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Abstract: Disassembly is an indispensable part in remanufacturing process. Disassembly line
balancing and disassembly mode have direct effects on the disassembly efficiency and resource
utilization. Recent researches about disassembly line balancing problem (DLBP) either considered
the highest productivity, lowest disassembly cost or some other performance measures. No one has
considered these metrics comprehensively. In practical production, ignoring the ratio of resource
input and value output within remanufacturing oriented disassembly can result in inefficient or
pointless remanufacturing operations. To address the problem, a novel multi-efficiency DLBP
optimization method is proposed. Different from the conventional DLBP, destructive disassembly
mode is considered not only on un-detachable parts, but also on detachable parts with low value,
high energy consumption, and long task time. The time efficiency, energy efficiency, and value
efficiency are newly defined as the ultimate optimization objectives. For the characteristics of the
multi-objective optimization model, a dual-population discrete artificial bee colony algorithm is
proposed. The proposed model and algorithm are validated by different scales examples and applied
to an automotive engine disassembly line. The results show that the proposed model is more efficient,
and the algorithm is well suited to the multi-objective optimization model.

Keywords: disassembly line balancing; destructive disassembly; dual-population discrete artificial
bee colony algorithm; multi-objective optimization

1. Introduction

The utilization and subsequent re-utilization of recyclable materials and reusable components is
often cited as the most viable solution to reducing user waste and realizing the concept of sustainable
development [1]. Remanufacturing of parts or subassemblies is one form of recycling, the basic
principle of which is to maximize the use of products that have reached the end of their life cycle,
with the least energy and raw material input. Disassembly is a vital strategy of remanufacturing,
which retrieves the desired parts and/or subassemblies by separating a product into its constituents [2].
Due to the uncertainty quality of the recycled product, the handling of the disassembled parts includes
direct reuse, remanufacture, materials recovery, and discard processing, which lead to the difference
in remanufacturing profit. In order to improve the disassembly efficiency and reduce the cost of
disassembly, the disassembly line was proposed by Gupta [3], and the disassembly line problem
(DLBP) was mathematically defined [4]. DLBP is generally stated as the assignment of disassembly
tasks to workstations such that all precedence relations between tasks are satisfied and some measures
of effectiveness are optimized [5]. Although the DLBP has been studied for over twenty-five years,
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it is still immature, and there are some research potentials that need to be investigated, such as DLBP,
that includes destructive disassembly tasks, DLBP models, considered lean philosophy, etc. [6,7].

The disassembly mode could be placed into two categories according to damage degree of the parts:
1O Conventional disassembly mode refers to removing all the connections between the two components

and obtaining all parts without destruction and cost considerations, which means being completely
disassembled; 2O partial destructive disassembly mode refers to destroying some connections to get
major parts under cost considerations [8]. According to different disassembly modes, the disassembly
line balancing problem (DLBP) can be divided into two categories: Conventional disassembly line
balancing problem (CDLBP), and partial destructive disassembly line balancing problem (PDDLBP).

CDLBP is a mode of total disassembly by assuming each part of the product is detachable.
The optimization objectives and method of the CDLBP are partially similar to that of assembly line
balance problem (ALBP), such as minimizing the number of disassembly workstations and load
balancing [9], minimizing the sum of idle time periods from all workstations [10], and minimizing
disassembly costs [11]. Yet some optimization objectives of CDLBP are different to that of ALBP and
expanded on the basis of disassembly particularity, as there may be some special-handling-required
hazardous parts which will affect the utilization of disassembly workstations [12]. Güngör [3],
McGovern [13], and Kalayci [14,15] considered the maximization of preference in removal of the
hazardous parts in the shortest possible time. In their studies, a hazard measure was developed to
quantify each solution sequence’s performance with a lower calculated value being more desirable.
This measure is based on binary variables that indicate whether a part is considered to contain
hazardous material [16]. Taking into account the demand for different parts, Ding [17] and Wang [18]
considered maximizing the preference in removal of the high-demand parts before low-demand parts.
Zhu et al. proposed a Pareto firefly algorithm for multi-objective disassembly line balancing problems
with hazard evaluation [19]. Liu et al. presented a multi-objective sequence-dependent disassembly
line balancing problem (SDDLBP) optimization model, taking the number of opened workstations, total
disassembly time, idle times of opened workstations, and the hazardous components and high-demand
parts altogether [20]. In order to let the decision-maker represent its preferences on each goal of the
multi-objective using physically meaningful preference ranges, a linear physical programming-based
disassembly line balancing method was proposed by Mehmet [21], and the vague aspirations of
decision makers were also considered by Turan [22]. However, there are a number of uncertainties in
the disassembly process like recycling product quality, quantity, and return timing, which lead to the
attention of the fuzzy disassembly line balancing problem (FDLBP) [23]. As a special form of CDLBP,
FDLBP focuses on total disassembly based on fuzzy data quantization or fuzzy analytic hierarchy
process [24–26]. Although it has been better optimized, it does not take into account the fact that parts
cannot be properly disassembled due to failure.

