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Abstract: City shrinkage, as an ongoing worldwide phenomenon, is an issue for urban planning
and regional development. City shrinkage is remarkable in Japan, with over 85% of municipalities
experiencing population loss from 2005 to 2015. As Japan’s society ages and with its low fertility
rate, city shrinkage has had a tremendous negative effect on economic development and urban
planning. Understanding the spatial dependence and spatial heterogeneity of city shrinkage and
its determinants is essential for ensuring the sustainable development of a city or region. In this
study, a semiparametric geographically weighted regression (SGWR) model was adopted to explore
the spatiotemporal differences in determinants of city shrinkage. The results reveal that the SGWR
model incorporating the global and local variables is more interpretive compared to ordinary least
squares and geographically weighted regression models in exploring the correlates of city shrinkage.
We found the spatial dependence and heterogeneity of shrinking cities resulted from demographic,
economy, and social factors, and revealed low fertility, the ageing population, and enterprise change
ratio influenced city shrinkage in different regions at different times in Japan, whereas foreign
population ratio, industry structure, and social welfare had global impacts. The findings provide
useful information for understanding city shrinkage at global and local scales.

Keywords: city shrinkage; spatial autocorrelation; population structure; semiparametric
geographically weighted regression (SGWR)

1. Introduction

As of 2019, more than half of the world’s population is living in urban areas, and the rate is
expected to reach 70% by 2050 [1]. Due to rapid urbanization, many environmental effects have become
severe and are receiving people’s attention, such as air pollution and urban heat islands. However, city
shrinkage, as the antithesis of urbanization, is an ongoing extreme phenomenon not only in developed
countries, but also emerging in some fast-urbanizing countries [2,3]. City shrinkage is characterized
by population loss, economic downturn, and inefficient land use [4–6]. Especially in the developed
world, with a background of globalization and de-industrialization, many large cities are considered
shrinking cities or will be shrinking cities [7–10]. Research on the city shrinkage not only provides
solutions for the affected regions, but also alerts fast-urbanizing areas about future problems.

The process of city shrinkage occurs within a complex system, so studies on city shrinkage
considered many aspects. Many studies focused on the policies and response to city shrinkage and
called for local corresponding strategies for the sustainable development of the cities. For example,
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by assessing four policy responses to city shrinkage in Europe, improving the quality of life of local
citizens is the optimal strategy for local government [11]; by identifying the shortcomings of the local
government response to city shrinkage as lack of transparency and lack of understanding of best
practices, the development of local adaptation policies in shrinking cities is required [12]. Some scholars
focused on exploring the factors driving city shrinkage. The driving factors vary from demographics,
economy, society, and policies at global and local levels. For example, socio-spatial inequalities were
found to more strongly influence city shrinking compared with economic factors in the American
Rust Belt [13]; falling birth rates and the effects of German reunification were the main factors affect
shrinkage in Germany [14]. The demographic change, which refers to the ageing population and
low birth rate, is the primary cause of city shrinkage in Japan [3]; the economic level and population
structure are highly related to city shrinkage in China [15]. Although spatial dependence and spatial
heterogeneity were confirmed to exist in the city shrinkage spatial distribution [15], previous studies
mainly focused on investigating local driving factors of single cities or global driving factors for regions
or countries. As studies on policy responses to city shrinkage illustrate the local strategies are more
effective and required than corresponding global policies, understanding the local driving factors from
the global level is essential for policies makers and actors to better respond to this phenomenon.

Spatial dependence results from various spatial spillover effects, and spatial heterogeneity results
from inherent differences between spatial units and variations over space [16,17]. Ordinary least
squares (OLS) regression can be used to assess the general correlates of city shrinkage where the
correlates are spatially stationary [15]. However, local adaptation strategies are required to identify
the spatial heterogeneity of city shrinkage. Geographically weighted regression (GWR) has become
an increasingly essential tool for revealing local variables’ effects on the dependent variable over a
geographical area [18–21]. In the GWR model, all the explanatory variables are spatially non-stationary.
The semiparametric geographically weighted regression (SGWR) model, which is a mix of OLS and
GWR models, is useful in situations where certain explanatory variables influencing the response are
global while others are local [22]. Compared with the traditional OLS and GWR models, the SGWR
model is usually more interpretive [23–25]. As shrinking cities may have several similar characteristics,
which are better considered as spatially stationary impact factors, the SGWR model could be more
appropriate for modeling the driving factors of city shrinkage.

