
 

Sustainability 2019, 11, 6891; doi:10.3390/su11246891 www.mdpi.com/journal/sustainability 

Article 

Spatiotemporal Differences in Determinants of City 
Shrinkage Based on Semiparametric Geographically 
Weighted Regression 
Wangchongyu Peng 1, Weijun Gao 1,2,*, Xin Yuan 1, Rui Wang 1 and Jinming Jiang 1 

1 Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan; 
pengwcy@gmail.com (W.P.); uanin03@gmail.com (X.Y.); garywang0318@gmail.com (R.W.); 
jjmwolf@outlook.com (J.J.) 

2 Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University 
of Technology, Qingdao 266033, China 

* Correspondence: gaoweijun@me.com; Tel.: +81-93-695-3234 

Received: 23 October 2019; Accepted: 1 December 2019; Published: 4 December 2019 

Abstract: City shrinkage, as an ongoing worldwide phenomenon, is an issue for urban planning 
and regional development. City shrinkage is remarkable in Japan, with over 85% of municipalities 
experiencing population loss from 2005 to 2015. As Japan’s society ages and with its low fertility 
rate, city shrinkage has had a tremendous negative effect on economic development and urban 
planning. Understanding the spatial dependence and spatial heterogeneity of city shrinkage and its 
determinants is essential for ensuring the sustainable development of a city or region. In this study, 
a semiparametric geographically weighted regression (SGWR) model was adopted to explore the 
spatiotemporal differences in determinants of city shrinkage. The results reveal that the SGWR 
model incorporating the global and local variables is more interpretive compared to ordinary least 
squares and geographically weighted regression models in exploring the correlates of city 
shrinkage. We found the spatial dependence and heterogeneity of shrinking cities resulted from 
demographic, economy, and social factors, and revealed low fertility, the ageing population, and 
enterprise change ratio influenced city shrinkage in different regions at different times in Japan, 
whereas foreign population ratio, industry structure, and social welfare had global impacts. The 
findings provide useful information for understanding city shrinkage at global and local scales. 

Keywords: city shrinkage; spatial autocorrelation; population structure; semiparametric 
geographically weighted regression (SGWR) 

 

1. Introduction 

As of 2019, more than half of the world’s population is living in urban areas, and the rate is 
expected to reach 70% by 2050 [1]. Due to rapid urbanization, many environmental effects have 
become severe and are receiving people’s attention, such as air pollution and urban heat islands. 
However, city shrinkage, as the antithesis of urbanization, is an ongoing extreme phenomenon not 
only in developed countries, but also emerging in some fast-urbanizing countries [2,3]. City 
shrinkage is characterized by population loss, economic downturn, and inefficient land use [4–6]. 
Especially in the developed world, with a background of globalization and de-industrialization, 
many large cities are considered shrinking cities or will be shrinking cities [7–10]. Research on the 
city shrinkage not only provides solutions for the affected regions, but also alerts fast-urbanizing 
areas about future problems. 

The process of city shrinkage occurs within a complex system, so studies on city shrinkage 
considered many aspects. Many studies focused on the policies and response to city shrinkage and 
called for local corresponding strategies for the sustainable development of the cities. For example, 
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by assessing four policy responses to city shrinkage in Europe, improving the quality of life of local 
citizens is the optimal strategy for local government [11]; by identifying the shortcomings of the local 
government response to city shrinkage as lack of transparency and lack of understanding of best 
practices, the development of local adaptation policies in shrinking cities is required [12]. Some 
scholars focused on exploring the factors driving city shrinkage. The driving factors vary from 
demographics, economy, society, and policies at global and local levels. For example, socio-spatial 
inequalities were found to more strongly influence city shrinking compared with economic factors in 
the American Rust Belt [13]; falling birth rates and the effects of German reunification were the main 
factors affect shrinkage in Germany [14]. The demographic change, which refers to the ageing 
population and low birth rate, is the primary cause of city shrinkage in Japan [3]; the economic level 
and population structure are highly related to city shrinkage in China [15]. Although spatial 
dependence and spatial heterogeneity were confirmed to exist in the city shrinkage spatial 
distribution [15], previous studies mainly focused on investigating local driving factors of single cities 
or global driving factors for regions or countries. As studies on policy responses to city shrinkage 
illustrate the local strategies are more effective and required than corresponding global policies, 
understanding the local driving factors from the global level is essential for policies makers and actors 
to better respond to this phenomenon.  

Spatial dependence results from various spatial spillover effects, and spatial heterogeneity 
results from inherent differences between spatial units and variations over space [16,17]. Ordinary 
least squares (OLS) regression can be used to assess the general correlates of city shrinkage where the 
correlates are spatially stationary [15]. However, local adaptation strategies are required to identify 
the spatial heterogeneity of city shrinkage. Geographically weighted regression (GWR) has become 
an increasingly essential tool for revealing local variables' effects on the dependent variable over a 
geographical area [18–21]. In the GWR model, all the explanatory variables are spatially non-
stationary. The semiparametric geographically weighted regression (SGWR) model, which is a mix 
of OLS and GWR models, is useful in situations where certain explanatory variables influencing the 
response are global while others are local [22]. Compared with the traditional OLS and GWR models, 
the SGWR model is usually more interpretive [23–25]. As shrinking cities may have several similar 
characteristics, which are better considered as spatially stationary impact factors, the SGWR model 
could be more appropriate for modeling the driving factors of city shrinkage.  