PDDLBP strives to consider some practical issues found in the remanufacturing oriented
disassembly process, like non-detachable due to breakage, or failure of parts [27]. Rickli [28]
and Smith [8] developed a partial disassembly sequence planning method to find an optimized
disassembly stopping point based on cost-benefit analyses by using life cycle impact assessment
tools. Parts selection to disassemble was performed by disassembly cost and reproduction value [29].
Although this method can improve the profit of the recycling product to some degree, due to the
constraints between the product and the detachability, we must destroy some valueless or low-value
parts to obtained the required high-value parts. Under these circumstances, Song et al. [30] and
Chen [31] proposed a method for product disassembly sequence planning under a partial destruction
mode. Additionally, the effectiveness of the method was proved from the perspective of disassembly
cost and efficiency. However, the decision model and evaluation criteria for destructive disassembled
parts need further research.

According to the literature review, although disassembly has been in-depth researched in the
time, cost, profit [32,33], but sometimes it consumes huge energy and time while making little profits.
More than this, the value of time cost or energy consumption is beyond the value of disassembly parts,
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and this would result in serious waste of resources due to mass disassembly. Therefore, more efficient
disassembly models and leaner evaluation metrics need to be established. In this paper, first of all, a
new disassembly method is proposed and destructive disassembly mode is considered not only for
non-detachable parts, but also for detachable parts with low value, high energy consumption, and long
disassembly time. Then, combined with DLBP models, a novel multi-efficiency-oriented optimization
model is established to achieve the highest time efficiency, value efficiency, and energy efficiency.
Finally, a discrete dual population artificial bee colony algorithm (DDABCA) based on Pareto frontier
is proposed to solve this problem.

The next section describes the framework of multi-efficiency-oriented disassembly line balancing
problem (MEoDLBP). In Section 3, a multi-objective optimization algorithm is proposed, which will be
used to solve MEoDLBP. In Section 4, the algorithm and the model are validated by some examples
in the literatures. In Section 5, we conduct a practical application and validation for the proposed
model. Finally, Section 6 concludes the paper with summary, managerial impacts, the limits of this
study, and plan for future research.

2. Materials and Methods

2.1. Notations

The notations used in the mathematical model are as follows:
N—Number of disassembly task, one-to-one correspondence with disassembly parts
M—Number of disassembly workstations
dn—Binary value; 1 if part n is disassembled in destructive mode, else 0, n = 1, 2, . . . , N
td0
n —Time of part n disassembled in normal mode

td1
n —Time of part n disassembled in destructive mode

CT—Cycle time of the disassembly line
TE—Time efficiency
VE—Value efficiency
EE—Energy efficiency
vd0

n —Value of part n disassembled in normal mode
vd1

n —Value of part n disassembled in destructive normal
ed0

n —Energy consumption of part n disassembled in normal mode
ed1

n —Energy consumption of part n disassembled in destructive mode
xmn—Binary value, 1 if part n is assigned to workstation m, else 0, m = 1, 2, . . . , M
ϕkn—Binary value, disassembly precedence relations, 1 if task k should be finished before task n,

k = 1, 2, . . . , N
X f —Feasible solution set
N f —Max number of X f
Xi f —Infeasible solution set
Ni f —Max number of Xi f
Li f —Limit iteration times of infeasible solutions
S∗—Pareto solution set

2.2. Problem Statement

Assume that parts A, B, C, and D could be disassembled intact after detection and evaluation
process. The disassembly sequence diagram is shown in Figure 1a and the arrows represent the
precedence relations. Only consider the ‘AND’ relation types in DLBP [34], the disassembly sequence
is A first, then B and C, and finally D.

Due to the difference of material, processing technology and other facts, the values of different
components vary widely. Such as, the B in red means the part with low value and the D in green
means the part with high value. In CDLBP, A, B, C, and D can be disassembled as the normal mode



Sustainability 2019, 11, 6969 4 of 16

with independently considering the total time, energy consumption, and value of the disassembled
parts. In this disassembly mode, it is not economical and environmentally friendly. Such as for the
part B, with low value but difficult to disassemble or disassembled with high energy consumption, if it
is conventionally disassembled, it will cause greater waste of resources than the value of the obtained
part, which is contrary to the original intention of remanufacturing. Conversely, less energy or time
may be consumed through destructive disassembly, although the value of obtained parts will be less,
the value produced per unit time and energy may be higher. Thus, the disassembly mode and tasks
assignment will have a great impact on the efficiency, economy, and environmental protection of the
disassembly line.
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To address the problem, a novel disassembly mode is proposed, which is shown in Figure 1b.
The parts A, B, C, D can be obtained by the normal disassembly mode, or obtain A’, B’, C’, D’ by the
destructive disassembly mode. It means that no matter A, B, C, D can be normally removed or not,
they always can be destructively disassembled. Obviously, the time, energy consumption, and the
value of the obtained parts by the destructive disassembly are certainly different with the conventional
disassembly. Therefore, it is no longer appropriate to partially consider the total time or energy
consumption in the new disassembly mode. New comprehensive efficiency-oriented optimization
metrics are defined, including time efficiency (TE), value efficiency (VE), and energy efficiency (EE).
The new disassembly problem is named as multi-efficiency-oriented disassembly line balancing
problem (MEoDLBP), and its ultimate goal is to achieve an optimal disassembly sequence (disassemble
task assignment) and the disassembly mode (destructive or not) of each part.