Following the Meiji restoration, the population of Japan, characterized by urbanization, continued
to quickly increase. The population increased from 34 million in 1868 to 128 million in 2008. However,
with strict immigration rules, low fertility, and the ageing society, after 2008, the population began
to decrease, and many cities became shrinking cities. Compared to other countries experiencing city
shrinkage, Japan urban shrinkage is particularly serious. This phenomenon has already significantly
influenced the sustainable social development even in large urban agglomerations such as Tokyo and
Nagoya [3,26]. Studies on Japan are helpful for understanding the process and mechanism of city
shrinkage. As city shrinkage was first proposed to occur due to migration and depopulation [27],
population loss is the most indicative phenomenon of a shrinking city [28]. The population change
ratio is the most often used indicator to represent the degree of city shrinkage [15,28–31].

In this study, the population change ratio derived from national census data in 2005, 2010, and
2015 was selected as the city shrinkage index, and a total of 1647 municipalities in Japan were selected
as study objects. The objectives of this study were to (1) investigate the spatiotemporal distributions
and patterns of shrinking cities in Japan; (2) reveal the interrelationship between city shrinkage and
demographic, economy, and social indexes on global and local scales; and (3) compare the determinants
across different regions. The findings illustrate the local determinants of city shrinkage in Japan,
improve the understanding of the situation and the factors driving city shrinkage, provide valuable
information for governments and planners developing effective coping strategies on the global and local
levels, and hopefully will draw the attention of fast-developing countries to this possible future issue.
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2. Study Area and Method

2.1. Study Area

Japan is a highly developed country, having the world’s third-largest gross domestic product
(GDP) [32]. The total population of Japan was about 127 million and the urbanization rate was about
93% according to the National Census in 2015. Japan consists of four main islands, including Hokkaido,
Honshu, Shikoku, and Kyushu from north to south, and about 6848 surrounding islands. Japan has 47
prefectures, and each prefecture consists of numerous municipalities, with 1741 in total as of October
2016. Japan is traditionally divided into eight regions, and each region includes several prefectures,
excluding Hokkaido (Figure 1). Four types of municipalities exist in Japan: cities, towns, villages, and
special wards (the ward in Tokyo). Cities with a certain population are labeled core cities (over 200,000
residents) or designated cities (over 700,000 residents) [31]. In this study, a total of 1647 municipalities
on the 4 main islands and surrounding isolated islands were selected as the study items (Okinawa
prefecture was excluded). The municipalities were further classified into four categories based on
population (Table 1).
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Table 1. Municipalities level classification.

Category Description Number

Large city Population over 700,000 21
Medium city Population between 200,000 and 700,000 89

Small city Population below 200,000 631
Town/village Municipality type is town or village 906

Compared with countries such as the United States and China, where the population is growing
and city shrinkage is only occurring in local suburban cities or regions [14,29], the city shrinkage
situation in Japan is more severe and requires investigation. However, the population in Japan has
declined since 2008, and the rate of decline has continued increasing, which indicates that city shrinkage
is becoming an increasingly severe nation problem that urgently requires countermeasures. Targeting
Japan will improve the understanding of mechanisms of city shrinkage. According to the National
Census data in 2005, 2010, and 2015, 71.9% of municipalities experienced continuous shrinkage,
and 13.6% of municipalities experienced temporal shrinkage from 2005 to 2015, while only 14.5%
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municipalities had a continuously increasing population during the period. Specifically, city shrinkage
was occurring at a higher rate in towns or villages (80.8%) and small cities (70.4%). However, city
shrinkage is not only a phenomenon experienced by local or small municipalities, but 56 large–medium
cities were also facing population loss in Japan, indicating an extreme city shrinkage situation in Japan
(Table 2). Regionally, the city shrinkage was extreme in Shikoku, Hokkaido, Tohoku, and Chugoku
(Table 3). The unbalanced regional economic scale and urban development degree could be essential
factors affecting population mobility, which in turn accelerate the ageing population and low fertility
in small municipalities.

Table 2. The ratio of shrinking cities classified by municipality size.

Population Change Municipality Level

Large City Medium City Small City Town/Village

Continuous
shrinkage

14.3%
(3)

27.0%
(24)

70.4%
(444)

80.8%
(732)

Temporal
shrinkage

19.0%
(4)

28.1%
(25)

14.4%
(91)

10.9%
(99)

Continuous
increase

66.7%
(14)

44.9%
(40)

15.2%
(96)

8.3%
(75)

Note: Numbers in bracket refers to the counts of municipalities.

Table 3. The ratio of shrinking cities classified by region.