Following the Meiji restoration, the population of Japan, characterized by urbanization, 
continued to quickly increase. The population increased from 34 million in 1868 to 128 million in 
2008. However, with strict immigration rules, low fertility, and the ageing society, after 2008, the 
population began to decrease, and many cities became shrinking cities. Compared to other countries 
experiencing city shrinkage, Japan urban shrinkage is particularly serious. This phenomenon has 
already significantly influenced the sustainable social development even in large urban 
agglomerations such as Tokyo and Nagoya [3,26]. Studies on Japan are helpful for understanding the 
process and mechanism of city shrinkage. As city shrinkage was first proposed to occur due to 
migration and depopulation [27], population loss is the most indicative phenomenon of a shrinking 
city [28]. The population change ratio is the most often used indicator to represent the degree of city 
shrinkage [15,28–31].  

In this study, the population change ratio derived from national census data in 2005, 2010, and 
2015 was selected as the city shrinkage index, and a total of 1647 municipalities in Japan were selected 
as study objects. The objectives of this study were to (1) investigate the spatiotemporal distributions 
and patterns of shrinking cities in Japan; (2) reveal the interrelationship between city shrinkage and 
demographic, economy, and social indexes on global and local scales; and (3) compare the 
determinants across different regions. The findings illustrate the local determinants of city shrinkage 
in Japan, improve the understanding of the situation and the factors driving city shrinkage, provide 
valuable information for governments and planners developing effective coping strategies on the 
global and local levels, and hopefully will draw the attention of fast-developing countries to this 
possible future issue. 
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1. Study Area and Method 

2.1. Study Area 

Japan is a highly developed country, having the world’s third-largest gross domestic product 
(GDP) [32]. The total population of Japan was about 127 million and the urbanization rate was about 
93% according to the National Census in 2015. Japan consists of four main islands, including 
Hokkaido, Honshu, Shikoku, and Kyushu from north to south, and about 6848 surrounding islands. 
Japan has 47 prefectures, and each prefecture consists of numerous municipalities, with 1741 in total 
as of October 2016. Japan is traditionally divided into eight regions, and each region includes several 
prefectures, excluding Hokkaido (Figure 1). Four types of municipalities exist in Japan: cities, towns, 
villages, and special wards (the ward in Tokyo). Cities with a certain population are labeled core 
cities (over 200,000 residents) or designated cities (over 700,000 residents) [31]. In this study, a total 
of 1647 municipalities on the 4 main islands and surrounding isolated islands were selected as the 
study items (Okinawa prefecture was excluded). The municipalities were further classified into four 
categories based on population (Table 1). 

 
Figure 1. Regions of Japan, from north to south: Hokkaido, Tohoku, Kanto, Chubu, Kinki, Chugoku, Shikoku, 

and Kyushu. 

Table 1. Municipalities level classification. 

Category Description Number 
Large city Population over 700,000 21 

Medium city Population between 200,000 and 700,000 89 
Small city Population below 200,000 631 

Town/village Municipality type is town or village 906 

Compared with countries such as the United States and China, where the population is growing 
and city shrinkage is only occurring in local suburban cities or regions [14,29], the city shrinkage 
situation in Japan is more severe and requires investigation. However, the population in Japan has 
declined since 2008, and the rate of decline has continued increasing, which indicates that city 
shrinkage is becoming an increasingly severe nation problem that urgently requires countermeasures. 
Targeting Japan will improve the understanding of mechanisms of city shrinkage. According to the 
National Census data in 2005, 2010, and 2015, 71.9% of municipalities experienced continuous 
shrinkage, and 13.6% of municipalities experienced temporal shrinkage from 2005 to 2015, while only 
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14.5% municipalities had a continuously increasing population during the period. Specifically, city 
shrinkage was occurring at a higher rate in towns or villages (80.8%) and small cities (70.4%). 
However, city shrinkage is not only a phenomenon experienced by local or small municipalities, but 
56 large–medium cities were also facing population loss in Japan, indicating an extreme city 
shrinkage situation in Japan (Table 2). Regionally, the city shrinkage was extreme in Shikoku, 
Hokkaido, Tohoku, and Chugoku (Table 3). The unbalanced regional economic scale and urban 
development degree could be essential factors affecting population mobility, which in turn accelerate 
the ageing population and low fertility in small municipalities. 

Table 2. The ratio of shrinking cities classified by municipality size. 

Population change Municipality Level 
Large City Medium City Small City Town/Village 

Continuous  
shrinkage 14.3% (3) 27.0% (24) 70.4% (444) 80.8% (732) 

Temporal  
shrinkage 

19.0% (4) 28.1% (25) 14.4% (91) 10.9% (99) 

Continuous  
increase 

66.7% (14) 44.9% (40) 15.2% (96) 8.3% (75) 

Note: Numbers in bracket refers to the counts of municipalities. 

Table 3. The ratio of shrinking cities classified by region. 

