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Abstract: In comparison with traditional point forecasting method, probability density forecasting
can reflect the load fluctuation more effectively and provides more information. This paper proposes
a hybrid hourly power load forecasting model, which integrates K-means clustering algorithm,
Salp Swarm Algorithm (SSA), Least Square Support Vector Machine (LSSVM), and kernel density
estimation (KDE) method. Firstly, the loads at 24 times a day are grouped into three categories
according to the K-means clustering algorithm, which correspond to the valley period, flat period,
and peak period of the load, respectively. Secondly, the load point forecasting value is obtained by
LSSVM method optimized by SSA algorithm. Furthermore, the kernel density estimation method is
employed to fit the forecasting error of SSA-LSSVM in different time periods, and the probability
density function of the error distribution is obtained. The final load probability density forecasting
result is obtained by combining the point forecasting value and the error fitting result, and then the
upper and lower limits of the confidence interval under the given confidence level are solved. In this
paper, the performance of the model is evaluated by two indicators named interval coverage and
interval average width. Meanwhile, in comparison with several other models, it can be concluded
that the proposed model can effectively improve the forecasting effect.

Keywords: hourly load forecasting; time division; k-means clustering; SSA-LSSVM technique; kernel
density estimation

1. Introduction

Power load forecasting is of great significance in modern power systems. As an important part of
load forecasting, the accuracy and rationality of short-term power load forecasting is very important in
guaranteeing the economics and safety of grid operation [1]. In March 2015, the China State Council
officially issued “Several Opinions on Further Deepening the Reform of the Power System”. With the
continuous maturity of the power market, the proportion of intermittent renewable energy generation
is increasing, which makes more accurate and reasonable user load forecasting very important [2,3].
Meanwhile, the randomness of meteorological factors and other related factors changes the load
characteristics of the original power system and increasing the complexity of power, enhancing the
necessity of improving the reliability of short-term load forecasting [4–6].

Traditional short-term load forecasting is usually a deterministic forecasting of the load over the
next few days or hours. Although point forecasting of this type can provide the predicted value of load
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in a period of time in the future, it does not include the related load uncertainty information,
and its forecasting results may have a large deviation [7,8]. In comparison with deterministic
forecasting, the introduction of uncertainty forecasting method can solve this problem to some
extent. Relevant scholars have conducted a large number of theoretical and empirical studies on load
uncertainty forecasting, of which the main methods are divided into two categories, including interval
forecasting and probability density forecasting [9–11]. Numerous uncertainty forecasting models and
methods have been constructed and analyzed in detail, which rely on neural network, support vector
machine, and other intelligent machine learning algorithms, as well as statistical methods like quantile
regression and non-parametric estimation.

The main contribution of this paper is to propose a short-term forecasting model, in which
K-means clustering algorithm, Least Squares Support Vector Machine (LSSVM), Salp Swarm Algorithm
(SSA), and kernel density estimation (KDE) method are integrated. In consideration of the different
values of influencing factors of load at different times, the prediction accuracy of load will change
accordingly. Therefore, K-means clustering algorithm is adopted to cluster 24 moments a day into three
categories according to different load values: valley period, flat period, and peak period. For the load
forecasting process, LSSVM method is used to carry out deterministic load forecasting. At the same
time, two parameters in LSSVM are optimized by SSA algorithm. On this basis, the forecasting error of
each point in each time period is calculated, and the probability density function of forecasting error
in each time period is estimated by KDE. Finally, the probability density function of the load at each
time point can be obtained by superimposing the deterministic forecasting results and the probability
density function of the error, and then the confidence interval of the load at different confidence levels
can be obtained, which represents the possible fluctuation range of the load. The forecasting results of
the model proposed in this paper show good forecasting performance and that can reflect the changes
and fluctuations of short-term load in the future.

The rest of this study is arranged as follows. Section 2 summarizes the current research progress on
the uncertainty forecasting of short-term load. Section 3 introduces the basic theory and method of the
model. Section 4 proceeds with the framework illustration of the proposed model. Empirical research
and comparative analysis are illustrated in Section 5. Conclusions are summarized in Section 6.

