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Abstract: In the case of fire, surface treatment agents used in external insulation finishing methods
are substances that are vulnerable to fire. This study examined the incorporation and applicability
of expandable graphite in surface preparation mortar so that heat transfer to the surface part can
be suppressed even when the cementitious surface preparation mortar is thinly constructed in the
external insulation method. Experimental results showed that the mechanical properties of surface
preparation mortar were improved by using the fly ash and silica fume. Surface treatment materials
using expanded graphite have a characteristic of expanding when a fire occurs. It was experimentally
confirmed that incorporating expanded graphite can reduce the phenomenon of heat penetration to
the rear surface when the surface preparation mortar is exposed to high temperatures such as a flame.
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1. Introduction

It is known that buildings account for a significant proportion of worldwide energy use and CO2

emissions. This has meant that the global demand for energy efficiency calls for improvements in
the thermal performance of buildings [1,2]. External thermal insulation composite systems (ETICSs)
consisting of insulation core and decorative surface materials are quite common in new constructions
and refurbishment buildings with design-oriented goals of sustainability and energy efficiency [3].
Different types of thermal insulation materials such as expanded polystyrene (EPS) and mineral wool
are among the products that can be used in ETICS solutions. In European countries, it is reported that
most ETICS applications use EPS (82%–83%), or MW (11%–12%) [2–4]

However, the wide application of organic combustible insulation materials, such as EPS and
extruded polystyrene (XPS) foams, also induces high fire hazards. Several standards, such as ISO
(2002) 13785-2, NFPA 285, and BS 8414, have been developed to evaluate the fire safety of ETIS
containing combustible components [4–7]. In the ETICS, also known as external insulation finishing
systems (EIFSs), an external insulation method, the insulation is attached to the building envelope,
surface treatment is performed for the exterior surface of the insulation, and the surface preparation
mortar is constructed outside the insulation to protect the envelope of the insulation that may have
a weak hardness. It is widely acknowledged that the general section design of an ETICS includes
adhesives, EPS insulation material, cement, reinforcing mesh, and finishing materials [8–10]. Various
research on ETICSs is focused on the probability of fire spread, fire safety, and fire barrier influence
on ETICS reaction to fire performance. However, little knowledge is available on influence surface
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preparation mortar, reinforcing mesh, EPS thickness, and other treatment on the ETICS reaction-
to-fire performance [11–16].

The existing surface preparation mortar used in insulation construction is a cementitious surface
preparation mortar, while the envelope consists of finishing materials using an acrylic emulsion [17,18].
The goal of using cementitious surface preparation mortar in the external insulation method is to
flatten gaps or irregularities between the insulation through the plaster process after attaching the
insulation, in addition to bonding the insulation to the concrete wall. Another goal is to secure
an appropriate surface structure for the construction of the acrylic finishing material after applying the
surface preparation mortar.

Accordingly, various procedures are required for the cementitious surface preparation mortar used
in building external insulation methods. Typically, the adhesive strength level to secure the adhesive
force of the insulation, the stability of the adhesive force according to changes in outside air temperature,
and water resistance to prevent damage to the insulation due to permeation from the outside air
are required. When using cementitious surface preparation mortar with low adhesion, the primary
defect generated in the external insulation method is the reduction of the thermal conductivity of
the insulation layer due to the exfoliation of the insulation or moisture permeation. To control the
occurrence of such a defect, the bonding strength and hot and cold cycling strength of the cementitious
surface preparation mortar used in the external insulation method are specified to be 1.1 N/mm2 or
more and the water absorption coefficient to be 0.2 kg/m2 h0.5 or less (KS F 4716) [19,20].

Meanwhile, researchers have proposed various methods to improve the fire resistance performance
of the thermal insulation layer in the event of a fire in the wet external thermal insulation [21,22]. In the
wet application method of the external thermal insulation, however, the thickness of the finishing
material and the surface preparation mortar on the outer part of the insulation is approximately
3 mm. Moreover, the fire resistance of the insulation is low in the event of a fire. While materials
with a porous structure, such as lightweight insulation mortar, have the effect of suppressing heat
penetration, when considering the thickness (3 mm) of the surface preparation mortar in the external
insulation method, it is difficult to implement an appropriate surface structure during the construction
process. In the event of a fire in a building applying external insulation with ignition inside or outside
the building, heat from the flames penetrates the envelope finishing material and reaches the insulation.
It then rises above the ignition point, ignites the insulation, and rapidly spreads the fire to the outer
part along the outer wall.

