NDVI by land use type between 2004 and 2014. The most
significant ZLST change occurred in low-density and high-density residential areas between 2004 and
2014. In 2004, low-density residential areas had the lowest ZLST (−0.664), and high-density residential
areas had the second lowest (−0.259). However, their order reverse in 2014 with the largest ZLST
reduction in high-density residential areas (−0.156). On the other hand, low-density residential areas
experienced the highest ZLST increase (0.367) during the 2004–2014 period. NDVI changes partly
explained changes in ZLST caused by land use type. NDVI increases were found in land use types
which experienced ZLST drops. This indicates a negative relationship between ZLST and NDVI. This
argument is generally supported by Figure 3, showing that ZLST is negatively associated with NDVI
for all of land use types at 1% significance level in terms of the Pearson correlation coefficient.
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Table 4. Changes in ZLST and NDVI by land use type between 2004 and 2014.

Land Use Types Share *
2004 2014 Difference between

2004 and 2014

ZLST NDVI ZLST NDVI ZLST NDVI

Low-density residential areas 9.2% −0.664 0.296 −0.297 0.381 0.367 0.084
Medium-density residential areas 42.7% 0.243 0.188 0.271 0.249 0.028 0.062

High-density residential areas 32.0% −0.259 0.238 −0.415 0.379 −0.156 0.141
Semi-residential areas 3.9% 0.513 0.161 0.459 0.215 −0.054 0.054

Commercial areas 7.5% 0.265 0.166 0.237 0.214 −0.028 0.048
Semi-industrial areas 4.7% 0.508 0.191 0.511 0.309 0.003 0.118

* The share of total number of parcels (444,506) used in the analysis.

3.2. Statistical Analysis

To investigate the effects of land use type on LST, we built two pooled ordinary least squares
(OLS) regression models by combining observations for both years, a base model, and a model with
year dummy interaction variables. The pooled model can enhance statistical power and capture the
interaction impacts between land use type and year on LST changes, while controlling for other factors
affecting LST. For the base model, eight independent variables were used. They were NDVI, BCR, five
land use type dummy variables (the low-density residential area is the reference group), and year
dummy variable. ZLST served as the dependent variable. For the second model, we added five land
use type interaction variables into the base model to capture the interaction impacts between land
use type and year. As Jaccard and Turrisi [44] argued, it is possible to statistically test whether LST
changes vary by land use type over time with the interaction variables that we used here.

Table 5 shows the OLS results for both models. The overall performance of the models is moderate
with a R2 value of 0.28. All independent variables for both models were statistically significant
(p < 0.01). The values of the variance inflation factor (VIF) ranged from 1.21 to 8.82, showing no serious
collinearity with the exception of the year dummy variable in the second model (10.93).

Specific result are as follows. First, as we expected, the model results showed that the NDVI was
negatively associated with LST and that BCR was positively associated with it; these findings indicate
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that larger BCR is likely to contribute to increasing LST. The base model results showed a positive
coefficient value for the year dummy, implying that the LST in the study area has increased over the
last decade after controlling other factors affecting LST.

Second, a notable finding is that the LSTs in all land use types were higher than the reference
group (low-density residential areas), indicating that low-density residential areas have the lowest LST.
Third, and most importantly, all the interaction variables had significant negative coefficient values in
the second model. This finding indicates that LST has significantly reduced in dense land use areas
during the 2004–2014 period, regardless of land use type, compared to LST change in low-density
residential areas.

Table 5. Pooled OLS results.

Variables
Base Model Model with Interaction Variables

β t-Value VIF β t-Value VIF

Intercept −0.506 −74.9 *** 0.00 −0.681 −87.3 *** 0.00
NDVI −1.912 −222.7 *** 1.32 −1.911 −221.4 *** 1.34
BCR 1.633 153.3 *** 1.21 1.630 153.3 *** 1.21

Medium-density residential areas 0.394 83.7 *** 3.40 0.579 88.9 *** 6.55
High-density residential areas 0.087 18.3 *** 3.05 0.285 42.9 *** 6.07

Semi-residential areas 0.537 69.1 *** 1.41 0.774 70.8 *** 2.80
Commercial areas 0.279 43.9 *** 1.77 0.510 57.9 *** 3.42

Semi-industrial areas 0.795 110.3 *** 1.45 0.949 94.4 *** 2.84
Year 0.153 57.6 *** 1.10 0.508 61.1 *** 10.93

Medium-density residential area x
Year - - - −0.374 −40.9 *** 8.82

High-density residential area x
Year - - - −0.401 −42.5 *** 7.58

Semi-residential area x Year - - - −0.476 −31.2 *** 2.85
Commercial area x Year - - - −0.465 −37.6 *** 3.50

Semi-industrial area x Year - - - −0.312 −21.8 *** 2.88

N 444,506 444,506

Adjusted R2 0.281 0.284

Notes: (1) *** p < 0.01; (2) The reference variable is low-density residential use.

