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Abstract: Geothermal energy has emerged as an alternative to ensure a green energy supply
while tackling climate change. Geothermal systems extract the heat stored in the Earth’s crust
by warming up water, but the low rock permeability at exploitation depths may require the hydraulic
stimulation of the rock fracture network. Enhanced Geothermal Systems (EGS) employ techniques
such as hydro-shearing and hydro-fracturing for that purpose, but their use promotes anthropogenic
earthquakes induced by the injection or extraction of fluids. This work addresses this problem
through developing a computational 3D model to explore fault reactivation and evaluating the
potential for earthquake triggering at preexisting geological faults. These are included in the model
as frictional contacts that allow the relative displacement between both of its sides, governed by
rate-and-state friction laws and fully coupled with thermo-hydro-mechanical equations. We apply
our methodology to the Basel project, employing the on-site parameters and conditions. Our results
demonstrate that earthquakes which occurred in December 2006 in Basel (Switzerland) are compatible
with the geomechanical and frictional consequences of the hydraulic stimulation of the rock mass.
The application of our model also shows that it can be useful for predicting fault reactivation and
engineering injection protocols for managing the safe and sustainable operation of EGS.
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1. Introduction

The 2030 Agenda for Sustainable Development, adopted by world leaders in September 2015,
was established by the United Nations and comprises 17 goals and 169 targets to be fulfilled by the
ratifying countries. The Agenda aims to overcome all forms of poverty, while tackling climate change
and environmental protection. Goal 7—“Affordable and Clean Energy”—aims to ensure access to
affordable, reliable, sustainable, and modern energy for all [1]. Goal 7 goes hand-in-hand with Goal
13, “Climate Action”, which aims to take urgent action to combat climate change and its impacts.
Geothermal energy emerges as an alternative renewable energy to reach both goals [2,3], as it is
affordable and clean. Geothermal systems extract the heat stored in the Earth’s crust by warming up
water or a mixture of water and gas. The fluid is circulated down through injection wells, heated by
the contact with rocks, and returned to the surface through production wells to form a closed loop [4,5].
Hot water or steam is then transformed into a marketable product, such as electricity. Nevertheless, in
most geothermal reservoirs, rock permeability at exploitation depths is very low, rendering geothermal
projects economically infeasible. The challenge of permeability enhancement has been addressed by
the so-called Enhanced Geothermal Systems (EGS) [2,6,7].
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EGS enhance rock permeability through hydraulic stimulation of the rock mass fracture network.
Two approaches are widely used: hydro-fracturing, which creates new fracture networks, and
hydro-shearing, that reactivates preexisting joints [8,9]. A major environmental issue for these
techniques is the risk of induced seismicity as a result of water injection and production [2]. Some major
EGS experiences include the Soultz-sous-Forêts project (France) [10], the Cooper Basin project
(Australia) [11], the Fenton Hill project (New Mexico, USA) [12], the Rosemanowes project (UK) [13,14],
or the Ogachi project (Japan). Furthermore, a number of EGS demonstration projects have recently
been launched in the US [15].

Hydro-fracturing, or hydraulic fracturing, enhances rock permeability by opening preexisting
fractures and creating new ones. Water is injected within the rock mass under high pressure to open
and create the new fractures by tensile failure [16–19]. This technique is broadly used for oil-well
stimulation, although it is currently under debate due to environmental concerns [2]. Hydro-shearing
increases rock permeability by initiating shear failure. Water is injected under high pressure, reducing
normal stress across them and eventually triggering shear failure [9]. Since fault roughness guarantees
slip is permanent after injection stops, permeability changes are also permanent [20]. The magnitude
of seismic events triggered during hydro-shearing operations is typically small because fractures slip
without increasing their aperture as the pore pressure remains bellow the minimum principal stress.
Nonetheless, hydro-shearing is widely used on a global scale when conducting field experiments [21]
and numerical simulations [8,22,23] to assess permeability evolution.