2. Literature Review on Load Uncertainty Forecasting

The development of the power industry and technological advances continue to change the load
characteristics of users, increasing the volatility of load changes [12]. The deterministic forecasting results
does not contain a comprehensive quantitative analysis of the variation of load, nor can the single point
forecasting method provide any forecasting uncertainty or risk information. Uncertainty forecasting
methods can improve the above-mentioned defects of traditional methods to a certain extent [13,14].
Existing uncertain load forecasting methods can be divided into interval forecasting methods and
probability density forecasting methods according to the forecasting principles and results.

2.1. Interval Forecasting

Interval forecasting is an extension of the traditional point forecasting method. By adjusting
the previous point forecasting model or combining with some optimization algorithms, it quantifies
the load fluctuation caused by uncertain factors to obtain the possible upper and lower limits of
load in a certain degree of confidence. This interval consisting of upper and lower limits is called
confidence interval at a given confidence level. In terms of interval prediction, existing studies are
sufficient. Hao Q et al. used two nodes of the output layer of the feedforward neural network
to directly obtain the upper and lower bounds of the forecasting interval, and the Particle Swarm
Optimization (PSO) algorithm is used to optimize the parameters of the neural network to improve the
quality of the forecasting interval [15]. Li Z et al. constructed a load forecasting interval by optimizing
proportional coefficient based on point forecasting results of Extreme Learning Machine (ELM) [16].
Yu J et al. conducted point forecasting of user load through long short-term memory (LSTM) neural
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network, and then a pair of interval coefficients were obtained through heuristic interval forecasting
algorithm [17]. Ren L et al. established a load interval forecasting model based on improved Particle
Swarm Optimization (IPSO) and Gaussian Process Regression (GPR) to solve the problem that the
existing point forecasting methods could not take into account many uncertainties in the operation of
power grid to obtain the daily hourly load interval at a certain confidence level [18].

In comparison with traditional load point forecasting, interval forecasting results include more
uncertain information. Meanwhile, the validity of interval forecasting model and method can also
be proved through relevant evaluation indicators. However, the information provided by interval
forecasting has a certain limit. Although the fluctuation range of load can be obtained, the internal
probability distribution cannot be provided.

2.2. Probability Density Forecasting

On the basis of theories of statistics and probability theory, the probability density forecasting
reflects the distribution characteristics of load in the form of a function curve [19]. Forecasting of this
type obtains both the point forecasting value through the probability density curve and the interval
and the probability distribution inside the interval, thus providing more detailed information than
interval forecasting [9,20,21].

Scholars have done a lot of research on probability density forecasting, among which the main
research methods for solving probability density curve include parameter estimation methods and
non-parameter estimation methods [22,23]. Parameter estimation method is used to obtain the
estimation results under the condition that the observed sample obeys a probability density function
of some form or is assumed to obey a certain probability distribution. Common parameter estimation
methods include Bayesian estimation [24], maximum likelihood estimation (MLE) [25], least squares
estimation (LSE) [26], among others. Parameter estimation methods need to make some assumptions
about the distribution of random variables, which is often difficult to achieve in practical problems.
In contrast, non-parametric estimation methods do not depend on the distribution of variables, so it is
not necessary to know the specific form of the probability density function. Common non-parametric
estimation methods include histogram method [27], k-nearest neighbor method [28], and the kernel
function method [29]. With the deepening of the research process, the advantages of kernel function
estimation in probability density estimation have gradually become clear. At the same time, the
forecasting effects of different types of kernel functions have also been extensively studied and verified.
In consideration of the uncertainty of power load and its influencing factors, Yang Y et al. proposed a
power load forecasting model based on Gaussian probability density function and quantile regression
(QR) [30]. To quantify the uncertainty of load, He Y et al. proposed a load probability density
forecasting model based on quantile regression neural network (QRNN) and trigonometric kernel
function. The test results based on the actual power load samples in Canada and China show that
the model can improve the forecasting accuracy [31]. He Y et al. combined the Epanechnikov kernel
function with different optimal window width selection methods and constructed a medium term
power load probability density forecasting method by using the neural network quantile regression
method [32]. He Y et al. proposed the short-term power load probability density forecasting based
on least absolute shrinkage and selection operator (LASSO) and quantile regression (QR) combined
with the kernel density estimation method by using Epanechnikov kernel function, and verified the
superiority of the proposed method [33].