Population 
change 

Area 

Hokkaido Tohoku Kanto Chubu Kinki Chugoku Shikoku Kyushu 
Continuous 
shrinkage 

89.4% 
(160) 

88.2% 
(194) 

52.0% 
(146) 

66.0% 
(225) 

68.4% 
(134) 

82.1% 
(87) 

90.2% 
(83) 

75.0% 
(174) 

Temporal 
shrinkage 

7.3% 
(13) 

6.4% 
(14) 

19.6% 
(55) 

17.9% 
(61) 

15.8% 
(31) 

8.5% 
(9) 

4.4% 
(4) 

13.8% 
(32) 

Continuous 
increase 

3.4% 
(6) 

5.5% 
(12) 

28.5% 
(80) 

16.1% 
(55) 

15.8% 
(31) 

9.4% 
(10) 

5.4% 
(5) 

11.2% 
(26) 

Note: Numbers in bracket refers to the numbers of municipalities. 

2.2. Data 

We first focused on the spatiotemporal distributions of shrinking cities in Japan. As population 
loss is the main characteristic of city shrinkage, as the dependent variable, we used the population 
change ratio from 2005 to 2010, and 2010 to 2015, derived from National Census data downloaded 
from the portal site of the Official Statistics of Japan.  

The age structure, economy level, and social development level were found to be vitally essential 
issues for urban regeneration, which are directly connected with urban shrinking. Multiple 
commonly used demographic, economic, and social indicators were selected as the explanatory 
variables for analysis (Table 4) [15,33,34]. The data were downloaded and derived from Statistical 
Observations of Municipalities from 2006 to 2016. The explanatory variables consisted of 15 variables 
from 3 urban sub-systems. In the demographic sub-systems, TP refers to the size of a municipality; 
UPR, APR, and FPR refer to the age and population structure; in the economic sub-systems, CT and 
GR refer to the income of local resident and local government, respectively; ECR refers to the industry 
changes; STIER and STIWR refer to the local industry structure; UR refers to local poverty; in the 
social sub-systems, SN refers to the local education resources; HN and DN refer to the local medical 
level; and NEF and NNC refer to the local social welfare level, respectively. 

Table 4. Classification, name, and description for explanatory variables.  

Classification Name Description 

Demographic indexes 
TP Total population (people) 

UPR Underage population ratio (age < 15 years) 
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APR Ageing population ratio (age ≥ 65 years) 
FPR Foreign population ratio 

Economic indexes 

CT Per capita taxes (JPY/people) 
GR Government revenue (million JPY) 

ECR Numbers of enterprise change ratio 
STIER Secondary and tertiary industry enterprises ratio 
STIWR Secondary and tertiary industry workers ratio 

UR Unemployment rate 

Social indexes 

SN Number of primary and secondary schools 
HN Number of hospitals and clinics 
DN Number of doctors (per 10,000 people) 
NEF Number of elderly facilities 
NNC Number of nursery centers 

Note: The variables are computed at later years (for example, TP is the total population in year 2015 
for the study period from 2010 to 2015). 

2.3. Methods 

In this study, we first conducted spatial autocorrelation analysis to validate the spatial 
dependence of population change. Then, OLS and exploratory regressions were employed to identify 
correlates of city shrinkage. After that, three types of regression analyses, including OLS, GWR, and 
SGWR, were conducted to reveal the correlates of city shrinkage (Figure 2).  

  
Figure 2. Research flow chart (OLS: ordinary least squares; GWR: geographically weighted regression; 
SGWR: semiparametric geographically weighted regression). 

2.3.1. Spatial Autocorrelation Analysis 

As nearby objects are more correlated with each other than distant objects [35], the distribution 
of shrinking cities is more likely to be concentrated in space. Spatial autocorrelation analysis, 
including the global Moran’s I statistics and local Moran's I statistics were performed to reveal the 
spatial dependence of population change. Global Moran’s I, which is a rational number ranging from 
–1 to 1 after normalized variance was selected for spatial autocorrelation analysis for its widely used 
to reveal the global spatial autocorrelation. Global Moran’s I > 0 indicates positive spatial correlation 
where the larger the value, the stronger the spatial correlation; global Moran’s I < 0 indicates negative 
spatial correlation, where the smaller the value, the larger the spatial difference; and global Moran's 
I = 0 indicates a random space. In this study, a larger absolute value indicates greater spatial 
agglomeration (positive value) or differentiation (negative value) of population change. 

However, the global Moran’s I can only reflect spatial autocorrelation but does not identify the 
location and type of spatial clusters [36]. The Local Moran’s I can be applied to identify the local 
differences and similarities among neighboring municipalities. The local indicators of spatial 

National census data in 2005, 2010, 2015National census data in 2005, 2010, 2015National census data in 2005, 2010, 2015

Population change ratio Demography factors
Economy factors

Social factors Explanatory 
variables

Dependent
variable

Global/local Moran’s I statistics

Spatial autocorrelation analysis

OLS regression

Exploratory regression Variables
selection

OLS models GWR models SGWR models

Model comparation Spatiotemporal analysis of 
city shrinkage determinants

Spatial dependence validation 
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association (LISA) can be determined using local Moran's I [37]. Generally, four clustering/outlier 
types are classified using the local Moran’s I including (1) high-high cluster (HH), (2) high-low outlier 
(HL), (3) low-high outlier (LH), and (4) low-low outlier (LL). HH and LL reflect positive spatial 
correlation; HL and LH reflect negative spatial correlation. Therefore, both the global and local 
Moran’s I statistics for analyzing the correlation of population variation between each municipality. 
In this study, HH refers to an above-average rate of population increase in a local municipality, with 
the same characteristic found in its neighboring cities. HL refers to an above-average rate of 
population increase in a local municipality, whereas the population decreases in the neighboring 
cities. LH refers to a shrinkage in a local municipality with above-average rates of population 
increases in the neighboring municipalities. LL refers to population shrinkage in a local municipality 
with its neighboring cities showing the same characteristics.  