Most of the scientific community accepts that induced earthquakes may be triggered by water
injection into the subsurface. Some examples are the disposal by injection into deep wells of waste water
from oil and gas production [24,25], CO2 sequestration in deep aquifers [26,27], or EGS facilities [28,29].
Earthquakes are the result of a fast slip event on a fault [30]. The onset of the slip depends on the
shear stress on the fault and the frictional resistance, both of them affected by fluid injection [31].
On one hand, the increase in pore pressure puts effective stress on the fault decrease, whereas on the
other hand, thermo-poro-mechanical effects increase shear stress on the fault [32,33]. The experience
gained over the years on EGS projects has shown the usefulness of numerical models for simulating
the nucleation and rupture of earthquakes under given injection protocols. Numerical simulations of
induced earthquakes require coupling fluid flow, rock deformation, heat transfer, and a fault frictional
response [34–36]. Highly nonlinear frictional laws and the disparity in time scales pose a major
challenge for computational models. Over the past decade, there have been numerous contributions to
thermo-hydro-mechanical modeling of induced seismicity [33,37]. Faults are typically simulated as 3D
failure zones with slip-weakening rheology [38–40], or as frictional contact surfaces [41–46]. We adopt
the latter approach, since it is consistent with the observed structure of faults [47]. We simulate faults
as contact surfaces whose friction evolves according a rate-and-state friction law [48] that incorporates
terms depending on the evolution of effective normal stress [49,50]. Our results suggest that injection
protocols are relevant so they can be designed to minimize seismic risks [51].

A paradigmatic case is the Deep Heat Mining (DHM) project in Basilea (Switzerland) [52,53],
a milestone EGS power station with an energy output capacity of 6 MW of electricity and 17 MW
of heat. The station would provide electricity and heat for 10,000 dwellings [54]. The project required
the drilling of two wells, Basel-1 at 5.000 m deep to inject cool water, and another well to return hot
water back to the surface [55]. Once the former was built, hydraulic stimulation was performed in
December 2006. However, it led to perceivable induced seismicity up to a local event magnitude of
ML 3.4, which exceeded the acceptable levels in the Basel urban area [56]. The seismic events led to the
premature halt of the project, and finally, its withdrawal.

Here, we develop a fully implicit and monolithically coupled finite element model to simulate fault
reactivation. Our model encompasses fully coupled heat transport, rock deformation, and fluid flow
processes. Moreover, we describe fault as interfaces whose friction is governed by a laboratory derived
rate-and-state friction law incorporating an effective normal stress-rate dependence. We analyze
the effects of hydraulic stimulation on seismic risk through a Coulomb failure analysis. Measure of
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tendency to slip has proven very useful to understand some of the geomechanical challenges posed by
subsurface energy technologies (e.g., [46,57–64]). We aim to analyze the hydro-shearing effects during
the stimulation at the Basel-1 well using our three-dimensional (3D) model. We use, as input, the same
stress-field and rock properties estimated for the main hydrogeological units at Basel-1, and simulate
the stimulation using a transient well-head pressure and flow evolution similar to the values reported
at the study site. The proposed model is a useful tool for engineers and practitioners to answer the
essential question for the development of the geothermal energy as an affordable, clean, and safe
renewable energy source: what is the optimal exploitation protocol that minimizes seismic risk and
maximizes economic and energy performance?

2. Materials and Methods

In this section, we describe our thermo-hydro-geomechanical model, which fully couples heat
transport, rock deformation, and fluid flow; faults are described as interfaces with friction governed
by the rate-and-state law. We perform numerical simulations of the hydraulic stimulation operations
conducted at the DHM project in December 2006 to show the ability of our model to characterize
fault reactivation. We adopt as inputs the recorded well-head pressure and flow evolutions, as well as
on-site material parameters.

2.1. Frictional Strength and Resistance of Faults

We employ the Amontons–Coulomb theory as a constitutive model of rock friction. The frictional
strength, τ∗, that impedes sliding of a static, cohesionless contact interface is given by τ∗ = µ|σ| [65–67].
In general, the relation between these Coulomb magnitudes and the shear stress acting on the contact
plane, τ, depends on the sliding regime. A static interface satisfies τ ≤ τ∗ and for sliding under
quasi-static conditions, the relationship τ ≈ τ∗ holds.

In the fluid-saturated media, frictional strength is defined using the effective normal
stress, σ′ = σ + p, where σ is the total normal stress acting on the contact, and p is the pore pressure
of the fluid. In the above and following expressions, tensile stresses are positive, and pore pressure
is positive when above the atmospheric value. We assume that effective normal stresses remain
compressive on contact surfaces.

Rate-and-State Models for Interfaces

Faults are often assumed to be well-oriented for failure but locked prior to injection, in such a way
that the onset of slip on an inactive fault—reactivation—is essential to understand the geomechanics
of induced seismicity.