Polystyrene foam insulation, in particular, the most widely used EPS material, ignites at
approximately 550 ◦C after liquefaction at 450 ◦C, with a very high fire spreadability [4,23]. Conversely,
phenol foam and urethane foam are combusted and carbonized at around 650 ◦C, with relatively low
fire spreadability compared to EPS. Between these, phenol foam is emerging as a major material in
external insulation due to its smaller gas product during combustion and superior thermal performance
to EPS. However, its use is limited due to high costs. In conclusion, to reduce the price required for
external insulation and surface preparation mortar, lower the combustion diffusion rate, and improve
construction performance, the heat penetration of the composite structure of the insulation material
and cementitious surface preparation mortar must be suppressed.

On the other hand, the commonly used supporting materials include high-density polyethylene
and styrene-butadiene-styrene, expanded graphite (EG), etc. Compared with the polymeric supporting
materials, EG has the advantages of high thermal conductivity and good adsorption ability, thus making
it a good matrix for preparing composites, such as cementitious surface preparation mortar [24,25].
EG presents the lowest cost due to limited treatments and has desirable performances of high thermal
conductivity, high stability, lower weight density, and good compatibility [26–29]. Graphite in both
micro and nano-scale sizes is known as a flame retardant because of its covalently bonded hexagonal
structure. The chemically modified EG, however, appears as a superior flame retardant benefiting
from its exfoliation potential. There are numerous examples demonstrating the excellence of EG as
a commercially available flame retardant for various matrices [30–32].
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Accordingly, this study seeks to investigate the physical-mechanical properties of the insulation
layer of the external insulation method, which consists of (1) phenol foam, (2) EPS, (3) glass fiber mesh,
and (4) EG-incorporated surface preparation mortar on the outer wall side. This study examined the
incorporation and applicability of EG in the surface preparation mortar so that heat transfer to the surface
part can be suppressed even when the cementitious surface preparation mortar is thinly constructed in
the external insulation method. In addition, this study secondarily examined the incorporation and
application of fly ash and silica fume to prevent a decrease in physical-mechanical performance due
to the incorporation of EG. Furthermore, in the surface preparation mortar strengthening process, in
which the material is attached before applying the surface preparation mortar to the outer part of the
insulation, glass fiber mesh is required in common to prevent cracking and to increase tensile strength.
After attaching the mesh, the EG-incorporated surface preparation mortar was applied to the outer
part of the insulation formed by the two-stage structure of phenol foam and EPS and exposed to the
flame to evaluate the combustion characteristics.

2. Materials and Methods

2.1. Experimental Materials-Surface Preparation Mortar

The cement used in this study was one type of ordinary Portland cement (OPC), with a specific
gravity of 3.15. The chemical properties of the OPC are shown in Tables 1 and 2 below. The physical
properties of the OPC are shown in Table 2. Table 3 summarizes the granularity and composition of
aggregates used in the surface preparation mortar. For the surface preparation mortar, a half-liquid
paste is prepared in which an emulsified acrylic resin and aggregate are incorporated, into which
cement is then incorporated. Table 4 shows the physical properties of the acrylic resin used in the
emulsified acrylic resin. The emulsion added to the acrylic resin consisted of a moisturizer, a thickener,
and an antifoaming agent. The composition of the emulsified acrylic resin used as a binder with cement
is shown in Table 5.

Table 1. Chemical composition of ordinary Portland cement (unit: wt%).

SiO2 Al2O3 CaO MgO SO3 K2O Na2O Fe2O3

21.09 4.84 63.85 3.32 3.09 1.13 0.29 2.39

Table 2. Physical properties of ordinary Portland cement.

Density
(20 ◦C)

Blaine Fineness
Specific Surface

Area (cm2/g)

Setting Time Compressive Strength of Mortar (MPa)

Initial Set
(hour)

Final Set
(hour) 3 days 7 days 28 days

3.15 g/cm3 3400 4 7 20 23 38

Table 3. Composition of dolomite aggregate.