Meanwhile, the spatial weight matrix can significant affect the results of Moran's I. We selected 
the k nearest neighbors weight matrix, which set each municipality will have exactly the specified 
number of neighbors. As a prefecture in Japan has an average of 36 municipalities, the number of 
neighbors k was select as 40. We used ArcGIS 10.3 (Esri, Redlands, CA, USA) to generate the spatial 
weight matrix and calculate the global/local Moran’s I, which demonstrated the spatial relationship 
between the population change in a municipality and its neighbors in Japan. 

2.3.2. Screening Explanatory Variables 

After testing the spatial autocorrelation of population change, multivariate OLS regression and 
exploratory regression were conducted to test the relationship between population change and 
selected explanatory variables. All the variables were first normalized to ensure the variables were 
normally distribution or approximated normal distribution. Then, to eliminate the multicollinearity 
of the data, which could produce a distorted or inaccurate model, the variance inflation factor (VIF) 
for each explanatory variable was calculated, and the variables with a VIF value over 5 were 
sequentially excluded from the final model until no more VIF > 5 were found [38]. In this procedure, 
shown in Tables A1 and A2 (Appendix), 8 explanatory variables including TP, CT, GR, STIER, SN, 
HN, DN, and NEF, which had significant multicollinearity with the population change, were 
therefore excluded from the final model. Then, exploratory regression was conducted to exclude the 
non-significant variables of the population change at a 95% confidence level. In this procedure, UR 
was excluded. The results showed that no local multicollinearity existed among the remaining 
variables. Therefore, after removing the variables redundancy or non-significance, 6 explanatory 
variables, including UPR, APR, FPR, ECR, STIWR, and NNC, were screened out for both study 
periods, which suggests the general correlates of city shrinkage remain unchanged. After screening 
out the variables, the OLS model was reformulated with the 6 explanatory variables. These variables 
were then used for the corresponding GWR and SGWR models. 

2.3.3. Semiparametric Geographically Weighted Regression 

Multivariate OLS regression was developed using ArcGIS 10.3 to identify the relationship 
between the population change and all the explanatory variables from three systems. The traditional 
OLS model considers all explanatory variables are global and spatially stationary. An OLS model can 
be expressed as follows:  𝑦௜ = 𝛽଴ +෍𝛽௝𝑥௝ + 𝜀௜ (1) 

where 𝛽଴  represents the intercept, 𝛽௝  represents the regression coefficient for the explanatory 

variable 𝑥௝, and ε୧ represents the error term. 
However, in this study, due to the spatial differences in demographics, economy, and society, 

the GWR model, which considers spatial heterogeneity, could be a better model for reducing the error 
caused by spatial non-stationary. The GWR model is an extension of the OLS regression model that 
has been applied to multidisciplinary studies such as meteorology, sociology, and economics, to 
effectively reveal the spatial heterogeneity. In a GWR model, spatial heterogeneity is investigated in 
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the model fit where the spatial locations of data are incorporated. A local linear regression model for 
each feature in the dataset was calibrated using a different weighting of observations [39]. The 
parameter in this model is a single function that represents the spatial location that is derived by 
weighting all neighboring observations based on a decreasing function of distance [40]. A GWR 
model can be expressed as: 𝑦௜ = 𝛽଴ሺ𝑢௜ , 𝑣௜ሻ+෍ 𝛽௝ሺ𝑢௜ , 𝑣௜ሻ௣௝ୀଵ 𝑥௜௝ + 𝜀௜ (2) 

where ሺ𝑢௜ , 𝑣௜ሻ represents the coordinates of location i, 𝛽଴ሺ𝑢௜ , 𝑣௜ሻ represents the intercept, 𝛽௝ሺ𝑢௜ ,𝑣௜ሻ 
represents the local regression coefficient for the explanatory variable 𝑥௝ at location i, and represents 
the error term. They are estimated using the local weighted least squares method. 

A GWR model assumes all the factors are non-stationary and focuses on the differences in the 
spatial effect of the variables. However, due to population change in Japan being caused by complex 
factors, the possibility always exists that several global explanatory variables could contribute to 
explain the population change in Japan. The semiparametric geographically weighted regression 
(SGWR) model, which is an extension of traditional GWR model, can be applied to meet the 
requirements of the model and allow some parameters to be global variables and others to be local 
[19,23,41]. An SGWR model can be expressed as follows: 𝑦௜ =෍ 𝛽௞௤௞ୀଵ 𝑥௞ +෍ 𝛽௝ሺ𝑢௜ , 𝑣௜ሻ௣௝ୀଵ 𝑥௜௝ + 𝜀௜ (3) 

where k represents the global variables and j represents the local variables. We applied the SGWR 
model to investigate the spatial impact factors of population change in Japan, using an adaptive bi-
square kernel type to calculate the weight matrix. We used an adaptive rather than a fixed kernel 
because regression points (the center of each municipalities) were irregularly scattered over the study 
area, and adaptive kernel allows the dataset to be large enough for each local regression [42]. 