Rate-and-state formulations gather the traditional concepts of static and dynamic friction by
including the dependence of µ on the slip velocity and history of sliding [66,68–70]. These models were
derived from laboratory experiments of unidirectional slip in the double-direct shear configuration,
and account the response of µ after step changes in slip velocity or normal stress [71]. For a frictional
interface that is sliding at velocity V, the definition of µ reads:

µ = µ∗ + a ln
(

V
V∗

)
+ b ln

(
θ

θ∗

)
, (1)

where µ∗ is the steady-state coefficient at the reference slip velocity V∗, a is the direct-effect parameter,
and b is the friction evolution parameter. θ is the state variable, and θ∗=Dc/V∗ is its steady-state
value, where Dc is the characteristic slip memory distance over which τ∗ evolves once the system is
perturbed [72].

Several definitions for θ have been proposed according to the rate-and-state friction models.
Deep physical understandings and theoretical analyses [70,73,74], as well as comparisons with
experiments of velocity steps [75,76], shear stress steps [77], and normal stress steps [78–81] have
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allowed us to elucidate the relative advantages and disadvantages of the proposed formulations.
Our study focuses on those models that incorporate a dependence on the effective normal stress rate.
In such a sense, the Linker–Dieterich model [49] generalizes the basic rate-and-state laws by including
a term in the state evolution equation, applicable to both the ”slip” [69] and ”aging” [68] laws [73]:

dθ

dt
= −Vθ

Dc
ln

Vθ

Dc
− αθ

bσ′
dσ′

dt
(Slip law)

dθ

dt
= 1− Vθ

Dc
− αθ

bσ′
dσ′

dt
(Aging law)

(2)

In the above equations, the empirical parameter α controls the stressing-rate effect on the state
variable, ranging from 0 to µ0 [82]. Since we focus on the reactivation of faults which are initially
at rest, we adopt a regularization of the rate-and-state models in the limit of zero slip speed, V = 0,
proposed by Yang et al. [83]. µ is then defined as:

µ(V, θ) = µ0 + a ln
(

V + V∗

V∗

)
+ b ln

(
θV∗

Dc

)
, (3)

with µ0 being the initial friction coefficient. We implement in our model the equation for the aging law:

dθ

dt
= 1− θ (V + V∗)

Dc
− αθ

bσ′
dσ′

dt
, (4)

which is equivalent to the regularized model used by Tal et al. [84] with a threshold velocity Vth = V∗.

2.2. Thermo-Hydro-Mechanical 3D Model of Fault Reactivation

The rock is modeled as a thermo-poroelastic saturated material with single-phase flow. We adopt
the classical theory of linear poroelasticity [85,86] and solve for the combination of fluid pressure,
rock deformation, temperature, and frictional contact on the fault [31,32]. The solid and mass
conservation, as well as mechanical equilibrium are coupled using the effective stress. The quasi-static
Biot equations for a porous medium read:

ρ f S
∂p
∂t

+ ρ f αB
∂εv

∂t
= ∇ ·

(
ρ f

k
η f

(∇p− ρ f g)

)
, (5)

∇ · σ = 0, (6)

where αB is the Biot coefficient, εv = tr (ε) (with ε being the infinitesimal strain tensor) is the volumetric
strain, k is the intrinsic permeability of the porous medium, η f is the fluid dynamic viscosity, ρ f is the
fluid density, p is the pressure field, and σ is the total stress tensor. We consider a linear poroelastic
material under small deformations, as well as plane strain conditions. Then, the effective stress
tensor, σ′ = σ + αB pI, is a linear function of strains, σ′ = 2Gεel + λtr(εel)I, where λ and G are the
Lamé constants, εel = ε− εth = 1

2
(
∇u +∇uT)− εth is the elastic strain tensor, the result of subtracting

the thermal strains to the total strain tensor ε, with u being the displacement field. The storage
coefficient, S = φχ f + (αB − φ)χs, depends on the rock porosity, φ, and on the fluid and solid matrix
compressibilities, χ f and χs, where χs = (1− αB)/K, and K = λ + 2

3 G is the bulk modulus of the
porous matrix.
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Conservation of energy reduces to the heat equation [87]:

(ρc)sat
∂T
∂t

+ ρ f c f v · ∇T +∇ · q = Q,

q = −κsat∇T,

(ρc)sat = φρcs + (1− φ)ρ f c f ,

κsat = φκs + (1− φ)κ f ,

(7)

where cs is the heat capacity of the rock, c f is the fluid heat capacity, κs is the thermal conductivity of
the rock, and κ f is the fluid thermal conductivity. (ρc)sat y κsat are the saturated values of the product
of density by heat capacity and thermal conductivity. Q includes the source or sink terms. Temperature
changes propagate by diffusion and convection throughout the rock mass and the fluid. This changes
produce thermal strains controlled by the thermal expansion coefficient αT :