4. Conclusions and Implications

This study investigated how changes in LST were impacted by land use type, using Seoul as a
case study. The descriptive analysis results showed that over a ten-year period, there was a rise in LST
for low- and medium-density residential, and semi-industrial areas, whereas LST drops were found in
high-density residential, semi-residential, and commercial areas. The multivariate statistical results
partly supported these findings, yielding statistically significant negative coefficient values for all the
interaction variables between higher-density land use types and the year dummy variable; this implies
LST drops in higher-density land use areas. Our findings are consistent with studies of Stone et al. [8]
and Chen et al. [45] who argue lower LSTs occur in compact urban areas in the United States and in
city centers in China, respectively.

Our findings present several implications for urban planning and development. First, they
offer empirical evidence for higher LST reduction in denser land uses, supporting the argument
for compact development as a sustainable urban planning tool in terms of UHI effects. Since the
land use classification in this study is based on zoning ordinances in Korea, the findings can help
urban planners to understand the relationship between land use zoning and LST, and to develop
land use planning measures for mitigating LST increases. Second, the larger LST reduction that
occurred in higher- density areas appears to be related to residential densification in Seoul due to the
provision of high-rise apartment complexes there. According to the SMG, the number of apartment
complexes (The apartment complex is defined by number of building floors (5 or above) and apartment
units (300 or more units)) in Seoul increased by 60.5% from 2652 in 2005 to 4256 in 2016, and the



Sustainability 2019, 11, 7056 12 of 14

number of apartment buildings increased by 55.7% from 12,800 to 20,000 during the same period. In
addition, more high-rise apartment buildings have been supplied between 2005 and 2016 with the
increase in the share of 16 story or higher apartment buildings from 34.9% in 2005 to 38.3% in 2016
(http://data.seoul.go.kr/dataList/datasetView.do?infId=171&srvType=S&serviceKind=2: accessed 13
August 2018). The strong preference of higher-income residents for high-rise apartment buildings
drove the increase in apartment supply because apartment complexes provide good amenities such as
parks, walking paths, bike paths, convenient access to public transit, and safety by having gatekeepers.

Third, like many previous studies, our results also indicate that higher NDVI in denser land
areas contributes to the LST reduction. This emphasizes the importance of providing green vegetation
in the redevelopment or renovation process. In order to provide more green spaces to citizens, the
SMG has implemented various park and green space policies under the 2030 park and green space
master plan, including restoration of the Cheonggye stream in the downtown area, green rooftops,
and open, green apartments with the removal of apartment complex walls. According to the SMG,
parks and green spaces have increased from 284.5 square kilometers in 1999 to 318.2 square kilometers
in 2014, representing a 12% increase (https://seoulsolution.kr/en/content/3497: accessed 14 August
2018.) Lastly, to the best of our knowledge, no previous studies have investigated the relationship
between land use zoning and densification and LST. More empirical studies need to be conducted in
other countries to elucidate this relationship and to find similarities and differences in that relationship
through comparative studies.

Author Contributions: Conceptualization, J.-I.K. and M.-J.J.; data preparation, C.-H.Y.; formal analysis, K.-H.K.,
and J.Y.H.; writing—original draft preparation, M.-J.J.; writing—review and editing, J.-I.K.; supervision, J.-I.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
2. Oke, T.R. Boundary Layer Climates; Routledge: New York, NY, USA, 1987.
3. Stone, B.; Rodgers, M. Urban form and thermal efficiency: How the design of cities influences the urban heat

island effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [CrossRef]
4. Hondula, D.M.; Georgescu, M.; Balling, R.C. Challenges associated with projecting urbanization-induced

heat-related mortality. Sci. Total Environ. 2014, 490, 538–544. [CrossRef] [PubMed]
5. EPA (US Environmental Protection Agency). Heat Island Impacts; United States Environmental Protection

Agency: Washington, DC, USA, 2016. Available online: http://www.epa.gov/hiri/impacts/index.htm
(accessed on 23 August 2018).