Population Change Area

Hokkaido Tohoku Kanto Chubu Kinki Chugoku Shikoku Kyushu

Continuous 89.4% 88.2% 52.0% 66.0% 68.4% 82.1% 90.2% 75.0%
shrinkage (160) (194) (146) (225) (134) (87) (83) (174)

Temporal 7.3% 6.4% 19.6% 17.9% 15.8% 8.5% 4.4% 13.8%
shrinkage (13) (14) (55) (61) (31) (9) (4) (32)

Continuous 3.4% 5.5% 28.5% 16.1% 15.8% 9.4% 5.4% 11.2%
increase (6) (12) (80) (55) (31) (10) (5) (26)

Note: Numbers in bracket refers to the numbers of municipalities.

2.2. Data

We first focused on the spatiotemporal distributions of shrinking cities in Japan. As population
loss is the main characteristic of city shrinkage, as the dependent variable, we used the population
change ratio from 2005 to 2010, and 2010 to 2015, derived from National Census data downloaded
from the portal site of the Official Statistics of Japan.

The age structure, economy level, and social development level were found to be vitally essential
issues for urban regeneration, which are directly connected with urban shrinking. Multiple commonly
used demographic, economic, and social indicators were selected as the explanatory variables for
analysis (Table 4) [15,33,34]. The data were downloaded and derived from Statistical Observations of
Municipalities from 2006 to 2016. The explanatory variables consisted of 15 variables from 3 urban
sub-systems. In the demographic sub-systems, TP refers to the size of a municipality; UPR, APR, and
FPR refer to the age and population structure; in the economic sub-systems, CT and GR refer to the
income of local resident and local government, respectively; ECR refers to the industry changes; STIER
and STIWR refer to the local industry structure; UR refers to local poverty; in the social sub-systems,
SN refers to the local education resources; HN and DN refer to the local medical level; and NEF and
NNC refer to the local social welfare level, respectively.
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Table 4. Classification, name, and description for explanatory variables.

Classification Name Description

Demographic indexes

TP Total population (people)
UPR Underage population ratio (age < 15 years)
APR Ageing population ratio (age ≥ 65 years)
FPR Foreign population ratio

Economic indexes

CT Per capita taxes (JPY/people)
GR Government revenue (million JPY)

ECR Numbers of enterprise change ratio
STIER Secondary and tertiary industry enterprises ratio
STIWR Secondary and tertiary industry workers ratio

UR Unemployment rate

Social indexes

SN Number of primary and secondary schools
HN Number of hospitals and clinics
DN Number of doctors (per 10,000 people)
NEF Number of elderly facilities
NNC Number of nursery centers

Note: The variables are computed at later years (for example, TP is the total population in year 2015 for the study
period from 2010 to 2015).

2.3. Methods

In this study, we first conducted spatial autocorrelation analysis to validate the spatial dependence
of population change. Then, OLS and exploratory regressions were employed to identify correlates of
city shrinkage. After that, three types of regression analyses, including OLS, GWR, and SGWR, were
conducted to reveal the correlates of city shrinkage (Figure 2).
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Figure 2. Research flow chart (OLS: ordinary least squares; GWR: geographically weighted regression;
SGWR: semiparametric geographically weighted regression).

2.3.1. Spatial Autocorrelation Analysis

As nearby objects are more correlated with each other than distant objects [35], the distribution of
shrinking cities is more likely to be concentrated in space. Spatial autocorrelation analysis, including
the global Moran’s I statistics and local Moran’s I statistics were performed to reveal the spatial
dependence of population change. Global Moran’s I, which is a rational number ranging from −1 to 1
after normalized variance was selected for spatial autocorrelation analysis for its widely used to reveal
the global spatial autocorrelation. Global Moran’s I > 0 indicates positive spatial correlation where the
larger the value, the stronger the spatial correlation; global Moran’s I < 0 indicates negative spatial
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correlation, where the smaller the value, the larger the spatial difference; and global Moran’s I = 0
indicates a random space. In this study, a larger absolute value indicates greater spatial agglomeration
(positive value) or differentiation (negative value) of population change.