εth = αT(T − T0), (8)

where T is the temperature field, T0 is the reference initial temperature, and αT is the solid thermal
expansion coefficient. We consider that the fluid keeps in a liquid state and its properties do not change
with temperature or pressure, due to the high temperature and pressure conditions at the usual depths
of the EGS projects. This couples the diffusive part of heat transport, while the convective part is
modeled by introducing the Darcy velocity field v in Equation (7).

2.3. Case Study: The Deep Heat Mining Project in Basel, Switzerland

The DHM project in Basel was a milestone in geothermal energy. The know-how gained after the
DHM project and the seismic events of 2006 boosted the development of EGS systems [52,53]. The first
stage of the project was drilling the 5000 m depth Basel-1 well. The well reached a crystalline granitic
rock basement at a temperature of 200 ◦C. The well was also employed for the hydraulic stimulation
of the reservoir and the field characterization [56].

The number of fractures between 4629 m and 5000 m depth was between 0.2 and 0.3 fractures
per meter [56]. The preferred fracture direction and orientation were NW–SE to NNW–SSE with dips
greater than 60◦, although the measures of the hypocenter locations during seismic events detected
new families of fractures [88]. The events with greatest magnitude which rolled around in 2006 took
place on a family with a deviation of 10◦ with respect of the maximum principal stress direction and a
dip of 80◦. The orientation of the principal stresses was deduced from acoustic geophysical studies
within the Basel-1 well. The minimum principal stress, σh,min, had an orientation of 54 ± 14◦ and the
maximum one, σh,max, 144 ± 14◦ [88]. These orientations are consistent with the in situ stress state in
the upper Rhine Basin deduced from previous seismic events in the crystalline rocky massif [56].

The magnitude of the principal stresses were also quantified. The tectonic ratio of the minimum
principal stress, σh,min, to the vertical one is 0.7, and the ratio of the maximum principal stress, σh,max,
to the vertical one is 1.6, in such a way that the vertical stress is the intermediate principal stress [56].
Mechanic boundary conditions are defined by the expressions:

σv(d) = (ρ(1− φ) + ρ f φ)gd,

σh,min(d) = Tectmin · σv = 0.7σv,

σh,max(d) = Tectmax · σv = 1.6σv,

(9)

where d is the depth. In these expressions, compressive stresses are assumed positive. The imposed
stresses at the boundaries are assumed constant in time, which is a feasible hypothesis even if
simulation time exceeds one decade [89]. The temperature at the bottom of the well is between
190 and 200 ◦C, with a thermal gradient of 40 ◦C/km [55].
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2.4. The Basel 3D Model

The geometry of the 3D model domain is a 1.5 km3 cube that is supposed to be homogeneous
porous rock mass. In the center of the cube, we situated a sphere divided into two hemispheres with
their intersection plane representing the main fault. The injection well is modeled as a cylinder with a
diameter of 1 m and a height of 380 m whose geometry is subtracted from the solid cube. The well is
vertical and located at a distance 50 m away from the center of the fault (Figure 1). The diameter of
the simulated well is higher than the real one due to mathematical issues, where the diffusion of the
injected fluid should not be simulated with elements which are too fine. The geometry of the model is
described in Figure 1.
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Figure 1. Scheme of the 3D Basel EGS model. In (a) we show the domain that is a 1.5 km3 cube with
the fault plane oriented 10◦ with respect to the x-axis and dip 80◦ to the SW. The domain is located
between 4050 and 5550 m depth, while the injection section of the Basel-1 well extends from 4629 to
5000 m depth. In (b) we plot the injection protocol (left vertical axis) and injection pressure (right
vertical axis) measured at the Basel-1 well, obtained from [56].
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We focus on the depth range between 4050 and 5550 m, and the injection takes place through the
well between 4620 to 5000 m depth. The x axis is parallel to the maximum principal stress (σx = σh,max),
the y axis to the minimum principal stress (σy = σh,min), and the z axis to the intermediate principal stress.
We apply vertical stress to simulate overburden strata according to σv(z) = (ρ(1− φ)+ ρ f φ)g(5500− z),
where the z coordinate ranges between 0 and 1500 m in our model.