Size (mm) 0.6~0.85 0.25~0.6 0.1~0.25 0.075~0.1

Rate (%) 19.74 40.78 13.16 26.32

Table 4. Specification of acrylic resin.

Color Solid Content (%) Viscosity (mPa.S) pH (20 ◦C)

White 48 102 9.0
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Table 5. Composition of emulsified acrylic resin (unit: wt%).

Acrylic Resin Butyl Carbitol Antifoaming Agent Ethylene Glycol Methyl Cellulose

93.86 3.25 0.36 1.44 1.09

EG was used to provide expandability of the surface preparation mortar. Table 6 below shows
the properties of EG used in this experiment. EG is primarily used as a flame retardant; voids are
generated due to the expansion of carbon interlayer bonds during combustion in organic materials,
and the material can also suppress heat transfer. The EG used in this study has a particle size of 173 µm
and an expansion rate of 100%–250%. In addition, a foaming start temperature was used 180–200 ◦C.

The glass fiber mesh is attached before applying the surface preparation mortar to the outer part of
the insulation in the surface preparation mortar strengthening process. This is used to prevent cracking
and increase tensile strength during the hardening of the surface preparation mortar. The glass fiber
serves as a protective layer at the outer part of the insulation. This study used the glass fiber mesh of
900 MPa of tensile strength. Table 7 shows the physical properties of the glass fiber mesh. Meanwhile,
fly ash and silica fume were used as the main materials for the admixtures of the background surface
preparation mortar. The main physical properties are shown in Table 8 below.

Table 6. Specification of expandable graphite.

Carbon Content (wt%) Expansion Rate (%) Starting Temperature (◦C) Particle Size (µm)

92 100~250 200~250 173

Table 7. Physical properties of glass fiber mesh.

Moisture Regain (%) Density (g/cm3) Loss of Ignition (%) Tensile Strenth (MPa) Mesh Size (mm)

<0.06 2.54 0.7 ± 0.15 900 4

Table 8. Specification of fly ash and silica fume.

Type Fly Ash Silica Fume

SiO2 41.20% 95.90%
Al2O3 14.70% 0.00%
CaO 16.00% 1.01%
MgO 1.36% 0.09%
K2O 2.38% 0.44%

Na2O 0.61% 0.00%
Fe2O3 18.10% 0.18%
SO3 1.03% 0.11%

Loss of ignition 1.60% 0.70%
Density (g/cm3) 2.2 2.1

Blain (g/cm3) 2800 150,000~250,000

2.2. Test Specimen

Finally, the insulation used in this study comprised a combination of phenol foam and EPS,
while the insulation test specimen consisted of 30 mm of phenol foam and 60 mm of EPS. On the surface
of the phenol foam, a thermal insulation structure was fabricated using surface preparation mortar
reinforced with the glass fiber mesh. Table 9 below shows the physical properties of the insulation
material used in the insulation specimen.
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Table 9. Specification of insulation.

Type Phenol Foam EPS

Color Pink White
Thermal Conductivity (Kcal.m.K) 0.019 0.036

Density (kg/cm3) 36 30
Flexural Strength (Mpa) 23.3 35

Material Phenol Styrene

3. Experiment Outline

3.1. Evaluation Items

This experiment proceeded in two steps. Firstly, the reduction in strength was evaluated after
incorporating the EG in the cementitious surface preparation mortar. To compensate for the reduction
in strength caused by the incorporation of the EG, fly ash and silica fume were incorporated to improve
the strength performance. Secondly, the cementitious surface preparation mortar was applied to the
outer part of the insulation, after which the temperature of the insulation was measured according to
the exposure time to the flame to evaluate the characteristics of the fire-delayed surface preparation
mortar. Table 10 below shows the experimental procedure.

Table 10. Experiment process.