In a GWR model, the accuracy is profoundly affected by the bandwidth, which refers to the 
number of nearest neighbors of municipality i. The corrected Akaike information criterion (AICc) 
method [43, 44] and the cross-validation (CV) method are two methods often applied to determine 
the bandwidth. Compared with the CV method, the AICc method can quickly and effectively solve 
the problem considering the differences in the degree of freedom of different models. Therefore, in 
this study, the smallest AICc was selected for the appropriate bandwidth determination [19]. The 
selection of the optimal SGWR model with the smallest AICc based on an iterative process was 
processed using GWR 4 software[45]. 

3. Results and Discussion 

3.1. Spatial Autocorrelation Analysis of Population Change Patterns 

In this study, the population change in Japan from 2005 to 2010, and 2010 to 2015 was confirmed 
to be positive spatially clustered with the global Moran’s I for the two study periods of 0.462 and 
0.615, respectively (Table 5). To further understand the spatial features of population change, local 
Moran’s I was applied. The LISA maps of population change shown in Figure 3 reveal the local spatial 
clusters of the population change. During the two study periods, many municipalities showed spatial 
clustering characteristics. The results show the LL cluster areas were concentrated in Hokkaido, 
Tohoku, Shikoku, and Kinki, whereas the HH cluster areas concentrated around the Tokyo city 
cluster in the central area of Kanto, the Osaka city cluster in the southwest of Kinki, Nagoya city 
cluster in the southwest of Chubu, and the Fukuoka city cluster in the north of Kyushu. Outlier LH 
areas existed around the Tokyo city cluster and Nagoya city cluster, which indicate that city 
shrinkage was already occurring in the suburban areas around large urban agglomerations. From 
2010 to 2015, the number of cities in the HH and LL clusters increased by 54 and 15, respectively, 
compared with the period from 2005 to 2010. These results revealed a significant correlation between 
city shrinkage and spatial distribution and the increasing city shrinkage phenomenon.  
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Through the global/local Moran’s I statistics, the results indicated the population change 
patterns were spatially autocorrelated. City clusters centered in Tokyo, Osaka, Nagoya, and Fukuoka 
demonstrated spatial agglomeration of population growth municipalities, whereas municipalities in 
Hokkaido, Tohoku, and Shikoku demonstrated the spatial agglomeration of shrinking cities. The 
unbalanced regional economic scales and urban development degree could be essential factors 
influencing population mobility, which in turn accelerates the ageing of the population and the low 
fertility in small municipalities. 

Table 5. Global Moran’s I. 

Study period Global Moran's I Z-score p-value 
2005–2010 0.462 23.10 <0.01 
2010–2015 0.615 30.67 <0.01 

 

Figure 3. The local indicators of spatial association (LISA) cluster maps of population change (HH: 
high-high cluster; HL: high-low outlier; LH: low-high outlier LL: low-low outlier) (a) from 2005 to 
2010 and (b) from 2010 to 2015. 

3.2. Regression Results 

3.2.1. Global and Local Analysis 

After screening out the variables, the global model based on the OLS regression procedure was 
reformulated using the six variables. The results revealed the intercorrelation between population 
change and municipality parameters, as shown in Table 6. 

Table 6. Municipality parameters estimated coefficient for the global model (R2,  Coefficient of 
determination: AICc: corrected Akaike information criterion). 

Study period Intercept UPR APR FPR ECR 
STIW

R 
NNC R2 

Adjusted 
R2 

AICc 

2005–2010 –3.556* 1.262* –2.907* 
0.315* 1.029* 0.040 0.855

* 
0.525 0.512 –5245.55 

2010–2015 –5.343* 2.147* –1.727* 
0.125 1.204* 0.211* 0.727

* 
0.718 0.715 –6761.06 

Note: * p < 0.05. 
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The results showed that the global model for population change from 2005 to 2010 was moderate 
(adjusted coefficient of determination (R2) = 0.512), which indicates the six parameters could explain 
the population change during 2005–2010 to a certain extent. The adjusted R2 of the global model for 
population change from 2010 to 2015 was 0.715, indicating a substantially adequate explanation of 
the population change. The results also revealed that APR had a negative coefficient value, which 
suggests the ageing population ratio has the most significant adverse effect on population change 
compared with the other parameters. With high positive coefficients, UPR and ECR had significantly 
positive effects on population change compared with the other parameters. STIWR was found to be 
non-significant in the first study period, and FPR was found to be non-significant in the second study 
period. Comparably, the estimated coefficient of UPR increased, indicating an increasing effect of low 
fertility on city shrinkage. Conversely, the effect of ageing population was found to decrease as the 
absolute value of APR decreased. 