The complexity of the fracture network requires the adoption of some simplifications to define
the orientation of the fault plane, based on the hypocenter locations estimated from the motion data
records of the historical seismic activity [88]. We adopt the most unfavorable fracture family as the
preferred sliding plane, which has a direction deviated approximately 10◦ with respect to the direction
of the maximum principal stress, which dips 80◦ towards the SW. Most of the detected hypocenters
do not separate more than 50 m with respect to the upper injection section of the well [55]. For that
reason, the fault plane of the model is oriented 10◦ with respect to the x-axis and dipping 80◦ to the
SW, with the injection well-located at a distance 50 m away from its center. We refine the mesh of the
model in the area of the central sphere, as shown in Figure 2, and force mesh conformity throughout
the fault plane. We use tetrahedral elements—quadratic for the solid mechanics equations and linear
for fluid flow and heat transport.

𝜎ℎ,𝑚𝑖𝑛(𝑧)

𝜎ℎ,𝑚𝑎𝑥(𝑧)

Modelo Elementos Finitos 3D
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𝜎𝑣 = 𝜌𝑔ℎ

𝜎ℎ,𝑚𝑎𝑥 = 1,6𝜎𝑣, 𝜎ℎ,𝑚𝑖𝑛= 0,7𝜎𝑣

Gradiente geotérmico local 40º𝐶/𝑘𝑚

Presión hidrostática 𝑝0 = 𝜌𝑤𝑔ℎ
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Parámetros del modelo

Material elástico: 𝐸 = 20 𝐺𝑃𝑎 ; 𝜈 = 0.25
Densidad sólido: 𝜌𝑏 = 2700 𝑘𝑔/𝑚3

Conductividad térmica del sólido: 𝜅𝑠= 2.4𝑊/(𝑚 ∙ 𝐾)
Calor específico del sólido: 𝑐𝑠 = 800 𝐽/(𝑘𝑔 ∙ 𝐾)
Conductividad térmica del agua: 𝜅𝑓= 0.6 𝑊/(𝑚 ∙ 𝐾)

Calor específico del agua: 𝑐𝑓 = 4200 𝐽/(𝑘𝑔 ∙ 𝐾)
Permeabilidad intrínseca: 𝑘 = 10−15 𝑚2

Porosidad: 𝜙 = 0.1

Coeficiente de Biot: 𝛼𝐵 = 1 Viscosidad del agua: 𝜂𝑓= 0.00024 𝑃𝑎 ∙ 𝑠

Densidad del agua: 𝜌𝑓 = 1000 𝑘𝑔/𝑚3

Compresibilidad del agua: 𝜒𝑓 = 4 ∙ 10−10𝑃𝑎−1Coeficiente de dilatación térmica: 𝛼𝑇 = 8 ∙ 10−6

𝜎𝑣

Figure 2. 3D finite element mesh and mechanical boundary conditions applied. At the exterior
boundaries with no stresses applied, we impede the displacement in its normal direction.

Mechanic boundary conditions are equal to tectonic stresses and are imposed on three faces of the
rectangular domain (Figure 2). We impose a reference hydrostatic pressure, p = ρ f gd = ρ f g(5550− z),
along all external boundaries, where d is the depth, and the temperature is set at the geothermal
gradient T = 0.04 [C◦/m]·d = 0.04 [C◦/m]·(5550− z).

We impede the displacements in the normal direction and impose no-flow (thermal and hydraulic)
conditions on the other ones. At the fault plane, we impose the contact condition, allowing relative
tangential displacements between its edges. We consider the fault is almost impermeable and has the
same thermal properties as the rest of the domain, resulting in thermal continuity. We simplify the
fluid flow around the injection well by imposing a volumetric flux along the boundary of an effective
injection region (the lateral surface of the cylinder). During the simulations, temperature is also fixed
in the injection well.
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Based on the in-site measurements, we define feasible parameters for each physical process of the
model.

The Young modulus, the Poisson ratio, and the density of the solid skeleton are usual values for
crystalline rock formations of granitic type. The parameters related to the fluid, such as density or
compressibility of water, are also usual values, unlike viscosity, whose value of 2.4× 10−4 Pa·s, is lower
than the viscosity of water at ambient temperature (η f = 10−3 Pa·s) due to the high temperatures
at such depths [23]. Permeability and porosity have been chosen according to the characteristics of
the rock mass. Lastly, thermal parameters have been taken from [90] that collects data of thermal
conductivities and heat capacities from different materials. Coupling between the flow and mechanical
problems have been included using the Biot coefficient αB = 1 and between the thermal and mechanical
physics with the thermal expansion coefficient αT = 8 × 10−6.