Experiment Step Evaluation Index

(1) Characteristics of graphite incorporation
Adhesion in tension

Freeze thawing
Water absorption Coefficient

(2) Fly ash and silica fume incorporation to improve performance
Adhesion in tension

Freeze thawing
Water absorption Coefficient

(3) Characteristics of graphite incorporation
Adhesion in tension

Freeze thawing
Water absorption Coefficient

(4) Characteristics of heat transfer delay Temperature Changing
Expanded depth

3.2. Surface Preparation Mortar Formulation

Table 11 below shows the formulation of surface preparation mortar used in this research and
development. A half-liquid paste in which the acrylic emulsion and aggregate were incorporated was
prepared, after which the cement was incorporated. The fly ash and silica fume were used to improve
the physiodynamic performance, after which the surface preparation mortar was formulated using EG
as a flame retardant.

Table 11. Experimental factors and levels in this study (unit: g).

Specimen Sand Fly Ash Silica
Fume

Expandable
Graphite Emulsion Methyl

Cellulose Water OPC

Plain 1140 0 0 0

180 6 280

2000
EG05 1083 57 2000
EG10 1026 114 2000
EG15 969 171 2000
EG20 912 228 2000
F05 1083 57 0 0 2000
F10 1026 114 0 0 2000
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Table 11. Cont.

Specimen Sand Fly Ash Silica
Fume

Expandable
Graphite Emulsion Methyl

Cellulose Water OPC

F15 969 171 0 0

180 6 280

2000
F20 912 228 0 0 2000

F10S1 1014.6 114 11.4 0 2000
F10S3 991.8 114 34.2 0 2000
F10S5 969 114 57 0 2000

FSEG05 934.8 114 34.2 57 2000
FSEG10 877.8 114 34.2 114 2000
FSEG15 820.8 114 34.2 171 2000
FSEG20 763.8 114 34.2 228 2000

Abbreviations: F—Fly ash, S—Silicafume, EG—expandable graphite.

3.3. Experimental Configuration

3.3.1. Bonding Strength

For the bonding strength test of the test specimen according to the formulation, 70 mm × 70 mm
specimens were prepared and subjected to standard curing under RH 60% and 20 ± 2 ◦C according to
KS F 4716, after which the bonding strength at 14 days of age was measured. Figure 1 below shows the
bonding strength test specimen [19,20].
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Figure 1. Schema of test and specimen: (a) bonding strength test; (b) water absorption test.

3.3.2. Water Absorption Coefficient

The water absorption coefficient is a proportional coefficient between the water absorption per
area of material (kg/m2) and the time (

√
t). To measure the water absorption coefficient, a test specimen

was prepared according to the KS F 4716 standard. For this purpose, a 3 mm surface preparation mortar
was applied on the surface of a circular test specimen with a diameter of 150 mm and a thickness of
40 mm. The water absorption coefficient of the produced test specimen was measured according to KS
F 2609. The amount of absorption per area over time when one side of the material is in contact with
water is as follows [33,34]

m = w·
√

t (1)

where, m: water absorption per unit area (kg/m2), w: water absorption coefficient (kg/m2 0.5),
and t: time (h)

3.3.3. Hot and Cold Cycling Test

In the hot and cold cycling test of the surface preparation mortar, a mortar test specimen of
70 mm × 70 mm × 20 mm was prepared according to KS F 4716, after which the surface preparation
mortar was applied at 3 mm to the outer part. Firstly, the specimen was immersed in water of 20 ± 2 ◦C
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for 18 h, immediately cooled for 3 h in a constant temperature chamber of −20 ± 3 ◦C, and then heated
for 3 h in another constant temperature chamber of 50 ± 3 ◦C. Twenty-four hours of the above process
was set as one cycle, and the bonding strength was measured after 10 cycles.