Considering the spatial heterogeneity and spatial autocorrelation of population change, GWR 
was applied to fit a local population change model. Figure 4 shows the parameter coefficients for the 
local model of the two study periods. Compared with the first study period, the variation range and 
the number of mild outliers of the parameters increased. The effects of the parameters could be 
positive or negative for different regions. Figure 5 shows the variation in parameters’ t-values for the 
local model. Most observations of UPR, APR, ECR, and NNC reached the 0.05 significance level for 
the first study period, whereas most observations of UPR, APR, and ECR reached the 0.05 significance 
level for the second study period. 

 

Figure 4. Parameters estimated coefficients for the local model (a) from 2005 to 2010 and (b) from 2010 
to 2015. 

 
Figure 5. The t-value of the parameters for the local model (a) from 2005 to 2010 and (b) from 2010 
to 2015. 
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3.2.2. SGWR Model Analysis 

Considering the global model explained the population change to some degree whereas the local 
model improved the accuracy, the SGWR models were developed to consider both the spatial 
stationarity and non-stationarity for the parameters affecting population change. An iterative process 
was used to determine whether a parameter was a global or local variable. The most fitted SGWR 
model was based on the AICc [43,46],;the model with the smallest AICc value was selected, which 
refers to the best fitting result. In this procedure, FPR, STIWR, and NNC were selected as global 
variables, and UPR, APR, and ECR remained local variables for both models (Table 7).  

Table 7. Determination of parameters for the SGWR models. 

Study Period 
Explanatory Variable 

UPR APR FPR ECR STIWR NNC 

2005–2010 Local Local Global Local Global Global 

2010–2015 Local Local Global Local Global Global 

As shown in Table 8, the adjusted R2 for the two local models were 0.528 and 0.815, respectively, 
which are higher than the global models, suggesting that considering the parameter influences to be 
spatially non-stationary is more representative than considering them to be spatially stationary. The 
fitting results of the SGWR model improved compared with the global and local models. The R2 of 
the SGWR model was the largest compared to the other two models. The AICc value of the SGWR 
model for the first study period decreased by 47.40, and 10.05 compared with the OLS and GWR 
models, respectively. For the second study period, the AICc value decreased by 527.43 and 111.89, 
respectively. Combined with the value of the bandwidth and residual square, we found that the 
SGWR model was optimal for both study periods, which indicates the population change in Japan 
displayed spatially stationary and non-stationary parameters.  

Figure 6 shows the local R2 of the SGWR model. For the first study period from 2005 to 2010, the 
values of local R2 for Shikoku, Chugoku, Kinki, and Chubu were relatively larger, especially in and 
around the Osaka city cluster. However, the values of local R2 for Tohoku and Hokkaido were 
relatively lower, which can be explained by the many municipalities in the two regions experiencing 
mergers during the first study period. From 1999 to 2010, a wave of merger activity occurred called 
‘the great Heisei mergers’ as a response to the low fertility and ageing population. The number of 
municipalities decreased from 2521 in 2005 to 1727 in 2010. As the merge between municipalities led 
to a population explosion for those municipalities, the interpretation of the SGWR model for this 
period was affected, producing a moderate result (adjusted R2 = 0.532). However, since 2010, the 
municipality mergers ceased and little change occurred in the administration districts from 2010 to 
2015, explaining the high value of local R2 in most regions in Japan during this period.  

Table 8. Accuracy evaluation for the global, local, and SGWR model. 

Parameter 
2005–2010 2010–2015 

OLS GWR SGWR OLS GWR SGWR 

Bandwidth - 341 201 - 87 66 

Residual squares 395.17  373.21  369.09  157.46  80.94 77.27 

AICc –5245.55  –5282.90  –5292.95  –6761.06  –7176.80  –7288.49  

Adjusted R2 0.512 0.528 0.532 0.715 0.815 0.818 
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Figure 6. Local R2 based on SGWR (a) from 2005 to 2010 and (b) from 2010 to 2015. 

For UPR, APR, and ECR found to be non-stationary spatial correlates affect the population 
change, the local coefficients of each variable and the spatial characteristics of city shrinkage 
correlates were analyzed. The t-test was conducted to pick out the coefficients of the local variables 
which passed the significance level of 0.05.  

Figure 7 depicts the local coefficients of UPR from 2005 to 2010, and from 2010 to 2015, UPR had 
a significant positive effect in 1074 and 988 municipalities (p < 0.05) for the two study periods, 
respectively. The results indicated that from 2005 to 2010, the ratio of the underage population mainly 
affected the population change around Nagoya city cluster, whereas from 2010 to 2015, the underage-
population-affected areas were scattered and extended to south Kinki, east Shikoku, and the 
boundary area between Chubu and Kanto, and the north and south parts of Kyushu. UPR remained 
correlated with the population change in most parts of Hokkaido and Tohoku from 2005 to 2015. 
Different from the other countries facing city shrinkage, even countries in East Europe, city shrinkage 
is most strongly linked to demographic transition and process of an ultra-ageing society [34,47]. The 
results indicated that low fertility rate could be the key factor influencing the city shrinkage and the 
ageing population [48,49]. Since 2007, the fertility rates have continued decreasing and began to fall 
below death rates. City shrinkage in Hokkaido and Tohoku, where the underage population ratio 
was below the national average, have always been affected by low fertility rates. As the fertility rate 
continues to fall, it would become a main factor affecting the city shrinkage in the other regions.  