The parameters of the “rate-and-state” model have been chosen within a feasible range to emulate
the fault reactivation at a similar time scale. We consider the fault is arrested before reactivation, being
the slip speed V = 0. Hence, Equations (1) and (2) can be simplified, so it is only necessary to define
the parameters α, b, Dc, and V∗. We adopt the aging law and the rate-and-state parameters, b = 0.03,
Dc = 700 µm, V∗ = 10−9 m/s, and µ0 = 0.55. Table 1 lists the parameters of the model.

Table 1. Parameters of Basel 3D model.

Parameter Value Unit Description

E 20 GPa Young Modulus of the rock
ν 0.25 – Poisson ratio of the rock
ρ 2700 kg/m3 Rock Density
Tectmax 1.6 – High tectonic ratio
Tectmin 0.7 – Low tectonic ratio
σh σv·Tect MPa Confinement stress

ρ f 1000 kg/m3 Fluid density
η f 0.00024 Pa·s Fluid viscosity
χ f 4 × 10−10 Pa−1 Fluid compressibility
k 10−15 m2 Porous media permeability
φ 0.1 – Porosity

κs 2.4 W/(m·K) Solid thermal conductivity
κ f 0.6 W/(m·K) Fluid thermal conductivity
cs 800 J/(kg·K) Solid heat capacity
c f 4200 J/(kg·K) Fluid heat capacity
Tamb 293.15 K Ambient temperature

αB 1 – Biot coefficient
αT 8 × 10−6 – Thermal expansion coefficient

µ0 0.55 – Friction coefficient
c 0 MPa Contact cohesion
a 0.005 – Direct effect parameter
b 0.03 – Friction evolution parameter
Dc 0.0007 m Characteristic slip distance
V∗ 10−9 m/s Reference velocity
α 0.2 – Linker-Dieterich normal stress coefficient

The constitutive laws for fault strength are given by Equations (1) and (2), and the frictional
contact on the fault is modeled using an Augmented Lagrangian formulation [91]. We solve, in a
monolithically-coupled fashion, the field Equations (5)–(8) and the rate-and-state aging law (1) and (2)
with the frictional contact variables [31,32].
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3. Results and Discussion

3.1. Calibration

The hydraulic stimulation of the DHM geothermal project required the injection of 11, 600 m3

of water, following the protocol depicted in Figure 1b [56]. This volume was injected prior to the
8 December 2006 earthquake sequence. Since we simulated the on-site conditions during the injection
operations, we imposed an inflow velocity at the injection well of the model that is the result of
dividing the flow rate by the lateral surface of the cylinder qiny=Q0/(2πrh), where r is the radius of
the cylinder and h is the height where injection takes place. We assumed that the injection temperature
remained constant and equal to ambient rock temperature.

Figure 3a,b shows a plot of the simulated evolutions of pressure and injected flow rate computed
with our model, and the registered data at the Basel-1 injection well in 2006. We adopted as the flow
boundary condition the measured injected flow rate at the injection well (see Figure 3a). Our computed
injected pressure evolution initially differs from the measured values on-site, Figure 3b. The difference
between pressure observed in real data and model results arises from the weakening and fracturing of
the rock in the vicinity of the well, allowing water to flow through the rock matrix and its fractures.
After 5 days of injection, when the largest earthquakes occurred, the difference between our simulated
results and the measured data were drastically reduced, showing that our model is properly adjusted.
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Figure 3. 3D model calibration results. In (a) we show the injection flow rate pattern used in the model
(red line) that is similar to the real injection protocol from the Basel-1 data (blue line). In (b) we plot the
computed injection pressure (red line) and the values measured in 2006 (blue line).