However, the global Moran’s I can only reflect spatial autocorrelation but does not identify
the location and type of spatial clusters [36]. The Local Moran’s I can be applied to identify the
local differences and similarities among neighboring municipalities. The local indicators of spatial
association (LISA) can be determined using local Moran’s I [37]. Generally, four clustering/outlier
types are classified using the local Moran’s I including (1) high-high cluster (HH), (2) high-low outlier
(HL), (3) low-high outlier (LH), and (4) low-low outlier (LL). HH and LL reflect positive spatial
correlation; HL and LH reflect negative spatial correlation. Therefore, both the global and local Moran’s
I statistics for analyzing the correlation of population variation between each municipality. In this
study, HH refers to an above-average rate of population increase in a local municipality, with the same
characteristic found in its neighboring cities. HL refers to an above-average rate of population increase
in a local municipality, whereas the population decreases in the neighboring cities. LH refers to a
shrinkage in a local municipality with above-average rates of population increases in the neighboring
municipalities. LL refers to population shrinkage in a local municipality with its neighboring cities
showing the same characteristics.

Meanwhile, the spatial weight matrix can significant affect the results of Moran’s I. We selected
the k nearest neighbors weight matrix, which set each municipality will have exactly the specified
number of neighbors. As a prefecture in Japan has an average of 36 municipalities, the number of
neighbors k was select as 40. We used ArcGIS 10.3 (Esri, Redlands, CA, USA) to generate the spatial
weight matrix and calculate the global/local Moran’s I, which demonstrated the spatial relationship
between the population change in a municipality and its neighbors in Japan.

2.3.2. Screening Explanatory Variables

After testing the spatial autocorrelation of population change, multivariate OLS regression and
exploratory regression were conducted to test the relationship between population change and selected
explanatory variables. All the variables were first normalized to ensure the variables were normally
distribution or approximated normal distribution. Then, to eliminate the multicollinearity of the
data, which could produce a distorted or inaccurate model, the variance inflation factor (VIF) for
each explanatory variable was calculated, and the variables with a VIF value over 5 were sequentially
excluded from the final model until no more VIF > 5 were found [38]. In this procedure, shown in
Tables A1 and A2 (Appendix A), 8 explanatory variables including TP, CT, GR, STIER, SN, HN, DN,
and NEF, which had significant multicollinearity with the population change, were therefore excluded
from the final model. Then, exploratory regression was conducted to exclude the non-significant
variables of the population change at a 95% confidence level. In this procedure, UR was excluded. The
results showed that no local multicollinearity existed among the remaining variables. Therefore, after
removing the variables redundancy or non-significance, 6 explanatory variables, including UPR, APR,
FPR, ECR, STIWR, and NNC, were screened out for both study periods, which suggests the general
correlates of city shrinkage remain unchanged. After screening out the variables, the OLS model was
reformulated with the 6 explanatory variables. These variables were then used for the corresponding
GWR and SGWR models.

2.3.3. Semiparametric Geographically Weighted Regression

Multivariate OLS regression was developed using ArcGIS 10.3 to identify the relationship between
the population change and all the explanatory variables from three systems. The traditional OLS
model considers all explanatory variables are global and spatially stationary. An OLS model can be
expressed as follows:

yi = β0 +
∑

β jx j + εi (1)
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where β0 represents the intercept, β j represents the regression coefficient for the explanatory variable
x j, and εi represents the error term.

However, in this study, due to the spatial differences in demographics, economy, and society, the
GWR model, which considers spatial heterogeneity, could be a better model for reducing the error
caused by spatial non-stationary. The GWR model is an extension of the OLS regression model that has
been applied to multidisciplinary studies such as meteorology, sociology, and economics, to effectively
reveal the spatial heterogeneity. In a GWR model, spatial heterogeneity is investigated in the model fit
where the spatial locations of data are incorporated. A local linear regression model for each feature in
the dataset was calibrated using a different weighting of observations [39]. The parameter in this model
is a single function that represents the spatial location that is derived by weighting all neighboring
observations based on a decreasing function of distance [40]. A GWR model can be expressed as:

yi = β0(ui, vi) +

p∑
j=1

β j(ui, vi)xi j + εi (2)

where (ui, vi) represents the coordinates of location i, β0(ui, vi) represents the intercept, β j(ui, vi)

represents the local regression coefficient for the explanatory variable x j at location i, and represents
the error term. They are estimated using the local weighted least squares method.

A GWR model assumes all the factors are non-stationary and focuses on the differences in the
spatial effect of the variables. However, due to population change in Japan being caused by complex
factors, the possibility always exists that several global explanatory variables could contribute to explain
the population change in Japan. The semiparametric geographically weighted regression (SGWR)
model, which is an extension of traditional GWR model, can be applied to meet the requirements of the
model and allow some parameters to be global variables and others to be local [19,23,41]. An SGWR
model can be expressed as follows:

yi =

q∑
k=1

βkxk +

p∑
j=1

β j(ui, vi)xi j + εi (3)

where k represents the global variables and j represents the local variables. We applied the SGWR
model to investigate the spatial impact factors of population change in Japan, using an adaptive
bi-square kernel type to calculate the weight matrix. We used an adaptive rather than a fixed kernel
because regression points (the center of each municipalities) were irregularly scattered over the study
area, and adaptive kernel allows the dataset to be large enough for each local regression [42].