2.3. Mathematical Definition and Formulation

Assume that there are N parts to be disassembled and each part n corresponds to a disassembly
task, which can be finished either in normal mode (dn = 0) or in destructive mode (dn = 1). The task n
is specified by its processing time tn, energy consumption en, and the value of disassembled part vn,
which depend on the disassembly mode and the use of the disassembled part (reuse, remanufacture,
or materials). The N tasks need to be finished on M workstations in an optimized sequence, and every
task must satisfy the disassembly precedence relations. It should be noted that some components
cannot be destructively disassembled in the production environment, such as the part with hazardous,
high demand, high value, and so forth. Therefore, in order to make the model more generality, dn ≡ 0
if part n cannot be destructively disassembled.

Assumptions for MEoDLBP are given as follows:
a. Each task can be finished on any workstation. In fact, hazardous or some special parts may

only be disassembled on some fixed workstations. In order to simplify the model, this factor is
not considered.

b. The disassembly time, energy consumption, and the value of disassembled part can be obtained
through evaluation or historical experience data before disassembly.
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c. Since the remanufacture products to be disassembled are classified based on inspection and
evaluation, the same batch of remanufacture products can be considered as indistinguishable.

d. The workstations are already setup and the number of workstations is fixed M.
e. Destructive disassembly has no effect on the disassembly sequence.

2.3.1. Objective Functions

Time Efficiency

Equation (1) is the calculation of TE. Similar to the traditional disassembly line, the balance of
the disassembly line is a direct manifestation of the disassembly efficiency. In order to maximize the
utilization of the workstation, TE is defined as the minimum free time of the entire disassembly line,
which means that each station’s operating time is as close as the cycle time (CT) [35]. Equation (2) is
the calculation of CT, which is the maximum time of M workstations.

maxTE =

N∑
n=1

[td0
n × (1− dn) + td1

n × dn]

CT ×M
(1)

CT = max
m=1,2,...,M

 N∑
n=1

[td0
n × (1− dn) × xmn + td1

n × dn × xmn]

 (2)

Energy Efficiency

Equation (3) is the calculation of EE. It represents the ratio of disassembled parts value to the
energy consumed by the disassembly process, which indicates the disassembly value produced
by per unit energy consumption. EE considers the contradictory relationship between value and
energy consumption, which can overcome the drawbacks of simply pursuing value maximization
or minimizing energy consumption in the traditional disassembly mode. The total value of the
disassembled parts consists of reuse value, remanufacture value, and material value. The energy
consumption includes the energy consumed by each disassembled component through the normal
disassembly of energy consumption or destructive disassembly energy consumption.

maxEE =
Vtotal
Etotal

=

N∑
n=1

[vd0
n × (1− dn) + vd1

n × dn]

N∑
n=1

[ed0
n × (1− dn) + ed1

n × dn]

(3)

Value Efficiency

Equation (4) is the calculation of VE. Disassembly time varies wildly due to the difference of
assembly process and failure forms. At the same time, owing to the difference of production process
and raw materials, the values of remanufactured parts are varying widely. And the components with
long disassembly time are not always having high remanufacturing value. Thence, there may be
circumstances where it takes long time to disassemble valueless parts in the conventional disassembly
mode. Obviously, it is unreasonable. To avoid this phenomenon and maximize both the value and
disassembly efficiency of the disassembly line, VE is defined, which is not the maximization of the
value obtained from the disassembled parts, but the maximization of the disassembly value in per
unit time.

maxVE =
Vtotal
Ttotal

=

N∑
n=1

[vd0
n × (1− dn) + vd1

n × dn]

N∑
n=1

[td0
n × (1− dn) + td1

n × dn]

(4)
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2.3.2. Constrains

Equations (5) and (6) are constrains of the objective functions. Equation (5) represents that any
task can be assigned to only one workstation. Constraint 6 indicates that each task must be processed
under the given precedence relation set ϕkn. If task k must be finished before task n, then task k cannot
be assigned to the downstream workstation of task n. That is to say, the workstation index of task k
should be less than or equal to the workstation index of task n.