3.3.4. Flame Exposure Test

To evaluate the characteristics of the insulation surface due to the flame exposure of the surface
preparation mortar, the prepared insulation of the test specimen was adhered with 60 mm of EPS and
30 mm of phenol foam, after which it was cut at a width of 15 cm and height of 50 cm. Subsequently,
the glass fiber mesh was applied to the outer part of the phenol foam and 3 mm of the surface
preparation mortar was applied, thus completing the surface part. EPS ignites at approximately
550 ◦C after liquefaction at 450 ◦C, with a high fire spreadability [4,23]. Conversely, phenol foam and
urethane foam are combusted and carbonized at around 650 ◦C, with relatively low fire spreadability
compared to EPS. The specimen surface was then exposed to a 700 ◦C flame for 15 min at a distance
of 70 mm. A thermocouple was installed in each of the EPSs and phenol foams using a K-type
thermocouple, and the temperature change at each point after exposure to the flame for 15 min was
measured. After 15 min of flame exposure, the expansion thickness of the surface preparation mortar
was measured at room temperature. Figure 2 shows the cross-section of the specimen in the flame
exposure test.
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4. Experimental Results and Discussion

4.1. Bonding Strength

Figure 3 shows the results of the bonding strength test. The minimum bonding strength required
in KS F 4716 is 1.1 N/mm2; the plain bonding strength was approximately 0.4 N/mm2 at an age of
one day and 1.8 N/mm2 at 14 days. When incorporating the EG in plain, the bonding strength at an
age of one day with a 5% incorporation was approximately 0.2 N/mm2 and it reached 1.1 N/mm2 at
14 days. However, when incorporating more than 10% EG, it was impossible to measure the strength
due to adhesion loss at the age of one day. At 14 days of age, the adhesion was below the standard
strength. EG particles are non-hydrated carbon materials, existing only as physical fillers during the
hydration process. Consequently, the surface preparation mortar lowers the anchoring of the surface
part and exists as an impurity in the generation of the hydration material, thus reducing the strength.
When the fly ash was incorporated into the surface preparation mortar at 20%, the bonding strength
at the age of one day was 0.6 N/mm2. At 10% fly ash and 1%, 3%, and 5% silica fume, the bonding
strength increased to 0.7 N/mm2 at one day old, which was slightly higher than that of the fly ash
incorporation alone. At 14 days, the maximum strength of the test specimen containing only fly
ash was approximately 2.4 N/mm2; when silica fume was incorporated at 3%, however, the bonding
strength was 2.9 N/mm2. The bonding strength at 5% substitution of silica fume was not significantly
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different from that of a 3% substitution of silica fume. The circular particles of fly ash and silica fume
are also considered to improve strength through anchoring, which enables the surface preparation
mortar to tighten the vulnerable microspaces of the concrete interface [35]. When incorporating EG in
the formulation containing 15% fly ash and 3% silica fume, the 1-day bonding strength and 14-day
bonding strength gradually decreased as the incorporation rate increased. However, all formulations
exhibited strength greater than 1.1 N/mm2 at 14 days of age.
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When incorporating more than 15% of EG, a lower bonding strength than the plain was shown.
When incorporating EG, the performance fell below KS standard due to the decrease in strength;
however, by mixing fly ash and silica fume, it was possible to increase the strength of the surface
preparation mortar with improved physical performance similar to that of the existing surface
preparation mortar up to a 10% incorporation rate of EG. The bonding strength test confirmed that
the incorporation of EG affects the reduction in bond strength of the surface preparation mortar and
that the incorporation of silica fume and fly ash supplements the bonding strength of the surface
preparation mortar.

4.2. Bonding Strength After Hot and Cold Cycling

Figure 4 is a graph of the bonding strength of the surface preparation mortar after 10 days of
hot and cold cycling. The cementitious surface preparation mortar used in the external insulation
method is installed on the outer part of the insulation; thus, its strength decreases due to expansion and
contraction owing to changes in the outside air temperature. When EG is incorporated, the bonding
strength decreased as the incorporation rate increased. Even at the lowest incorporation rate of 5%,
the exhibited strength of 0.6 N/mm2 was lower than the standard strength, making it impossible to use
as a surface preparation mortar. Meanwhile, incorporating fly ash resulted in higher bonding strength
than plain, increasing to 1.4 N/mm2 at 15% substitution. When 15% of fly ash was incorporated with 1%
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silica fume, the bonding strength was 1.6 N/mm2 or more, confirming an improvement in performance.
When both the fly ash and silica fume were incorporated in the surface preparation mortar and the
EG was substituted at 5%, the bonding strength was 1.3 N/mm2. For plain, when 5% of EG was
substituted, the reduction in bonding strength was about 46%. However, for the surface preparation
mortar improved with silica fume and fly ash, when 5% of EG was substituted, the bonding strength
reduction was about 34%. When incorporating fly ash and silica fume, the hydration structure is
tightened and the anchoring effect of adhesion interface is enhanced, thus suppressing the decrease in
strength when incorporating EG in hot and cold cycling [36].
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4.3. Water Absorption Coefficient