In a GWR model, the accuracy is profoundly affected by the bandwidth, which refers to the
number of nearest neighbors of municipality i. The corrected Akaike information criterion (AICc)
method [43,44] and the cross-validation (CV) method are two methods often applied to determine the
bandwidth. Compared with the CV method, the AICc method can quickly and effectively solve the
problem considering the differences in the degree of freedom of different models. Therefore, in this
study, the smallest AICc was selected for the appropriate bandwidth determination [19]. The selection
of the optimal SGWR model with the smallest AICc based on an iterative process was processed using
GWR 4 software [45].

3. Results and Discussion

3.1. Spatial Autocorrelation Analysis of Population Change Patterns

In this study, the population change in Japan from 2005 to 2010, and 2010 to 2015 was confirmed
to be positive spatially clustered with the global Moran’s I for the two study periods of 0.462 and 0.615,
respectively (Table 5). To further understand the spatial features of population change, local Moran’s I
was applied. The LISA maps of population change shown in Figure 3 reveal the local spatial clusters of
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the population change. During the two study periods, many municipalities showed spatial clustering
characteristics. The results show the LL cluster areas were concentrated in Hokkaido, Tohoku, Shikoku,
and Kinki, whereas the HH cluster areas concentrated around the Tokyo city cluster in the central
area of Kanto, the Osaka city cluster in the southwest of Kinki, Nagoya city cluster in the southwest
of Chubu, and the Fukuoka city cluster in the north of Kyushu. Outlier LH areas existed around the
Tokyo city cluster and Nagoya city cluster, which indicate that city shrinkage was already occurring in
the suburban areas around large urban agglomerations. From 2010 to 2015, the number of cities in the
HH and LL clusters increased by 54 and 15, respectively, compared with the period from 2005 to 2010.
These results revealed a significant correlation between city shrinkage and spatial distribution and the
increasing city shrinkage phenomenon.

Table 5. Global Moran’s I.

Study Period Global Moran’s I Z-Score p-Value

2005–2010 0.462 23.10 <0.01
2010–2015 0.615 30.67 <0.01
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Through the global/local Moran’s I statistics, the results indicated the population change patterns
were spatially autocorrelated. City clusters centered in Tokyo, Osaka, Nagoya, and Fukuoka
demonstrated spatial agglomeration of population growth municipalities, whereas municipalities
in Hokkaido, Tohoku, and Shikoku demonstrated the spatial agglomeration of shrinking cities.
The unbalanced regional economic scales and urban development degree could be essential factors
influencing population mobility, which in turn accelerates the ageing of the population and the low
fertility in small municipalities.

3.2. Regression Results

3.2.1. Global and Local Analysis

After screening out the variables, the global model based on the OLS regression procedure was
reformulated using the six variables. The results revealed the intercorrelation between population
change and municipality parameters, as shown in Table 6.
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Table 6. Municipality parameters estimated coefficient for the global model (R2, Coefficient of
determination: AICc: corrected Akaike information criterion).

Study Period Intercept UPR APR FPR ECR STIWR NNC R2 Adjusted R2 AICc

2005–2010 −3.556* 1.262* −2.907* 0.315* 1.029* 0.040 0.855* 0.525 0.512 −5245.55
2010–2015 −5.343* 2.147* −1.727* 0.125 1.204* 0.211* 0.727* 0.718 0.715 −6761.06

Note: * p < 0.05.

The results showed that the global model for population change from 2005 to 2010 was moderate
(adjusted coefficient of determination (R2) = 0.512), which indicates the six parameters could explain
the population change during 2005–2010 to a certain extent. The adjusted R2 of the global model for
population change from 2010 to 2015 was 0.715, indicating a substantially adequate explanation of
the population change. The results also revealed that APR had a negative coefficient value, which
suggests the ageing population ratio has the most significant adverse effect on population change
compared with the other parameters. With high positive coefficients, UPR and ECR had significantly
positive effects on population change compared with the other parameters. STIWR was found to be
non-significant in the first study period, and FPR was found to be non-significant in the second study
period. Comparably, the estimated coefficient of UPR increased, indicating an increasing effect of low
fertility on city shrinkage. Conversely, the effect of ageing population was found to decrease as the
absolute value of APR decreased.