M∑
m=1

xmn = 1 (5)

M∑
m=1

(m× xmk) ≤
M∑

m=1

(m× xmn), ∀ϕkn = 1 (6)

3. Multi-Objective Optimization Algorithm for MEoDLBP

The disassembly line balance problem was proved as a kind of NP-complete problem [16,17], which
mean that the solving difficulty will increase geometrically with the increase of the problem scale. It is
difficult to obtain optimal solutions with traditional mathematical methods, and meta-heuristic method
becomes an effective way, such as Ant Colony Algorithm [36], Genetic Algorithm [37,38], Particle
Swarm Optimization [12], Tabu Search [39], etc. To validate the solutions generated by algorithms
and proving their versatility in accommodating substantial variations in the problem environment,
Alshibli utilized Taguchi’s orthogonal arrays to test the robustness of a previously-proposed Simulated
Annealing (SA) algorithm [1]. As a new group intelligent optimization algorithm, artificial bee colony
algorithm (ABCA) has the characteristics of simple operation, low control parameters, high searching
precision, and strong robustness in the optimization of complex problems, and has been widely used
for assembly line balancing problem [40,41] as well as DLBP [14]. However, since the classical ABC
algorithm is mainly used to solve the continuous problem, the discretization of the solution and
generation of new solutions are the focus of research. In this section, a multi-objective optimization
method based on non-dominated sorting is proposed after introducing the basic ABC algorithm, which
is used to solve the MEoDLBP model.

3.1. Basic Artificial Bee Colony Algorithm

In the ABC algorithm, a food source represents a possible solution of a problem, and the objective
value is used to describe its quality. Employed, onlooker, and scout bees are used to search for good
food sources. The bee swarm consists of an equal number of employed and onlooker bees, which both
are equal to the number of food sources. The steps below describe the operation of the algorithm:

Step 1: Initialization phase. The initial solution xi can be generated by Equation (7).

xid = xmin
d + rand(0, 1)(xmax

d − xmin
d ) (7)

where i = 1, 2, . . . , Np, d = 1, 2, . . . , D. xmax
d and xmin

d are the upper and lower bounds for dth variable in
the search space, respectively. Np is the number of food sources, that is the number of the population.
D is the number of each individual’s variables.

Step 2: Employed bee phase. Employed bees are employed to find a potential solution, which
equation can be defined as:

vid = xid + µ× (xid − xkd) (8)

where k represents a randomly selected index of bees which is different from that of the current
employed bee xi, k , i. µ is a randomly generated real value within the interval [−1,1]. After vi was
obtained, it will be compared with xi, and the better individual will be saved.
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Step 3: The onlooker bee phase. The task of onlooker bees is to exploit the region found by
employed bees. Each onlooker bee selects a food source based on the following probability Pr:

Pr(Xi) =
f it(Xi)

Np∑
j=1

f it(X j)

(9)

where f it(Xi) denotes the fitness of the i-th food source, NP is the size of food sources. For any onlooker
bee, if a random number within [0,1] is less than the probability of Pr(Xi), then the i-th food source Xi
is selected. Equation (8) is also adopted in this phase. Onlooker bees apply the same greedy selection
strategy to select the better one between the current onlooker bee and the generated vi.

Step 4: The scout bee phase. If a food source cannot be improved after Lim iterations, it’s
associated employed bee becomes a scout bee. The scout bee will generate a new food source according
Equation (7), and the old one will be deleted.

3.2. Dual-Population Discrete ABCA

As we all know, the basic ABC algorithm is proposed for solving continuous optimization
problems [42], and the solutions of MEoDLBP are discrete. The encoding, decoding, employee bee
process must be modified. As a result, the dual-population discrete ABCA (DDABCA) is proposed.

3.2.1. Encoding and Decoding

The decision variables of MEoDLBP are x and d. x is a 0-1 matrix of m rows and n columns.
In order to reduce the storage space of the solution and improve the operation efficiency, x is encoded
as a vector x,, which contains n elements. The i-th element value x(i) means the i-th process is operated
on x(i)-th workstation. d is a 0-1 vector containing n elements and d(i) = 1 if the i-th part will be
disassembled in destructive mode, otherwise d(I) = 0. Finally, the colony is encoded as a row vector of
2n elements consists of x, and d. The encoding process is shown as Figure 2, in which M = 5, N = 9 and
the decoding process are reversed.
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3.2.2. Swap Operations

In this study, a partition swap operation is used in the operation of employee bee process and
onlooker bee process. The swap operation is similar with Li [39], but there are big differences due
to the difference in encoding, which is designed according to the characteristics of the problem.
Since the individual consists of two parts (x and d), so does the swap operation. Firstly, for each
employee bee (parent1), randomly selects another individual parent2 (parent2,parent1). Secondly,
randomly choose a swap position in parent1 and randomly choose a swap-able position in parent2
constrained by Equations (5) and (6). Then swap their positions, and four x pieces(x1,x2,x3,x4) and four
d pieces(d1,d2,d3,d4) are generated. Based on the pieces, 14 (4 × 4 − 2) new individuals can be obtained
through pairwise combinatorial. Compare with parent1 and parent2 and retain the better one to the
next generation (Figure 3).
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3.2.3. Insert Operation