 

Figure 7. Local estimated coefficient of underage population ratio (a) from 2005 to 2010 and (b) from 
2010 to 2015. 
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Figure 8 shows the coefficient of the ageing population effect on population change from 2005 
to 2010 and from 2010 to 2015. In the first period from 2005 to 2010, only 10 municipalities did not 
pass the significance test, whereas the other municipalities were found to have a negative correlation 
between UPR and population change, which suggests the ageing population is correlated with 
driving city shrinkage nationwide. However, the estimated coefficient of UPR varied between 
regions. Kyushu and Kanto were the regions with the largest UPR estimated coefficients. The ageing 
phenomenon in Kyushu was serious, especially in the south, which has aggravated the city’s 
shrinkage. Conversely, in Kanto, centered in Tokyo, the labor force continuously migrated inward 
and the proportion of the elderly population continued to decline, which has caused urban expansion 
in the region. The city shrinkage in the distant periphery and suburban areas occurred due to the 
ageing populations and infrastructure that has become inadequate [50,51]. From 2010 to 2015, the 
area of the ageing population effect shrunk and negative coefficients were found in 935 municipalities 
mainly concentrated in Kyushu, Chubu, and Chugoku. However, positive coefficients were found in 
45 municipalities in south Tohoku and south and north Hokkaido, which could be due to the 
aggregation of the elderly population and population ageing. 

 

Figure 8. Local estimated coefficient of ageing population ratio (a) from 2005 to 2010 and (b) from 
2010 to 2015. 

Figure 9 shows the spatial distribution of the local ECR coefficient from 2005 to 2010 and from 
2010 to 2015. The local ECR coefficient was found to be spatially non-stationary, and the differences 
between the two study periods in the region varied. Generally, the economic correlates less impacted 
city shrinkage than the demographic correlates. From 2005 to 2010, the local ECR coefficient for Kanto 
was the largest, followed by Kyushu, Shikoku, and Kinki, indicating the population changes in those 
four regions were strongly correlated with the number of enterprises. However, the non-significant 
correlation in Tohoku indicated that the population changes in the region were not correlated with 
the number of enterprises. Comparatively, from 2010 to 2015, the local ECR coefficient for 81.7% of 
municipalities in Tohoku was significantly positive. The number of enterprises decreased, which was 
an essential reason for population decline and city shrinkage in the region. The results revealed that 
the changing numbers of enterprises was significantly correlated with the population change in 
several main city clusters in Japan, which are also the economic centers, including Tokyo, Osaka, and 
Fukuoka, for both periods. Urban agglomerations benefit from the increase in the number of 
enterprises, which appeals to the working population and stimulates population agglomeration and 
urban expansion[52, 53], thus leading to the population loss and city shrinkage in small cities far from 
metropolises. 
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Figure 9. Local estimated coefficient of enterprise change ratio (a) from 2005 to 2010 and (b) from 2010 
to 2015. 

Other studies explained city shrinkage in Japan as being due to the ageing population, low 
fertility, and de-industrialization at a global level [49,54]. However, few studies focused on the 
quantitative differences of determinates that contribute to city shrinkage. As city shrinkage 
worldwide refers to the loss of population, it is a severe phenomenon accompanied by economic, 
social, and cultural decline [55,56]. As the global and local Moran’s I statistics showed spatial 
aggregation for the population change ratio, we considered the variables to have spatially stationary 
or non-stationary effects on city shrinkage in Japan, and encouraging us to explore the regional 
differences in city shrinkage from 2005 to 2015. The results revealed the spatial heterogeneity of 
shrinking cities, and showed UPR, which refers to low fertility, dominated city shrinkage in 
Hokkaido, Tohoku, and Kinki; APR, which refers to the ageing population, dominated in Chubu and 
Kyushu; and ECR had a significantly positive effect in Kanto. In the two study periods, the influence 
of the local variables in different regions were quite different. Generally, demographic indexes were 
found to be more correlated with city shrinkage in Japan, which validates that the demographic 
transition had more of an effect than economic transition. The results showed that APR have the 
largest absolute value of the estimated coefficients, which indicate ageing population could be a key 
factor influencing city shrinkage in most municipalities in Japan from 2005 to 2010, whereas low 
fertility could be the key factor influencing city shrinkage from 2010 to 2015. 

4. Conclusion and Prospects 

In this study, we developed SGWR models to capture the spatiotemporal differences in 
determinants affecting city shrinkage in Japan based on national census data from 2005 to 2015. Our 
findings are as follows: (1) City shrinkage in Japan is a serious national problem, which showed a 
significant increasing positive spatial autocorrelation; Hokkaido, Tohoku, and Shikoku had the 
largest shrinking city clusters, and this phenomenon has already occurred in suburban areas around 
the Tokyo and Nagoya city clusters. (2) Compared with traditional OLS and GWR models, the SGWR 
models, which consider spatial dependence and heterogeneity, are more interpretive in the 
explanation of city shrinkage. (3) The correlation between the demographic, economic, and social 
indexes and city shrinkage was revealed through quantitative analysis. Low fertility, ageing 
population, and industry changes, expressed by APR, UPR, and ECR, were the critical spatially non-
stationary correlates, with large estimated coefficients, affected the city shrinkage in different regions 
at different times. The findings contribute to improving our understanding of the situation and 
correlates of city shrinkage, and provide valuable information for governments and planners when 
developing effective coping strategies for city regeneration. 
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Due to low fertility and strict immigration policies in Japan [34], which mean city shrinkage may 
be an irreversible process, determining how to ensure the smart decline of city sizes is an essential 
issue [57]. The limitation of this study is that specific policies were not considered as an explanatory 
variable. Future studies are required to analyze the implementation of specific policies and their effect 
on city shrinkage, and to explore the characteristics of spatial patterns of city shrinkage in each city 
using more sophisticated data. 
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Appendix 

Table A1. Variance inflation factor (VIF) value of variables selection procedure of the model study 
period 2005 to 2010. 