Considering the spatial heterogeneity and spatial autocorrelation of population change, GWR was
applied to fit a local population change model. Figure 4 shows the parameter coefficients for the local
model of the two study periods. Compared with the first study period, the variation range and the
number of mild outliers of the parameters increased. The effects of the parameters could be positive or
negative for different regions. Figure 5 shows the variation in parameters’ t-values for the local model.
Most observations of UPR, APR, ECR, and NNC reached the 0.05 significance level for the first study
period, whereas most observations of UPR, APR, and ECR reached the 0.05 significance level for the
second study period.
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3.2.2. SGWR Model Analysis

Considering the global model explained the population change to some degree whereas the
local model improved the accuracy, the SGWR models were developed to consider both the spatial
stationarity and non-stationarity for the parameters affecting population change. An iterative process
was used to determine whether a parameter was a global or local variable. The most fitted SGWR
model was based on the AICc [43,46]; the model with the smallest AICc value was selected, which
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refers to the best fitting result. In this procedure, FPR, STIWR, and NNC were selected as global
variables, and UPR, APR, and ECR remained local variables for both models (Table 7).
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Table 7. Determination of parameters for the SGWR models.

Study Period Explanatory Variable

UPR APR FPR ECR STIWR NNC

2005–2010 Local Local Global Local Global Global
2010–2015 Local Local Global Local Global Global

As shown in Table 8, the adjusted R2 for the two local models were 0.528 and 0.815, respectively,
which are higher than the global models, suggesting that considering the parameter influences to be
spatially non-stationary is more representative than considering them to be spatially stationary. The
fitting results of the SGWR model improved compared with the global and local models. The R2 of the
SGWR model was the largest compared to the other two models. The AICc value of the SGWR model
for the first study period decreased by 47.40, and 10.05 compared with the OLS and GWR models,
respectively. For the second study period, the AICc value decreased by 527.43 and 111.89, respectively.
Combined with the value of the bandwidth and residual square, we found that the SGWR model was
optimal for both study periods, which indicates the population change in Japan displayed spatially
stationary and non-stationary parameters.

Table 8. Accuracy evaluation for the global, local, and SGWR model.

Parameter
2005–2010 2010–2015

OLS GWR SGWR OLS GWR SGWR

Bandwidth - 341 201 - 87 66
Residual squares 395.17 373.21 369.09 157.46 80.94 77.27

AICc −5245.55 −5282.90 −5292.95 −6761.06 −7176.80 −7288.49
Adjusted R2 0.512 0.528 0.532 0.715 0.815 0.818

Figure 6 shows the local R2 of the SGWR model. For the first study period from 2005 to 2010,
the values of local R2 for Shikoku, Chugoku, Kinki, and Chubu were relatively larger, especially in
and around the Osaka city cluster. However, the values of local R2 for Tohoku and Hokkaido were
relatively lower, which can be explained by the many municipalities in the two regions experiencing
mergers during the first study period. From 1999 to 2010, a wave of merger activity occurred called
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‘the great Heisei mergers’ as a response to the low fertility and ageing population. The number of
municipalities decreased from 2521 in 2005 to 1727 in 2010. As the merge between municipalities led to
a population explosion for those municipalities, the interpretation of the SGWR model for this period
was affected, producing a moderate result (adjusted R2 = 0.532). However, since 2010, the municipality
mergers ceased and little change occurred in the administration districts from 2010 to 2015, explaining
the high value of local R2 in most regions in Japan during this period.
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For UPR, APR, and ECR found to be non-stationary spatial correlates affect the population change,
the local coefficients of each variable and the spatial characteristics of city shrinkage correlates were
analyzed. The t-test was conducted to pick out the coefficients of the local variables which passed the
significance level of 0.05.

Figure 7 depicts the local coefficients of UPR from 2005 to 2010, and from 2010 to 2015, UPR
had a significant positive effect in 1074 and 988 municipalities (p < 0.05) for the two study periods,
respectively. The results indicated that from 2005 to 2010, the ratio of the underage population
mainly affected the population change around Nagoya city cluster, whereas from 2010 to 2015, the
underage-population-affected areas were scattered and extended to south Kinki, east Shikoku, and the
boundary area between Chubu and Kanto, and the north and south parts of Kyushu. UPR remained
correlated with the population change in most parts of Hokkaido and Tohoku from 2005 to 2015.
Different from the other countries facing city shrinkage, even countries in East Europe, city shrinkage
is most strongly linked to demographic transition and process of an ultra-ageing society [34,47]. The
results indicated that low fertility rate could be the key factor influencing the city shrinkage and the
ageing population [48,49]. Since 2007, the fertility rates have continued decreasing and began to fall
below death rates. City shrinkage in Hokkaido and Tohoku, where the underage population ratio
was below the national average, have always been affected by low fertility rates. As the fertility rate
continues to fall, it would become a main factor affecting the city shrinkage in the other regions.
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2010 to 2015.