In comparison with interval forecasting, probability density forecasting method determines the
possible fluctuation range of load; it also further calculates the possible probability distribution to
provide more risk analysis and help decision makers better grasp the change of load in the future to
promote the stable economic operation of power grid and related enterprises [34]. From this perspective,
it is more important to realize uncertainty forecasting and analysis from the perspective of probability
density. Therefore, this paper draws on existing research results and applies the probability density
prediction method to complete the short-term load forecasting. First, the sample set is distinguished
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according to holidays and non-holidays. The K-means clustering algorithm is used to aggregate the
load at 24 h each day into three categories, corresponding to the valley period, the flat period, and
the peak period. The load is divided into different periods by clustering, and then the probability
density functions of different time periods are separately estimated, thereby achieving the purpose of
reducing the prediction error. The forecasting process is divided into two parts: point forecasting and
probability density estimation, and the SSA algorithm is integrated in point forecasting. This algorithm
was proposed by Australian scholar Seyedali Mirjalili in 2017, and is adopted in this paper to optimize
two parameters in LSSVM model. Gaussian kernel function is used in probability density estimation,
which has been proved to have good applicability in previous studies. Finally, this paper compares
the proposed model with several other models, and the results show that the model presented in this
paper performs well in probability density forecasting.

3. Basic Theory of the Proposed Methodology

3.1. K-Means Clustering Method

The establishment of probability density function in this paper is obtained by the statistical
analysis of the relative error on the basis of point forecasting results. However, the fluctuation of the
corresponding forecasting error varies greatly for the load value at different times of the day. Therefore,
the load value at 24 h a day should be divided into different periods. At the same time, due to the
large amount of data of the load, typical high-dimensional features are presented. Therefore, K-means
clustering algorithm is adopted to cluster the load period into three periods: valley period, flat period,
and peak period. The specific clustering process is as follows [35].

Step 1: Randomly select three initial cluster centers X1,(0), X2,(0), X3,(0) ∈ S, where Xi,(0) represents
the i-th cluster center, and S is the sample set.

Step 2: Calculate the Euclidean distance between the remaining samples in S and the initial
cluster center, and then classify the remaining samples into one of the three categories according to the
principle of minimum distance, expressed as xt ∈ S j,(k), where S j,(k) represents the j-th class formed
after the k-th iteration, and the cluster center at this time turns to X j,(k).

Step 3: Calculate the new cluster center X j,(k+1) after obtaining the k-th iteration result, and the
calculation formula is:

X j,(k+1) =
1

n j,(k)

∑
xt∈S j,(k)

xt (1)

where n j,(k) represents the number of the j-th class after the k-th iteration, and k is the number of
iterations. On this basis, the Euclidean distances of all samples and X j,(k+1) are recalculated, and the
k+1-th iteration result is obtained.

Step 4: The purpose of clustering is to make the internal distance between categories as small as
possible while the distance between categories as large as possible. Because the number of clustering is
fixed into three categories, the following function is constructed based on the principle of the minimum
sum of intra-class distances.

J(k) =
3∑

j = 1

∑
xt∈S j,(k)

‖xt −X j,(k)‖
2 (2)

The iteration stops when J(k) is equal to J(k+1). At this time, the sample points in the cluster are
clustered together with the highest density. Generally, the categories are closest to the center point,
and the cluster center at this time is S j,(k+1), j = 1, 2, 3.