6. Whitman, S.; Good, G.; Donoghue, E.R.; Benbow, N.; Shou, W.; Mou, S. Mortality in Chicago attributed to
the July 1995 heat wave. Am. J. Public Health 1997, 87, 1515–1518. [CrossRef] [PubMed]

7. Robine, J.M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.P.; Herrmann, F.R. Death toll
exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [CrossRef]
[PubMed]

8. Stone, B.; Hess, J.; Frumkin, H. Urban form and extreme heat events: Are sprawling cities more vulnerable
to climate change than compact cities? Environ. Health Perspect. 2010, 118, 1425–1428. Available online:
http://users.metu.edu.tr/ioguz/Stone_2010.pdf (accessed on 22 February 2016). [CrossRef]

9. Gago, E.J.; Roldán, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies
to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [CrossRef]

10. Deilami, K.; Kamruzzamanb, M.D.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal
factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinfor. 2018, 67, 30–42. [CrossRef]

11. Wang, S.; Ma, Q.; Ding, H.; Liang, H. Detection of urban expansion and land surface temperature change
using multi-temporal Landsat images. Resour. Conserv. Recycl. 2018, 128, 526–534. [CrossRef]

12. Weng, Q.; Liu, H.; Lu, D. Assessing the effects of land use and land cover patterns on thermal conditions
using landscape metrics in city of Indianapolis, United States. Urban Ecosyst. 2007, 10, 203–219. [CrossRef]

http://data.seoul.go.kr/dataList/datasetView.do?infId=171&srvType=S&serviceKind=2
https://seoulsolution.kr/en/content/3497
http://dx.doi.org/10.1002/qj.49710845502
http://dx.doi.org/10.1080/01944360108976228
http://dx.doi.org/10.1016/j.scitotenv.2014.04.130
http://www.ncbi.nlm.nih.gov/pubmed/24880543
http://www.epa.gov/hiri/impacts/index.htm
http://dx.doi.org/10.2105/AJPH.87.9.1515
http://www.ncbi.nlm.nih.gov/pubmed/9314806
http://dx.doi.org/10.1016/j.crvi.2007.12.001
http://www.ncbi.nlm.nih.gov/pubmed/18241810
http://users.metu.edu.tr/ioguz/Stone_2010.pdf
http://dx.doi.org/10.1289/ehp.0901879
http://dx.doi.org/10.1016/j.rser.2013.05.057
http://dx.doi.org/10.1016/j.jag.2017.12.009
http://dx.doi.org/10.1016/j.resconrec.2016.05.011
http://dx.doi.org/10.1007/s11252-007-0020-0


Sustainability 2019, 11, 7056 13 of 14

13. Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst
area of China. J. Environ. Manag. 2007, 85, 245–257. [CrossRef] [PubMed]

14. Thi Van, T.; Xuan Bao, H.A. Study of the impact of urban development on surface temperature using remote
sensing in Ho Chi Minh City. South. Vietnam. Geogr. Res. 2010, 48, 86–96.

15. Rinner, C.; Hussain, M. Toronto’s urban heat island-exploring the relationship between land use and surface
temperature. Remote Sens. 2011, 3, 1251–1265. [CrossRef]

16. Balçik, F. Determining the impact of urban components on land surface temperature of Istanbul by using
remote sensing indices. Environ. Monit. Assess. 2014, 186, 859–872. [CrossRef] [PubMed]

17. Heusinkveld, B.G.; Steeneveld, G.J.; Hove, L.V.; Jacobs, C.M.J.; Holtslag, A.A.M. Spatial variability of the
Rotterdam urban heat island as influenced by urban land use. J. Geophys. Res. Atmos. 2014, 119, 677–692.
[CrossRef]

18. Buyadi, S.; Mohd, W.; Misni, A. Impact of land use changes on the surface temperature distribution of area
surrounding the National Botanic Garden, Shah Alam. Soc. Behav. Sci. 2013, 101, 516–525. [CrossRef]

19. Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating
in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [CrossRef]

20. Quan, J.; Zhan, W.; Chen, Y.; Wang, M.; Wang, J. Time series decomposition of remotely sensed land surface
temperature and investigation of trends and seasonal variations in surface urban heat islands. J. Geophys.
Res. Atmos. 2016, 121, 2638–2657.

21. EPA (US Environmental Protection Agency). Reducing Urban Heat Islands: Compendium of Strategies; US
Environmental Protection Agency: Washington, DC, USA, 2008.

22. Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of
land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63.
[CrossRef]

23. Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of green space affects land surface temperature:
Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898.
[CrossRef]

24. Qwen, T.W.; Carlson, T.N.; Gilles, R.R. An assessment of satellite remotely sensed land cover parameters in
quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681.