The insert operation is defined to enhance the local search ability of DDABCA. For the problem of
MEoDLBP, insert operations are performed independently in the x and d regions. Firstly, randomly
select the insertion position and inserted content from the parent. Then put the insertion content in the
insertion point and move the content behind the insertion point back. The process of generating child
is shown in Figure 4.
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3.2.4. Mechanism of Dual-Population

For the multi-objective problem with constraints, the optimal solution may be located on or near
the bound boundary, and the fitness value of the infeasible solution near the optimal solution is likely
to be better than that of the solution located within the feasible domain. Such infeasible solutions may
be more helpful for finding the optimal solution. So, the difficulty of solving such problems is how to
effectively make use of the infeasible solutions with good performance during the search process.

In order to preserve some of the infeasible solutions, in this paper, a dual-population search
mechanism is proposed, in which X f stores feasible solutions, Xi f stores infeasible solutions, N f , Ni f is
the population size, respectively, and N f > Ni f . When a new individual X is generated, its storage
rules are as follows.

Rule1: If X is a feasible solution, and the number of feasible solutions in X f is less than N f ,
X will be inserted into X f directly; if the number of feasible solutions in X f is more than N f , X will be
compared with each individual in X f , if exists Xi in X f and X Pareto dominates Xi, then Xi will be
instead by X; if not exists, then insert X into X f , calculate the distance between every two individuals
in X f and randomly delete one of the two closest individuals.

Rule2: If X is an infeasible solution, and the number of infeasible solutions in Xi f is less than Ni f ,
X will be inserted into Xi f directly; if the number of infeasible solutions in Xi f is more than Ni f , X will
be compared with each individual in Xi f , if exists X j in Xi f and X Pareto dominates X j, then X j will be
instead by X; if not exists, then insert X into Xi f , calculate the distance between every two individuals
in Xi f , and randomly delete one of the two closest individuals.

Rule3: If X is an infeasible solution and it is still infeasible after Li f iterations. Random initializes
a feasible solution to instead X. This rule is mainly to ensure that infeasible solutions evolve toward
feasible solutions, which could improve the conversion rate of the infeasible solution set and improve
the efficiency of the algorithm.

The DDABCA is presented as Algorithm 1.
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Algorithm 1. The pseudo code of DDABCA for MEoDLBP

1. Parameter initialization (X f = ∅, N f , Xi f = ∅, Ni f , M, MaxIter)

2. Initialize population X0
f with all constrains, non-discriminatory sorting X0

f and put the top N f into X0
f

3. Iter = 0

4. Do

5. //Employed bee phase
5.1. for Xi in XIter

f
5.2. Generate X′i according swap operations for Xi
5.3. if X′i is a feasible solution
5.4. Put X′i into XIter

f according Rule1

5.5. else
5.6. Put X′i into XIter

i f according Rule2

5.7. End if
5.8. End for
5.9. For Xi in XIter

i f
5.10. Generate X′i according swap operations for Xi
5.11. Put X′i into XIter

f or XIter
i f as 5.3-5.7

5.12. End for

6. //Onlooker bee phase
6.1. Each onlooker bee selects a source of employed bee using the
6.2. Produces neighborhood solutions according to swap operations and insert operations. Put the
neighborhood solutions into XIter

f or XIter
i f as 5.3-5.7

7. //Scout bee phase
7.1 Determine the abandoned solution and replace it with a new randomly produced solution
7.2. //Rule3:

7.2.1. For Xi in XIter
i f

7.2.2. If Li
i f ≥ Li f

7.2.3. Randomly produce new solution X′i according swap operations
7.2.4. Put X′i into XIter

f or XIter
i f as 5.3-5.7

7.2.5. End if
7.2.6. End for

8. Evaluate fitness of the population XIter
f and XIter

i f

9. Non-dominated sorting XIter
f and XIter

i f to obtain the sets of non-inferior front F f =
{
F f 1, F f 2, . . . , F f m

}
,

Fi f =
{
Fi f 1, Fi f 2, . . . , Fi f m

}
, and F f 1 is the Pareto optimal solution set

10. Iter = Iter+1

11. While (Iter <MaxIter)

In order to ensure the high efficiency of the algorithm, the maximum number of feasible and
infeasible solutions is limited by N f and Ni f , respectively. At the same time, in order to ensure the
diversity of the solution, feasible solutions and infeasible solutions are constantly transforming with
each other along with the evolution.