3.2. Deterministic Forecasting Model Based on Salp Swarm Algorithm (SSA)-Least Square Support Vector
Machine (LSSVM)

LSSVM is a method proposed by Suykens J et al. on the strength of the original support
vector machine (SVM) model [36]. On the basis of the principle of minimizing structural risk,
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this method substitutes the non-equivalent constraint in SVM with equality constraints and replaces
the quadratic programming problem of the original algorithm with linear equations in the solution
process, reducing the complexity of the model and improves the speed of operation [37,38]. The specific
algorithm is described below.

Suppose a training sample set: S = (Xi, Yi)
N
i = 1, where Xi represents the input vector, Yi

represents the output vector, and N is the number of samples. For nonlinear regression, the target
model expression is:

yi = wTϕ(xi) + b + ei (3)

where ω is the weight vector, b is the deviation, and ei is the forecasting error. The coefficients ω and b
in the formula can be obtained by solving the following optimization problems.

min J(w, e) =
1
2

wtw +
1
2
γ

m∑
i = 1

e2
i (4)

s.t. yi = wTϕ(xi) + b + ei (5)

where γ represents the regularization parameter, and the purpose of reducing the empirical risk can
be achieved by adjusting its value. Introduce the Lagrange multiplier a into the above optimization
problem to construct a Lagrangian function, which can be expressed as:

L(w, b, e, a) =
1
2

wtw +
1
2
γ

m∑
i = 1

e2
i −

m∑
i = 1

ai{wTϕ(xi) + b + ei − yi} (6)

The above formula satisfies the Karush–Kuhn–Tucker (KKT) condition. This condition is a
necessary and sufficient condition for a nonlinear programming problem to have an optimal solution
under some regular conditions. According to KKT condition, the partial derivative of all the parameters
is obtained separately. The calculation process is as follows.

∂L
∂w = 0→ w =

m∑
i = 1

aiϕ(xi)

∂L
∂b = 0→

m∑
i = 1

ai = 0

∂L
∂ei

= 0→ ai = γei
∂L
∂ai

= 0→ wTϕ(xi) + b + ei − yi = 0

(7)

After eliminating ω and ei, the original optimization problem is transformed into the following
linear equation. [

0 QT

Q K + γ−1I

][
b
A

]
=

[
0
Y

]
(8)

where A = [a1, a2, . . . , am]
T, Y = [y1, y2, . . . , ym]

T, Q = [1, 1, . . . , 1]T, and K represents the kernel
function. Exhibiting better characteristics than other types of kernel functions, the Radial Basis Function
(RBF) kernel function is used here, the expression of which is as follows.

K
(
xi, x j

)
= exp

−‖xi − x j‖
2

2σ2

 (9)

Thus far, the LSSVM regression model has been transformed into the following form.

y(x) =
m∑

i = 1

aiK(x, xi) + b (10)
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In the above LSSVM model, construction and solution process, two parameters γ and σ2 need
to be determined in advance, the value of which will affect the final forecasting accuracy [39,40].
At present, there are two main methods for determining the regularization parameter γ and the kernel
function parameter σ2. One is to subjectively determine the parameter values of the two based on
experience, which often leads to the LSSVM model not reflecting the characteristics of the actual
problem well. Another way is to use swarm intelligence algorithm to determine the two parameters
of LSSVM model, which can avoid the disadvantages of artificial subjective determination method
and obtain the optimal parameter value through multiple iterative optimization process. The SSA is a
new bionic swarm intelligence algorithm proposed by Mirjalili et al. in 2017 [41]. This algorithm has
fewer parameters, is easy to understand, and has less programming difficulty and good directivity.
Therefore, SSA algorithm is adopted to optimize the model parameters. The detailed optimization
process of the algorithm refers to X Li et al. [42].