Iteration TP 
UP
R 

AP
R 

FP
R 

CT GR 
EC
R 

STIE
R 

STIW
R 

U
R 

SN HN DN 
NE
F 

NN
C 

1 (keep all) 
208.
95  

3.6
2  

4.9
8  

1.2
8  

167.
45  

33.6
2  

1.2
5  

47.1
6  

2.40  
1.8
4  

12.6
1  

25.5
6  

14.1
0  

8.6
5  

4.61  

2 (remove 
CT) 

52.0
1  

2.9
8  

4.0
2  

1.2
1  

- 
32.1

0  
1.2
4  

45.6
4  

2.03  
1.3
1  

12.4
4  

25.0
0  

13.7
3  

8.2
9  

4.14  

3 (remove 
TP) 

- 
2.9
7  

4.0
1  

1.2
1  

- 
29.7

5  
1.2
4  

30.7
8  

2.02  
1.2
1  

12.4
1  

23.9
9  

13.5
0  

8.2
9  

4.09  

4 (remove 
STIER) 

- 
2.9
6  

3.9
1  

1.1
8  

- 
25.1

0  
1.2
4  

- 1.78  
1.2
1  

12.0
1  

22.8
4  

12.7
1  

7.8
7  

4.08  

5 (remove 
GR) 

- 
2.9
3  

3.9
0  

1.1
8  

- - 
1.2
4  

- 1.74  
1.2
1  

9.10  
20.0

8  
12.6

2  
7.6
6  

3.64  

6 (remove 
HN) 

- 
2.9
3  

3.7
7  

1.1
8  

- - 
1.2
1  

- 1.68  
1.2
0  

8.22  - 
10.0

8  
7.3
9  

3.62  

7 (remove 
DN) 

- 
2.9
1  

3.5
9  

1.1
8  

- - 
1.1
9  

- 1.51  
1.2
0  

6.80  - - 
6.7
0  

3.61  

8 (remove 
SN) 

- 
2.8
8  

3.5
2  

1.1
7  

- - 
1.1
8  

- 1.49  
1.2
0  

- - - 
6.0
8  

3.54  

9 (remove 
NEF) 

- 
2.8
2  

3.5
0  

1.1
6  

- - 
1.1
8  

- 1.48  
1.1
9  

- - - - 1.19  

Table A2. Variance inflation factor (VIF) value of variables selection procedure of the model study 
period 2010 to 2015. 

Iteration TP 
UP
R 

AP
R 

FP
R 

CT GR 
EC
R 

STIE
R 

STIW
R 

U
R 

SN HN DN 
NE
F 

NN
C 

1 (keep all) 
211.
51  

1.5
1  

4.5
3  

1.0
7  

169.
83  

17.7
8  

2.0
3  

48.4
1  

2.03  
1.7
2  

26.2
2  

13.5
0  

15.3
5  

10.2
4  

1.28  

2 (remove 
CT) 

42.8
0  

1.5
1  

4.4
6  

1.0
7  

- 
16.1

2  
1.1
7  

42.2
5  

1.81  
1.2
6  

11.7
5  

12.7
8  

13.1
0  

9.90  1.28  

3 (remove 
TP) 

- 
1.5
0  

4.2
8  

1.0
7  

- 
15.7

2  
1.1
5  

22.3
8  

1.77  
1.1
6  

11.4
2  

11.9
5  

13.0
2  

9.87  1.27  

4 (remove 
STIER) 

- 
1.4
8  

4.2
9  

1.0
7  

- 
15.5

3  
1.1
4  

19.7
6  

1.74  
1.1
6  

11.3
0  

11.8
4  

10.1
3  

9.75  1.27  

5 (remove 
GR) 

- 
1.4
4  

4.2
7  

1.0
7  

- - 
1.1
1  

- 1.64  
1.1
6  

10.8
0  

11.1
1  

8.02  9.46  1.26  

6 (remove 
HN) 

- 
1.3
1  

4.3
0  

1.0
7  

- - 
1.1
0  

- 1.63  
1.1
6  

8.82  - 7.31  8.84  1.26  
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7 (remove 
NEF) 

- 
1.2
8  

4.2
9  

1.0
6  

- - 
1.1
0  

- 1.62  
1.1
5  

7.13  - 6.44  - 1.25  

8 (remove 
SN) 

- 
1.2
5  

4.2
8  

1.0
6  

- - 
1.0
9  

- 1.54  
1.1
5  

- - 6.21  - 1.25  

9 (remove 
DN) 

- 
1.2
1  

4.0
8  

1.0
6  

- - 
1.0
8  

- 1.44  
1.1
4  

- - - - 1.24  
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