4. Validation

The validity and superiority of the proposed method is verified through the disassembly of
reducer with 18 tasks [43] and the disassembly of Electronic Tacking Machine (ETM) with 52 tasks [17].
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Based on the data in the literatures (disassembly time, disassembly precedence relations, etc.)
and the data obtained from surveys and experiments (energy consumption, value of disassembled
parts, etc.), MEoDLBP models and CDBLP models are established for the two examples. The Teaching
Learning Based Optimization (TLBO), Ant Colony algorithms (AC), and DDABCA are applied to the
two problems. The parameters of TLBO and AC are the same as in the literatures [17,43], and the
parameters of DDABCA are shown in Table 1. The range means the different parameters have been
tested for DDABCA, and the value is the best parameters after the test [44]. All of the algorithms
are coded in Matlab programming language and tested on an Intel(R) Core(TM) i5-4430S CPU @
2.70GHz PC with 4GB RAM. Each algorithm is tested 50 times. In order to make the results comparable,
the termination condition for 18 disassembly tasks is the Pareto solution does not change within
5 iterations or the cycle reaches 200 iterations. The termination condition for 52 disassembly tasks is the
Pareto solution does not change within 7 rounds or the cycle reaches 500 iterations. The optimization
results are shown in Figure 5, in which the abscissa represents different optimization objectives, and
the ordinate represents the improvement percentage of MEoDLBP over CDBLP.

Table 1. The parameters of DDABCA.

Parameters Range Value

Initialize Population Size 80 100 150 200 150
Iteration Generation 100 200 200

Limit 3 4 5 5
Limit iteration times of infeasible solutions 7 9 11 9

Feasible Population Size 40 50 80 100 80
Infeasible Population Size 40 50 70 100 40
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results of reducer; (b) the optimization results of Electronic Tacking Machine (ETM).

First of all, from the perspective of different models in Figure 5a, we can see that the cycle time
of the MEoDLBP model is greatly reduced compared to the CDBLP model. And the reductions
of the algorithms TOBL, AC in the literatures and the DDABCA proposed in this paper are 21.9%,
24.6%, 31.4%, in order. At the same time, the objective functions TE, EE, VE have a great degree
of improvement by all algorithms. The maximum degree of improvement for TE, EE, VE reach a
staggering 8%, 31.9%, and 26.3% between MEoDLBP and CDBLP. Similar conclusions can also be drawn
from Figure 5b. That is to say, for different types of products with different disassembly complexity,
the model proposed in this paper is superior to the traditional disassembly model under the indicators
of CT, TE, EE, and VE, which means more efficient, energy conservation, and environmentally friendly.

Meanwhile, from the perspective of different algorithms in Figure 5a,b, the optimization result
DDABCA proposed in this paper is the best of the three algorithms, the second is AC, and the result of
TOBL is the worst. That is to say, algorithm DDABCA has better global optimality.

However, the maximum, average, minimum iteration time of different algorithms for different
tasks scales are shown in Figure 6. In Figure 6a, the maximum, average, and minimum iteration time
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of DDABCA are better than that of AC and TOBL, which means the performance of DDABCA is
the best. At the same time, it can be seen from Figure 6a that the iteration time fluctuations range
of algorithm DDABCA is the smallest, which means that DDABCA is more robust. This is mainly
because the employee bee, observation bee, and scout bee mechanisms of the ABCA ensure its global
convergence. At the same time, the dual-population mechanism can better maintain the diversity of
population, which enables it to find the optimal solution faster. But when the problem size becomes
larger, the dual population mechanism limits its convergence speed, which is shown in Figure 6b.
Therefore, how to ensure the efficiency of solving large-scale complex problems will be the direction of
our following research.
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5. Case study

5.1. Case Description

For the validation of the practicability of the proposed method, the proposed algorithm is applied
to solve an automobile engines disassembly line problem based on a field investigation. The structure
of the engine is shown as Figure 7, in which only the main parts to be disassembled are included and
other parts have been removed.
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In order to determine the remanufacturability of each part, detection and evaluation of the
recycled products are usually carried out before disassembly. Then the disassembly time, energy
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consumption, and value of the disassembled parts in normal disassembly mode or destructive mode
could be obtained as Table 2. To improve the accuracy of the data, all the data are based on statistics of
remanufacturing historical experience, such as going to Dongfeng Cummins engine remanufacturing
factory to collect actual production data, etc. The unit of disassembly time is second. The unit
of energy consumption is kWh, and it’s just an equivalence value, which actual may be electricity,
mechanical energy, light energy, or chemical energy and so forth. The unit of disassembled parts value
is CNY. Crankshaft is the most demanding component for engine remanufacturing, in other words, the
Crankshaft cannot be destructively disassembled, which means d25 ≡ 1.

Table 2. The time, value and energy consumption in different mode.