3.3. Kernel Density Estimation Model

On the basis of deterministic forecasting, the relative errors of the load are statistically analyzed
to obtain the distribution of the errors in each period, and then the distribution characteristics of the
errors are estimated. In comparison with parametric estimation, non-parametric estimation method
does not need to assume the error distribution in advance, thus its estimation result is closer to
the actual value. Commonly used non-parametric estimation methods include histogram density
estimation and kernel density estimation, in which the latter is more simple and efficient in practical
application [33,43–45]. Therefore, the kernel density estimation method is applied for density function
estimation and confidence interval calculation.

The kernel density estimate is estimated on the basis of the sample itself. If the density function of
the random variable X is f (x) and the empirical distribution function is F(x), then a simple estimate of
f (x) is:

f (x) =
F(x + h) − F(x− h)

2h
(11)

where h is a non-negative constant. When h→ 0 , we can get an approximate estimate of f(x) as:

f̂ (x) =
1

Nh

N∑
i = 1

k
(x− xi

h

)
(12)

where N is the number of samples, h is the window width, and k(x) is the kernel function.
Gaussian kernel function is used in this paper, the expression of which is:

k(x) =
1
√

2π
exp

(
−

x2

2

)
(13)

Combined with the deterministic forecasting results, the probability density function of each time
point load can be further obtained; on the basis of this solution, the confidence interval of the load
under a certain confidence level is calculated. That is, for a given confidence level of 1− α, if the load
value satisfies:

P
(
L̂down < L < L̂up

)
= 1− α (14)

Then the interval [L̂down,L̂up] is called the confidence interval for the load of this time, where L̂down
and L̂up represent lower limit and upper limit of the interval, respectively.

4. The Framework of the Proposed Method

On the basis of the idea of “point forecasting plus kernel density estimation”, this paper put
forward a hybrid load forecasting model, which combines K-means clustering method, LSSVM,



Sustainability 2019, 11, 6954 7 of 17

SSA algorithm, and kernel density estimation. The specific calculation process of the model is
as follows.

Step 1 Data preprocessing

Collect and sort out the meteorological data such as temperature, humidity, and wind speed at
24 h of the day. Standardize the load data and influencing factor data, converting their values to [1].
Then, use the meteorological data and the load data of the first two days of the day to be forecasted as
input variables and use the load of the day to be predicted as output variables to build the sample set.
The sample set is divided into three subsets: subset 1 is used to train the model, subset 2 is used to
calculate the prediction error and estimate the error distribution, and the performance of the model is
verified by subset 3.

Step 2 K-means clustering

For the load data, K-means clustering algorithm is adopted to aggregate the load data of 24 h
of a day into three types. Each type corresponds to three periods, that is, valley period, flat period,
and peak period.

Step 3 Parameters setting

Five parameters need to be set before the start of SSA iteration processing, including number of
salp number, number of variables dim, maximum number of iteration Max_iteration, lower bound lb,
and upper bound ub. We set that number = 50, dim = 2, Max_iteration = 100, lb = 0.00001, and ub = 10,000.

Training samples and test samples were used to conduct point forecasting of load at 24 time points
through the LSSVM model. During this process, two parameters of gamma and sigma ˆ2 in LSSVM
model were optimized by SSA optimization algorithm.

Step 4 Point forecasting

The samples in subset 1 are input into the SSA, and the optimal parameter values of the LSSVM
are obtained through multiple iterations. Then, the sample data in subset 2 is input into the trained
model to obtain the point forecasting value of the load at each hour.

Step 5 Estimation of error distribution

According to the statistics of the point forecasting error data of valley period, flat period, and peak
period obtained in the previous step, the probability density function of error distribution for each
period is estimated by using the kernel density estimation method, and then the probability density
function of forecasting error distribution for each time point in 24 time points of a day is obtained.

Step 6 Calculation of probability density prediction results

The sample data in subset 3 was taken as the samples to be predicted and input into the trained
SSA-LSSVM model to obtain the point predicted value. Combined with the error distribution results
in step 5, the probability density forecasting results of loads at each moment are obtained, and then the
upper and lower limits of the confidence interval under the given signal level are solved. At this time,
the load probability density forecasting is completed.