The results of pore pressure and temperature fields are included in Figure 4. We define a reference
horizontal plane at 4800 m depth (z = 750 m), where the changes of pore pressure and temperature
cause by the injection of cold water are displayed. We show in Figure 4a the locations of the reference
plane, the fault plane, and the injection well. We also include the buildup of pore pressure around the
injection well and near the fault plane at the time that reactivation occurs (t = 5.5 days). The injection
cools down a small area around the well which does not reach the fault (Figure 4b). Since the time for
heat diffusion is higher than the one for pressure diffusion, pore pressure changes around the well are
much faster than temperature changes. As fault temperature remains constant during the stimulation
phase (Figure 4b), pore pressure increases on the fault plane (Figure 4c). We explain in the next section
how pore pressure on the fault plane controls the fault reactivation and the frictional properties of
the contact.
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a

Fault plane

Injection
well

Reference 
plane

b c

Injection
well

Figure 4. 3D model results at the horizontal reference plane. In (a) (left) we show the reference plane
inside the model, the fault plane, and the injection well. The increase of pore pressure (right) in that
plane shows the results of the pore pressure increase caused by the injection at the instant of fault
reactivation (among 26 MPa). In (b) we display the increment of temperature due to the injection at the
reference plane, with an inset that zooms the surroundings of the injection well and shows that the
temperature diffusion is much slower than pressure propagation. In (c) we show the results of the pore
pressure increase at the fault plane. The vertical axis of the image corresponds to the maximum slope
line of the fault plane and the horizontal axis corresponds to a horizontal direction in the 3D model
deviated 10◦ with respect to the x-axis.

3.2. Fault Reactivation

Fault reactivation is the onset of fault slip. It depends on the variables involved in fault stability,
such as frictional strength µ|σ′| or shear stress τ. We quantify fault stability through the Coulomb
Failure Function, defined as CFF = µ|σ′| − τ. The CFF equals to zero when the fault is at rest, and
when CFF is less than zero the fault reactivates, given that the shear stress τ exceeds the frictional
strength of the contact µ|σ′|. Changes in Coulomb Failure Function can be used as a proxy for fault
weakening (∆CFF < 0) or strengthening (∆CFF > 0). In that sense, we show in Figure 5 the increase
in the failure function ∆CFF = CFF(t)− CFF(t = 0) on the fault plane, which indicates how the fault
weakens due to the effect of fluid injection.
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Figure 5. 3D model results on the fault plane 5.5 days after the onset of injection (the instant of
fault reactivation). We display the increase in Coulomb Failure Function on the fault plane due to
the injection ∆CFF = ∆(µ|σ′| − τ) = CFF(t) − CFF(t = 0). The results show the fault weakening
(red color, ∆CFF < 0) due to the injection of cold water.

We include in Figure 6 our computed results with the 3D model for the variables involved in the
frictional stability on the fault plane. The distribution of effective normal stress, |σ′|, acting on the fault
plane (Figure 6a) at the onset of the slip shows that there is a decrease in fault effective compressions.
Moreover, the spatial distribution is symmetric with respect to a vertical axis. The decrease in effective
normal stress is almost the same as the increase in pore pressure (Figure 4c). Differences arise from
poroelastic and thermal effects, and indicate that pore pressure changes dominate over thermal and
poroelastic effects.

We plot the modulus of the shear stress τ on the fault at reactivation time in Figure 6b. Shear
stress increases on the north side of the fault and decreases on the right side. This response is caused by
the increase in pore pressure, as well as by the poroelastic effects accounted in our model [16–19,31,32].
The poroelastic effects are also coupled with the fault orientation and tectonic stresses, which contribute
to the asymmetry of the results.

We show the value of the friction coefficient, µ, in Figure 6c, computed with the rate-and-state
law (Equatons (3) and (4)). Since the fault is initially at rest (V = 0), the observed evolution of the
friction coefficient is attributed to the decrease in the effective stress through the Linker-Dieterich term
and the α-parameter in Equation (2) [79]. The Coulomb Failure Function CFF, Figure 6d, indicates
that fault reactivation occurs after 5.5 days of injection. The asymmetry in the CFF distribution
remarks the influence of shear stresses, in contrast with the symmetry of effective normal stress
and friction coefficient that are directly pore-pressure dependent. This pattern of symmetry and
asymmetry of stresses before and at reactivation also influence on the nucleation and rupture phases
of the earthquake.
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a b

c d

Figure 6. Display of 3D model results at the 2D fault plane 5.5 days after the injection starting
(the instant of fault reactivation). In (a) we show the effective normal stress |σ′| (positive values of
effective normal stresses are compressive). In (b) we display the modulus of the shear stress τ, in
(c) the friction coefficient µ obtained from the rate-and-state equations, and in (d) the Coulomb Failure
Function CFF.

We illustrate the evolution of stresses and frictional variables up to the fault reactivation at a
control point on the fault. The point is located at the left-half part of the fault, and it is the first
point where the ratio of the acting shear stress to the effective normal stress equals the frictional
strength—that is, it is the first fault point at which slip occurs (blue area where CFF = 0 in Figure 6d).