Parts
Number

Parts Name
Time (s) Energy (kWh) Value (CNY)

Normal Destructive Normal Destructive Normal Destructive

1 Oil filler cover 101.30 25.65 11.15 0.48 8.34 7.34
2 Camshaft cover 203.90 102.60 15.75 2.88 415.00 62.55
3 Camshaft bearing cover 127.00 51.30 12.88 1.15 104.25 42.80
4 Hydraulic tappet assembly 178.30 51.30 13.45 1.15 625.50 41.70
5 Air compressor pulley 127.00 25.65 11.73 0.86 312.75 83.40
6 Camshaft 152.60 153.90 18.63 4.03 2085.00 407.00
7 Valve spring 75.65 20.52 10.58 1.15 8.70 5.51
8 Exhaust valve 101.30 35.91 13.45 2.30 625.50 208.50
9 Intake valve 101.30 25.91 13.45 2.30 625.50 208.50

10 Spark plug 152.50 80.00 12.88 1.73 21.00 20.85
11 Cylinder head 142.30 51.30 15.18 2.88 421.00 250.20
12 Cylinder pad 101.30 15.65 11.73 0.69 3.50 2.50
13 Piston pin 157.00 41.30 15.75 0.58 13.40 12.51
14 Cylinder block 155.20 74.16 19.20 4.60 1751.40 413.00
15 Piston 257.80 80.20 26.10 7.48 1876.50 625.50
16 link 166.00 67.55 18.63 2.30 1668.00 500.40
17 Crankshaft pulley 319.60 102.60 16.90 4.03 1251.00 375.30
18 Tensioning mechanism 193.60 87.21 16.33 4.60 1042.50 458.70
19 Timing belt 147.00 25.65 11.73 0.55 10.50 8.50
20 Intermediate-shaft-timing-gear 182.20 79.55 28.40 9.78 1125.90 500.40
21 Crankshaft main bearing 203.90 128.30 17.48 3.45 1626.30 208.50
22 Flywheel ring gear 178.30 69.95 12.88 9.20 1709.70 625.50
23 Intermediate shaft 127.00 51.30 14.03 1.73 834.00 333.60
24 Camshaft timing gear 206.50 83.90 26.10 8.63 1417.80 625.50
25 Crankshaft 210.50 / 27.83 / 4270.00 /
26 Oil pan 198.30 76.95 18.63 1.73 1542.90 642.10

There are five workstations in the disassembly line. According to the constraints between various
components, disassembly priority relationship is shown as Figure 8, and in which also shows the task
assignment in CDBLP mode. Such as the task 1, 2, 3, 4, 6, and 7 are finished in the first workstation.
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5.2. Results

The parameter values of DDABCA are shown as Table 1. Because there are three conflicting
objective functions in MEoDLBP model and the improvement of one objective function may lead to
deterioration of another, which is known as multi-objective optimization problem. In these kinds
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of optimizations, no single solution exists that can optimize all objective functions simultaneously.
The algorithm to solve the multi-objective optimization problem will find a set of nondominated
solutions, which is called Pareto front. It is shown as in Figure 9, and each point * is an optimal solution.
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Figure 9. The Pareto front obtained by DDABCA.

The optimal solution S∗ is randomly selected from the Pareto solution set. Based on S∗,
the distribution of each process is shown in Figure 10. The distribution of the processes at the
five stations is as following: {1, 2, 3, 4, 5, 17}, {18, 19, 21, 22}, {6, 7, 8, 9, 20, 23}, {10, 11, 12, 13, 14, 15, 16},
{24, 25, 26}. The process in dotted circle means it is disassembled in destructive mode and the others
are disassembled in conventional mode. Such as part 1, 2, 3 et al. are disassembled in destructive mode
and part 4, 6, 7 et al. are disassembled in normal mode.
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Figure 10. The disassembly priority relationship in multi-efficiency- oriented disassembly line balancing
problem (MEoDLBP) mode.

The time, energy, values of the solution S∗ are listed in Table 3, which are compared with the
optimal solution in CDLBP mode. It shows that although the value of disassembled parts in CDLBP
mode is higher than that in MEoDLBP mode, the final result is contrary as Table 4 shows. In destructive
disassembly mode, the CT is reduced about 47.40%, the TE, EE, and VE are improved about 9.65%,
52.01%, and 25.92%, respectively, which indicate higher disassembly efficiency, higher profits in per unit
of energy consumption, and higher profits in per unit of time. The reason for this lies in some valueless
parts, such as part 1, part 2, part 9, etc., are disassembled with high time and energy consumption in
CDLBP mode, but lower time and energy consumption in MEoDLBP mode. Eventually the time and
energy consumption in MEoDLBP mode is much less than that in CDLBP mode.
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Table 3. The time, energy, value of MEoDLBP and CDLBP in each station.

Station
MEoDLBP CDLBP

Time (s) Energy (kWh) Value (CNY) Time (s) Energy (kWh) Value (CNY)

1 486.10 22.84 1196.89 838.75 82.43 3246.79
2 495.06 35.50 3803.20 944.00 83.58 3256.75
3 496.62 84.50 3845.10 864.90 89.10 4687.30
4 491.20 90.36 3163.36 877.40 89.10 6140.40
5 492.70 55.08 6438.40 742.30 86.58 8064.70

Sum 2461.68 288.27 18446.95 4267.35 430.78 25395.94

Table 4. The optimal solution of MEoDLBP and CDLBP.