In this paper, the forecasting effect of the model is mainly evaluated from two aspects: interval
coverage and interval average width [46–48].

(1) Interval coverage

The interval coverage δPICP is used to express the probability of the predicted interval covering
the real value. The larger the value is, the better the forecasting effect is. The calculation formula is
as follows.

δPICP =
1
N

N∑
i = 1

ci (15)
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where N represents the number of samples, and ci is the variable. For each sample point, if the real
value falls within the forecasting interval, then ci = 1, otherwise ci = 0.

(2) Average width of interval

The interval average width WA is used to measure the validity of the forecasting interval width.
The larger the value is, the greater the interval width is, and the worse the forecasting performance is.
The calculation formula is as follows.

WA =
1
N

N∑
i = 1

wi (16)

where wi is the forecasting interval width of the i-th sample.
The procedure of the proposed hybrid model for hourly power load forecasting is illustrated in

Figure 1.
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5. Empirical Results and Analysis

This paper constructs a probability density forecasting model based on K-means clustering,
SSA-LSSVM and kernel density estimation. To illustrate the forecasting process and verify the validity
of the proposed model, based on the actual sample data, this paper solves the probability density
forecasting results according to the process in Section 4, and verifies the effect of the model through the
above evaluation indexes. In addition, by setting up the contrast model, the practicability and validity
of the model are further explained.
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5.1. Data Sorting and Preprocessing

In this paper, 85 days of data from a city in northern China from 1 September to 24 November
2018 are used for empirical analysis, and the sample set is divided into three subsets. Subset 1 is the
training sample, which contains 1224 h of data from September 1 to October 21. Subset 2 is the test
sample with 624 h of data from October 22 to November 16. Subset 3, including 192 h data from 17
November to 24 November, is the sample to be forecasted. In consideration of the difference of load
fluctuations between holidays and non-holidays, this paper clusters and forecasts the holidays and
non-holiday loads, respectively. The data set includes hourly load, temperature, humidity, wind speed,
air pressure, precipitation, and air quality. In consideration of the influence of historical load on the
daily load to be predicted, the load value of the same time point on the first two days of the date to
be predicted is taken into account as the influencing factor during model training and forecasting.
The descriptive statistics of all indicators are shown in Table 1.

Table 1. Descriptive statistics of sample data.

Unit N Max. Min. Mean S.D.

Load GW 2040 163.9060 61.4797 112.0106 23.5318
Temperature ◦C 2040 33.1 −3.7 14.2171 7.5424

Humidity g/m3 2040 97 11 50.9137 23.6818
Wind speed m/s 2040 8.6 0 1.8655 1.3130
Air pressure kPa 2040 1030.8 995.5 1015.8346 6.3951

Rainfall mm 2040 3.6 0 0.0153 0.1819
Air quality level / 2040 310 9 61.1656 51.2375

Before the forecasting, the raw data needs to be normalized to eliminate the influence of the
dimensional difference between the indicator values on the final forecasting result. The standardized
processing calculation formula is as follows.

x′i j =
xi j − xminj

xmaxj − xminj
(17)

where xi j represents the original data of the j-th data of the i-th indicator, and x′i j represents the
processed data. xminj = min

i
xi j, xmaxj = max

i
xi j, i = 1, 2, . . . , 7.

The descriptive statistical values of the normalized data are shown in Table 2.

Table 2. Descriptive statistics for normalized sample data.

N Max. Min. Mean S.D.