Figure 7 shows the evolution of the friction at the control point up to the reactivation.
The mobilized friction (green line) is the ratio τ/|σ′| that normalizes the shear stress acting on the
fault with the effective normal stress, and the friction coefficient µ (blue line) is a dimensionless
frictional strength. When the mobilized friction equals frictional strength at 5.5 days (τ/|σ′| = µ),
the fault reactivates.

We observe that due to the injection protocol that systematically increases the flow rate, and
consequently, the pore pressure, the slopes of both the friction coefficient and the mobilized friction
curves increase. Moreover, the friction coefficient changes from µ0 = 0.55 to 0.61 at the reactivation
instant due to the effect of the variation of the effective normal stress on the friction coefficient. It delays
the fault reactivation, which changes from 4.6 days if effective normal stress rate is disregarded, and
to 5.5 days if the rate is accounted for. Therefore, the effect of normal stress rate on friction coefficient
needs to be taken into account, as it partially controls the reactivation time. These results verify that
our models properly reproduce the on-site reactivation of the reservoir’s representative fault after
5.5 days of injection, elapsed from December 3 to 8.
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Our methodology may be a useful tool for engineers, practitioners, and stakeholders to assess
fault reactivation under real conditions of natural stresses, temperatures, and injection protocols.
The application of our model to the DHM project in Basel has shown its ability to predict fault
reactivation and demonstrated that the earthquake sequence occurred in December 2006 may have
been caused by the hydraulic stimulation of the rock mass. Our model can also be useful for assessing
new injection protocols, as well as stimulating and managing the operation of EGS system in the short
and long term.

Control point

Fault reactivation

Figure 7. Evolution of the friction variables at the fault control point. The blue line represents the
evolution of the friction coefficient µ as derived from the rate-and-state equations. The green line plots
the evolution of the ratio τ/|σ′|. The slopes of both curves are related to the different flow-rate levels
of the injection protocol.

4. Conclusions

Geothermal energy emerges as an alternative renewable energy to ensure access to affordable,
reliable, sustainable, and modern energy for all the world. In most of the geothermal deposits,
rock permeability at exploitation depths is very low, rendering geothermal projects economically
infeasible. This drawback has been solved by the so-called Enhanced Geothermal Systems (EGS),
where rock permeability is enhanced through the so-called rock stimulation. One of the most widely
used techniques is hydro-shearing, which reactivates preexisting joints by initiating shear failure.
Water is injected under high pressure, reducing normal stress across them and eventually triggering
shear failure. A major environmental issue for these techniques is induced seismicity as a result of
water injection.

Here, we have presented a finite element model for the simulation of fault reactivation in
poroelastic media with rate-and-state friction law. Our model monolithically couples fluid flow,
rock mechanics, heat transport, and rate-and-state friction. We have conducted three-dimensional
simulations of fault reactivation with frictional strength governed by a Linker–Dieterich law, embedded
in a poroelastic homogenous media, and driven by fluid injection. The Linker–Dieterich law accounts
for the effect of effective stress rate on the friction evolution, and is able to explain the observed delays
in fault reactivation.

We applied our model to simulate the hydro-shearing effects during the stimulation at the Basel-1
well at the Deep Heat Mining geothermal project in Basilea (Switzerland). We adopted as input the
stress field and rock properties estimated for the main hydrogeological units at Basel-1, and simulated
the stimulation phase using a transient well-head pressure and flow evolution similar to the values
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reported at the study site. Our three-dimensional model satisfactorily reproduced the registered
injection flow rate and pressure injection, as well as the time of the fault reactivation.

Our simulated results indicate that thermal effects are negligible during the stimulation phase.
Temperature changes occur in a small area around the injection well and do not reach the fault plane.
Nevertheless, pressure changes, together with poroelastic effects, weaken the fault, leading eventually
to fault reactivation and the onset of slip. Our model was able to reproduce the instant at which fault
reactivation occurred at the Basel-1 site, demonstrating that the earthquake sequence that occurred in
December 2006 in Basel was caused by the hydraulic stimulation of the geothermal reservoir.

Our methodology emerges as a useful tool for engineers, practitioners, and stakeholders to assess
fault reactivation under real conditions of natural stresses, temperatures, and injection protocols.
The application of our model to the DHM project in Basel has shown its ability to predict fault
reactivation in a real case. Our model can also be useful for assessing new injection protocols, as well
as stimulating and managing the operation of an EGS system in the short and long term.
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