Figure 8 shows the coefficient of the ageing population effect on population change from 2005
to 2010 and from 2010 to 2015. In the first period from 2005 to 2010, only 10 municipalities did not
pass the significance test, whereas the other municipalities were found to have a negative correlation
between UPR and population change, which suggests the ageing population is correlated with driving
city shrinkage nationwide. However, the estimated coefficient of UPR varied between regions. Kyushu
and Kanto were the regions with the largest UPR estimated coefficients. The ageing phenomenon in
Kyushu was serious, especially in the south, which has aggravated the city’s shrinkage. Conversely,
in Kanto, centered in Tokyo, the labor force continuously migrated inward and the proportion of the
elderly population continued to decline, which has caused urban expansion in the region. The city
shrinkage in the distant periphery and suburban areas occurred due to the ageing populations and
infrastructure that has become inadequate [50,51]. From 2010 to 2015, the area of the ageing population
effect shrunk and negative coefficients were found in 935 municipalities mainly concentrated in Kyushu,
Chubu, and Chugoku. However, positive coefficients were found in 45 municipalities in south Tohoku
and south and north Hokkaido, which could be due to the aggregation of the elderly population and
population ageing.
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Figure 9 shows the spatial distribution of the local ECR coefficient from 2005 to 2010 and from
2010 to 2015. The local ECR coefficient was found to be spatially non-stationary, and the differences
between the two study periods in the region varied. Generally, the economic correlates less impacted
city shrinkage than the demographic correlates. From 2005 to 2010, the local ECR coefficient for Kanto
was the largest, followed by Kyushu, Shikoku, and Kinki, indicating the population changes in those
four regions were strongly correlated with the number of enterprises. However, the non-significant
correlation in Tohoku indicated that the population changes in the region were not correlated with
the number of enterprises. Comparatively, from 2010 to 2015, the local ECR coefficient for 81.7% of
municipalities in Tohoku was significantly positive. The number of enterprises decreased, which
was an essential reason for population decline and city shrinkage in the region. The results revealed
that the changing numbers of enterprises was significantly correlated with the population change
in several main city clusters in Japan, which are also the economic centers, including Tokyo, Osaka,
and Fukuoka, for both periods. Urban agglomerations benefit from the increase in the number of
enterprises, which appeals to the working population and stimulates population agglomeration and
urban expansion [52,53], thus leading to the population loss and city shrinkage in small cities far
from metropolises.
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Other studies explained city shrinkage in Japan as being due to the ageing population, low fertility,
and de-industrialization at a global level [49,54]. However, few studies focused on the quantitative
differences of determinates that contribute to city shrinkage. As city shrinkage worldwide refers to
the loss of population, it is a severe phenomenon accompanied by economic, social, and cultural
decline [55,56]. As the global and local Moran’s I statistics showed spatial aggregation for the population
change ratio, we considered the variables to have spatially stationary or non-stationary effects on city
shrinkage in Japan, and encouraging us to explore the regional differences in city shrinkage from 2005
to 2015. The results revealed the spatial heterogeneity of shrinking cities, and showed UPR, which
refers to low fertility, dominated city shrinkage in Hokkaido, Tohoku, and Kinki; APR, which refers to
the ageing population, dominated in Chubu and Kyushu; and ECR had a significantly positive effect
in Kanto. In the two study periods, the influence of the local variables in different regions were quite
different. Generally, demographic indexes were found to be more correlated with city shrinkage in
Japan, which validates that the demographic transition had more of an effect than economic transition.
The results showed that APR have the largest absolute value of the estimated coefficients, which
indicate ageing population could be a key factor influencing city shrinkage in most municipalities in
Japan from 2005 to 2010, whereas low fertility could be the key factor influencing city shrinkage from
2010 to 2015.
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4. Conclusions and Prospects