Load 2040 1 0 0.4933 0.2297
Temperature 2040 1 0 0.4869 0.2050

Humidity 2040 1 0 0.4641 0.2754
Wind speed 2040 1 0 0.2169 0.1527
Air pressure 2040 1 0 0.5761 0.1812

Rainfall 2040 1 0 0.0043 0.0505
Air quality level 2040 1 0 0.1733 0.1702

5.2. K-Means Clustering Results

In this paper, the K-means clustering algorithm is used to aggregate the load data at 24 h in the
day into the valley period, the flat period, and the peak period; the load clustering results of holidays
and non-holidays are shown in Figure 2.
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For holidays and non-holidays, there are significant differences in the time points corresponding
to the valley period, the flat period, and the peak period in the clustering results, indicating that
holidays present a certain degree of influence on the load. In addition, during the period from 10:00
to 13:00, the non-holiday load has a clear upward trend compared with the holiday load. Therefore,
to avoid the influence of a single model on the distribution density estimation of the error, this paper
considers the forecasting of holiday and non-holiday load separately.

5.3. SSA-LSSVM Forecasting Results

In this paper, the SSA-LSSVM model is used to predict the point of load forecasting. Before the
forecasting, the model is trained by the training sample to fit the relationship between the load and the
influencing factors. In this process, the γ and σ2 parameters in the LSSVM model are optimized by the
SSA algorithm to improve the forecasting performance of the model. The training and forecasting
process was done using MATALB 2014a. The following describes the optimization process at 13:00.
The parameters of LSSVM optimized by SSA are as follows. For non-holidays, γ = 1019.6063,
σ2 = 5.1807, and the fitness function value of SSA-LSSVM model is 0.0184, that is, the model fitting
accuracy can reach over 98%. For holidays, γ = 1425.7058, σ2 = 8.0416, and the fitness function
value of the SSA-LSSVM model is 0.0201, which means the model fitting accuracy can reach over 97%.
The process of parameter optimization is shown in Figure 3.
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The parameters optimized by the SSA algorithm are imported into the LSSVM model, and the
optimized model fitting effect is shown in Figure 4.
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The trained model is used to forecast the load at each time in subset 3, and then the forecasted
value of each time is obtained. The SSA-LSSVM model forecasting result can be obtained by comparing
the predicted results at each time with the actual values, as shown in Figure 5.
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Figure 5. Load point forecasting results of the day in subset 3. (a) Results of the load point forecast for
non-holidays. (b) Results of the load point forecast for holidays.

5.4. Probability Density Forecasting Results

Applying the formula (12) to estimate the kernel density of the load point forecasting error in the
subset 2, the error distribution histogram and the error distribution probability density curve of valley
periods, the flat period, and the peak period of non-holidays and holidays can be obtained respectively,
as shown in Figure 6.
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5.5. Results and Discussion

In combination with the load point forecasting results and the forecasting error distribution,
the distribution of load at each moment can be further calculated. By giving a certain confidence
level, the load forecasting confidence interval at this confidence level can be solved. Furthermore,
by calculating and comparing the predicted evaluation index values at different confidence levels by
Equations (15) and (16), the probability density forecasting performance of the model can be analyzed.
The specific results are shown in Figure 7 and Table 3.
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(b) Forecasting results for holidays.

Table 3. Probability density forecasting effect of the model proposed in this paper.

Confidence Level/%
δPICP/% WA/Gigawatt (GW)

Non-Holidays Holidays Non-Holidays Holidays

80 93.33 90.28 3.5597 4.0156
85 96.67 95.83 3.812 4.2932
90 100 98.61 4.7921 5.4212

In this paper, a load forecasting model based on K-means clustering, SSA-LSSVM method,
and Gaussian kernel density estimation is proposed. To verify the validity of the proposed model,
the following models are selected as comparisons.
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Model 1: The load forecasting model based on K-means clustering analysis, SSA-LSSVM method,
and Gaussian kernel density estimation in this paper;

Model 2: Load forecasting model based on K-means clustering analysis, LSSVM model method,
and kernel density estimation, which does not consider the improvement of LSSVM method by SSA
optimization algorithm;

Model 3: Load forecasting model based on K-means clustering analysis, SSA-LSSVM method,
and parameter estimation, in which the assumed error in the parameter estimation obeys the
β distribution;

Model 4: Load forecasting model based on K-means clustering analysis, SSA-LSSVM method,
and kernel density estimation, in which the kernel function adopts triangular kernel function.