Disassembly Mode CT (s) TE EE (CNY/kWh) VE (CNY/s)

MEoDLBP 496.62 0.99 89.61 7.49
CDLBP 944.00 0.90 58.95 5.95

Improvement −47.40% 9.65% 52.01% 25.92%

6. Conclusions

In this paper, a novel multi-efficiency-oriented disassembly line balance model is presented,
and the objective functions of time efficiency, value efficiency, energy efficiency are defined. For the
multi-efficiency-oriented disassembly line balancing problem, a discrete dual population artificial
bee colony algorithm is proposed, and two examples are used to validate the proposed model and
algorithm. Finally, the methodology was applied to an engine disassembly line. Compared to CDLBP,
the results show that the CT is reduced about 47.40%, the TE is improved about 9.65%, the EE is
improved about 52.01%, and the VE is improved about 25.92%.

The methodology proposed in this paper provides decision makers with more economical and
sustainable decisions. Existing studies consider more disassembly time, cost, and demand, while
ignoring the value of parts and energy consumption of disassembly. Although the cost of disassembly
may be lower and the disassembly time may be shorter, the natural resources consumed to generate
unit value may be more. Obviously, it is a non-sustainable disassembly method. The MEoDLBP
proposed in this paper just makes up for this shortcoming. At the same time, decision makers can
choose the optimal solution from multi-objective optimization solutions according to their preferences.

However, there are still some limitations in our research. Firstly, the disassemble time, value,
and energy consumption of the product were only obtained through statistics or historical experience.
It is too complicated, and some efficient and accurate data acquisition method requires further study.
Secondly, the method has been verified by only three instances. More experiments need to be conducted,
and more instance data needs to be obtained on different products, such as printer, metallurgical
equipment, etc.
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38. Kalayci, E.G.; Azizoğlu, M.; Yeralan, S. A disassembly line balancing problem with fixed number of
workstations. Eur. J. Oper. Resh. 2016, 249, 592–604. [CrossRef]

39. Alshibli, M.; Sayed, A.E.; Kongar, E.; Sobh, T.M.; Gupta, S.M. Disassembly Sequencing Using Tabu Search.
J. Intell. Robot. Syst. 2016, 82, 69–79. [CrossRef]

40. Jia, L.; Shuwei, W. Balancing Disassembly Line in Product Recovery to Promote the Coordinated Development
of Economy and Environment. Sustainability 2017, 9, 309. [CrossRef]

41. Li, X.; Peng, Z.; Du, B.; Guo, J.; Xu, W. Hybrid artificial bee colony algorithm with a rescheduling strategy for
solving flexible job shop scheduling problems. Comput. Ind. Eng. 2017, 113, 10–26. [CrossRef]

42. Kiran, M.S. The continuous artificial bee colony algorithm for binary optimization. Appl. Soft Comput. 2015,
33, 15–23. [CrossRef]

43. Xia, X.; Zhou, M.; Wang, L.; Cao, J. Remanufacturing Disassembly Service Line and the Balancing Optimization
Method. Comput. Integr. Manuf. Syst. 2018, 24, 120–129.

44. Nilakantan, J.M.; Li, Z.; Tang, Q.; Nielsen, P. Multi-objective co-operative co-evolutionary algorithm for
minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems. J. Clean. Prod.
2017, 156, 124–136. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00207543.2011.616915
http://dx.doi.org/10.1080/00207543.2013.831999
http://dx.doi.org/10.1243/09544054JEM697
http://dx.doi.org/10.1080/00207543.2014.939237
http://dx.doi.org/10.1016/j.cie.2011.12.029
http://dx.doi.org/10.13196/j.cims.2012.05.33.songxw.024
http://dx.doi.org/10.3969/j.issn.1005-2615.2014.06.019
http://dx.doi.org/10.1080/00207540601137207
http://dx.doi.org/10.1080/00207543.2017.1341066
http://dx.doi.org/10.1080/00207543.2014.965348
http://dx.doi.org/10.3778/j.issn.1002-8331.1411-0051
http://dx.doi.org/10.1080/00207540600943985
http://dx.doi.org/10.3390/su11082304
http://dx.doi.org/10.1016/j.ejor.2015.09.004
http://dx.doi.org/10.1007/s10846-015-0289-9
http://dx.doi.org/10.3390/su9020309
http://dx.doi.org/10.1016/j.cie.2017.09.005
http://dx.doi.org/10.1016/j.asoc.2015.04.007
http://dx.doi.org/10.1016/j.jclepro.2017.04.032
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Notations 
	Problem Statement 
	Mathematical Definition and Formulation 
	Objective Functions 
	Constrains 


	Multi-Objective Optimization Algorithm for MEoDLBP 
	Basic Artificial Bee Colony Algorithm 
	Dual-Population Discrete ABCA 
	Encoding and Decoding 
	Swap Operations 
	Insert Operation 
	Mechanism of Dual-Population 


	Validation 
	Case study 
	Case Description 
	Results 

	Conclusions 
	References