In this study, we developed SGWR models to capture the spatiotemporal differences in
determinants affecting city shrinkage in Japan based on national census data from 2005 to 2015.
Our findings are as follows: (1) City shrinkage in Japan is a serious national problem, which showed a
significant increasing positive spatial autocorrelation; Hokkaido, Tohoku, and Shikoku had the largest
shrinking city clusters, and this phenomenon has already occurred in suburban areas around the Tokyo
and Nagoya city clusters. (2) Compared with traditional OLS and GWR models, the SGWR models,
which consider spatial dependence and heterogeneity, are more interpretive in the explanation of
city shrinkage. (3) The correlation between the demographic, economic, and social indexes and city
shrinkage was revealed through quantitative analysis. Low fertility, ageing population, and industry
changes, expressed by APR, UPR, and ECR, were the critical spatially non-stationary correlates, with
large estimated coefficients, affected the city shrinkage in different regions at different times. The
findings contribute to improving our understanding of the situation and correlates of city shrinkage,
and provide valuable information for governments and planners when developing effective coping
strategies for city regeneration.

Due to low fertility and strict immigration policies in Japan [34], which mean city shrinkage may
be an irreversible process, determining how to ensure the smart decline of city sizes is an essential
issue [57]. The limitation of this study is that specific policies were not considered as an explanatory
variable. Future studies are required to analyze the implementation of specific policies and their effect
on city shrinkage, and to explore the characteristics of spatial patterns of city shrinkage in each city
using more sophisticated data.
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Appendix A

Table A1. Variance inflation factor (VIF) value of variables selection procedure of the model study
period 2005 to 2010.

Iteration TP UPR APR FPR CT GR ECR STIER STIWR UR SN HN DN NEF NNC

1 (keep all) 208.95 3.62 4.98 1.28 167.45 33.62 1.25 47.16 2.40 1.84 12.61 25.56 14.10 8.65 4.61
2 (remove CT) 52.01 2.98 4.02 1.21 - 32.10 1.24 45.64 2.03 1.31 12.44 25.00 13.73 8.29 4.14
3 (remove TP) - 2.97 4.01 1.21 - 29.75 1.24 30.78 2.02 1.21 12.41 23.99 13.50 8.29 4.09

4 (remove STIER) - 2.96 3.91 1.18 - 25.10 1.24 - 1.78 1.21 12.01 22.84 12.71 7.87 4.08
5 (remove GR) - 2.93 3.90 1.18 - - 1.24 - 1.74 1.21 9.10 20.08 12.62 7.66 3.64
6 (remove HN) - 2.93 3.77 1.18 - - 1.21 - 1.68 1.20 8.22 - 10.08 7.39 3.62
7 (remove DN) - 2.91 3.59 1.18 - - 1.19 - 1.51 1.20 6.80 - - 6.70 3.61
8 (remove SN) - 2.88 3.52 1.17 - - 1.18 - 1.49 1.20 - - - 6.08 3.54

9 (remove NEF) - 2.82 3.50 1.16 - - 1.18 - 1.48 1.19 - - - - 1.19

Table A2. Variance inflation factor (VIF) value of variables selection procedure of the model study
period 2010 to 2015.

Iteration TP UPR APR FPR CT GR ECR STIER STIWR UR SN HN DN NEF NNC

1 (keep all) 211.51 1.51 4.53 1.07 169.83 17.78 2.03 48.41 2.03 1.72 26.22 13.50 15.35 10.24 1.28
2 (remove CT) 42.80 1.51 4.46 1.07 - 16.12 1.17 42.25 1.81 1.26 11.75 12.78 13.10 9.90 1.28
3 (remove TP) - 1.50 4.28 1.07 - 15.72 1.15 22.38 1.77 1.16 11.42 11.95 13.02 9.87 1.27

4 (remove STIER) - 1.48 4.29 1.07 - 15.53 1.14 19.76 1.74 1.16 11.30 11.84 10.13 9.75 1.27
5 (remove GR) - 1.44 4.27 1.07 - - 1.11 - 1.64 1.16 10.80 11.11 8.02 9.46 1.26
6 (remove HN) - 1.31 4.30 1.07 - - 1.10 - 1.63 1.16 8.82 - 7.31 8.84 1.26
7 (remove NEF) - 1.28 4.29 1.06 - - 1.10 - 1.62 1.15 7.13 - 6.44 - 1.25
8 (remove SN) - 1.25 4.28 1.06 - - 1.09 - 1.54 1.15 - - 6.21 - 1.25
9 (remove DN) - 1.21 4.08 1.06 - - 1.08 - 1.44 1.14 - - - - 1.24
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