Using the same sample data, the above four models are used to separately predict the probability
density, and then the forecasting performance of the model is evaluated using Equations (15) and (16),
as shown in Table 4.

Table 4. Comparison of model forecasting effects.

Model Confidence Level/%
δPICP/% WA/GW

Non-Holidays Holidays Non-Holidays Holidays

Model 1
80 93.33 90.28 3.5597 4.0156
85 96.67 95.83 3.812 4.2932
90 100 98.61 4.7921 5.4212

Model 2
80 88.33 86.11 3.7352 4.4373
85 94.17 91.67 4.0689 4.7481
90 95.83 93.06 4.9857 5.8837

Model 3
80 87.5 83.33 4.7498 4.9215
85 91.67 86.11 4.7838 4.9375
90 95.83 90.28 5.5247 6.0786

Model 4
80 95.83 90.28 3.5172 3.8225
85 95.83 94.44 3.9034 4.6896
90 100 98.61 4.7943 5.6759

The following findings can be concluded from Table 4:

(1). By comparing model 1 and model 2, it can be found that the model optimized by SSA
algorithm can significantly improve the interval coverage and reduce the interval average
width. This is because the optimized model can effectively find the parameter values in the
LSSVM model, avoiding the subjectivity of artificially given parameters, and thus improving the
model forecasting performance.

(2). By comparing model 1 and model 3, it can be found that, in comparison with the traditional
parameter estimation, the non-parametric estimation method can effectively improve the interval
coverage and reduce the interval average width. This is because the traditional parameter
estimation method needs to make assumptions about the probability density function in advance
when estimating the error distribution of point forecasting. In contrast, the non-parametric
estimation method can better reflect the true distribution of the error, and the fitting effect is better.

(3). By comparing model 1 and model 4, it can be found that the two models perform similarly on the
interval coverage and interval average width. On the interval average width index, model 1 is
slightly better than model 4, but the difference is not obvious, indicating that the selection of the
kernel function does not show a greater difference in the improvement of the model forecasting
performance relative to the improvement of other parts of the model.
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6. Conclusions

With the acceleration of the power market reform process, the importance of short-term load
forecasting for grid companies and emerging purchase and sale companies is becoming more apparent.
At the same time, affected by many uncertain factors, the future load changes present uncertainty.
In comparison with the traditional point forecasting method, the probability density forecasting
can reflect more uncertain information of future load fluctuation, which is more conducive to the
decision-making and execution of electricity purchase and sale strategies of each power trading subject,
and further promote the economics of electricity market trading.

Accordingly, this paper proposes a load probability density forecasting model based on K-means
clustering, SSA-LSSVM, and kernel density estimation. This paper applies the idea of “point forecasting
plus error probability density estimation”. Firstly, K-means clustering algorithm was used to divide the
load at 24 h of a day into different periods of peak, flat, and valley. Secondly, SSA-LSSVM method was
used to obtain the load point forecasting results at the next 24 moments, and the forecasting errors at
different time periods were statistically calculated. The probability density function of load forecasting
errors at different time periods was fitted with the kernel density estimation method to obtain the error
distribution. Finally, given the confidence level, the load confidence interval can be further solved
from the point predicted value and error distribution. The validity of the proposed model is verified
by comparing it with several other models.

This paper aims at the short-term load forecasting in the next few hours, and the span of data
samples is small, so the forecasting results will not be affected by seasonal changes. Therefore, the model
in this paper can be applied to short-term load forecasting in all periods of the year, but the process
of sample set construction may be slightly different due to different seasons. Although the model
proposed in this paper needs a complicated calculation process, the results show that the model
can effectively improve the load forecasting performance; it can provide reasonable support for the
economic operation of power system. Meanwhile, the proposed model can be further combined
with other intelligent optimization algorithms to improve the forecasting performance of the model.
In addition, the clustering algorithm can be further improved, and on this basis, the model can be
applied to the load forecasting of renewable energy power generation side and micro-grid, etc.
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