25. Yuan, F.; Wu, C.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation
index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106,
375–386. [CrossRef]

26. Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of urban heat island based on the
relationship between land surface temperature and land use/land cover in Tehran. Sustain. Cities Soc. 2016,
23, 94–104. [CrossRef]

27. Jun, M.; Kim, J.; Kim, H.; Yeo, C.; Hyun, J. Effects of two urban development strategies on changes in the land
surface temperature: Infill versus suburban new town development. J. Urban Plan. Dev. 2017, 143, 04017010.
[CrossRef]

28. Stone, B.; Norman, J. Land use planning and surface heat island formation: A parcel-based radiation flux
approach. Atmos. Environ. 2006, 40, 3561–3573. [CrossRef]

29. Schwarz, N.; Manceur, A. Analyzing the influence of urban forms on surface urban heat islands in Europe.
J. Urban Plan. Dev. 2015, 141, A4014003. [CrossRef]

30. Benas, N.; Chrysoulakis, N.; Cartalis, C. Trends of urban surface temperature and heat island characteristics
in the Mediterranean. Theor. Appl. Climatol. 2016, 130, 807–816. [CrossRef]

31. Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using
Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244.
[CrossRef]

32. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5.
Remote Sens. Environ. 2004, 90, 434–440. [CrossRef]

33. Mutiibwa, D.; Strachan, S.; Albright, T. Land surface temperature and surface air temperature in complex
terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [CrossRef]

34. Bonafoni, S. Downscaling of Landsat and MODIS Land Surface Temperature Over the Heterogeneous Urban
Area of Milan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2019–2027. [CrossRef]

http://dx.doi.org/10.1016/j.jenvman.2006.07.016
http://www.ncbi.nlm.nih.gov/pubmed/17126988
http://dx.doi.org/10.3390/rs3061251
http://dx.doi.org/10.1007/s10661-013-3427-5
http://www.ncbi.nlm.nih.gov/pubmed/24043606
http://dx.doi.org/10.1002/2012JD019399
http://dx.doi.org/10.1016/j.sbspro.2013.07.225
http://dx.doi.org/10.1016/j.landurbplan.2015.02.012
http://dx.doi.org/10.1016/j.landurbplan.2011.03.009
http://dx.doi.org/10.1007/s10980-012-9731-6
http://dx.doi.org/10.1016/j.rse.2006.09.003
http://dx.doi.org/10.1016/j.scs.2016.03.009
http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000396
http://dx.doi.org/10.1016/j.atmosenv.2006.01.015
http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000263
http://dx.doi.org/10.1007/s00704-016-1905-8
http://dx.doi.org/10.1016/S0034-4257(00)00169-3
http://dx.doi.org/10.1016/j.rse.2004.02.003
http://dx.doi.org/10.1109/JSTARS.2015.2468594
http://dx.doi.org/10.1109/JSTARS.2016.2514367


Sustainability 2019, 11, 7056 14 of 14

35. Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal
infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [CrossRef]

36. Qin, Z.; Kamieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from
Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746.
[CrossRef]

37. Zhi-Hao, Q.; Zhang, M.H.; Karnieli, A. Mono-window algorithm for retrieving land surface temperature
from Landsat TM6 data. ACTA Geogr. Sin. Chin. Ed. 2001, 56, 466–474.

38. Jiménez-Muñoz, J.; Sobrino, J. A generalized single-channel method for retrieving land surface temperature
from remote sensing data. J. Geophys. Res. 2003, 108. [CrossRef]

39. Jiménez-Muñoz, J.; Cristobal, J.; Sobrino, J.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel
algorithm for land surface retrieval from Landsat thermal-infrared data. IEEE Trans.Geosci. Remote Sens.
2009, 47, 339–349. [CrossRef]

40. Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity
separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [CrossRef]

41. Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in
Hong Kong. Remote Sens. 2011, 3, 1535–1552. [CrossRef]

42. Sospedra, F.; Caselles, V.; Valor, E. Effective wavenumber for thermal infrared bands-application to
Landsat-TM. Int. J. Remote Sens. 1998, 19, 2105–2117. [CrossRef]

43. Rogan, J.; Ziemer, M.; Martin, D.; Ratick, S.; Cuba, N.; DeLauer, V. The impact of tree cover loss on land
surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data.
App. Geogr. 2013, 45, 49–57. [CrossRef]

44. Jaccard, J.; Turrisi, R. Interaction Effects in Multiple Regression, 2nd ed.; Sage University Papers Series on
Quantitative Applications in the Social Sciences, 07-072; Sage: Thousand Oaks, CA, USA, 2003.

45. Chen, L.; Jiang, R.; Xiang, W. Surface heat island in Shanghai and its relationship with urban development
from 1989 to 2013. Adv. Meteorol. 2016, 2016, 9782686. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2017.01.029
http://dx.doi.org/10.1080/01431160010006971
http://dx.doi.org/10.1029/2003JD003480
http://dx.doi.org/10.1109/TGRS.2008.2007125
http://dx.doi.org/10.1109/36.700995
http://dx.doi.org/10.3390/rs3071535
http://dx.doi.org/10.1080/014311698214893
http://dx.doi.org/10.1016/j.apgeog.2013.07.004
http://dx.doi.org/10.1155/2016/9782686
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area 
	Data 

	Empirical Analyses 
	Descriptive Analysis 
	Statistical Analysis 

	Conclusions and Implications 
	References