Figure 5 shows the water absorption coefficient measurements of the surface preparation mortar.
The plain water absorption coefficient was 0.07 kg/m2 h0.5, which is much lower than the KS
4716-required water absorption coefficient of 0.2 kg/m2 h0.5. When 5% of EG is incorporated, the water
absorption coefficient is approximately twice that of plain. Furthermore, the coefficient was 0.25 kg/m2

h0.5 when incorporating 15% EG, higher than the KS standard water absorption coefficient. To reduce the
water absorption coefficient, the incorporation of fly ash was minimal at 10%, and when incorporating
15% fly ash or more, the water absorption coefficient was higher than plain. When incorporating silica
fume for 15% fly ash, the water absorption coefficient decreased as the incorporation rate of silica fume
increased. Here, when incorporating the EG into the surface preparation mortar improved with 15%
fly ash and 3% silica fume, the water absorption coefficient increased as the incorporation rate of the
EG increased. From 15% of EG incorporation, however, the water absorption coefficient exceeded
0.1 kg/m2 h0.5.
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Figure 5. Water absorption coefficient: (a) expandable graphite; (b) fly ash; (c) fly ash + silica fume;
(d) fly ash + silica fume + expanded graphite.

In terms of the water absorption coefficient of the surface preparation mortar, permeability was
found to increase above a certain incorporation rate in the case of fly ash, which has lower fineness
than cement. Silica fume, which has higher fineness than cement, is considered to be effective in
suppressing water permeability due to the reduction of micropores when the fineness is 150,000 g/cm3

or less (i.e., 0.1 µm or less). However, as the particle size of the EG is 178 µm, which is larger than
the cement particles, and does not have a hydration reaction, it is considered that the particle filling
properties are reduced.

4.4. Flame Exposure Surface Characteristics

Table 12 shows the measurements of the temperature change of the external insulation system
exposed to flame for 15 min and the surface expansion thickness of the surface preparation mortar.
For plain, the internal temperature of the phenol foam rose to 750 ◦C, higher than the flame
temperature. This temperature rise is attributed to the phenol foam being burned by the external
flame. The temperature rose to 600 ◦C at the rear of the phenol foam, and then the EPS layer collapsed.
In FSEG05 and FSEG10, while the central temperature of the phenol foam rose to the carbonization
temperature, the temperature of the rear part was maintained below 450 ◦C, the temperature before
thermal decomposition of EPS. Consequently, the EPS layer did not collapse. The surface preparation
mortar incorporating the EG appeared to have a carbide layer with an expanded surface area of
approximately 8 to 10 mm when contacting the external flame. Figure 6 shows the insulation finish
surface after exposure to the flame. When using a general surface preparation mortar, the surface
preparation mortar of the surface was lost due to the flame, thus exposing the insulation surface.
As a result, the phenol foam at the rear surface was burned. However, the surface preparation mortar
using the EG was maintained without losing the surface part, thereby keeping the insulation at the
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rear from becoming exposed. The carbonized layer formed by the EG was found to be able to suppress
the combustion of phenol foam at the outer part of the insulation.

Table 12. The temperature change of the insulation system and expanded depth of surface preparation
mortars after 15 min of flame exposure.

Specimen Flame Thermo Couple-1 Thermo Couple-2 Expanded Depth of Surface
Preparation Mortars

Plain 700 ◦C 750 ◦C 600 ◦C 0
FSEG05 700 ◦C 670 ◦C 430 ◦C 8 mm
FSEG10 700 ◦C 650 ◦C 400 ◦C 10 mm
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5. Conclusions

The results of the experimental evaluation of the characteristics of cementitious surface preparation
mortar incorporating fly ash, silica fume, and EG to improve the performance of the surface preparation
mortar of wet external insulation and the insulation finish are summarized as follows. The surface
preparation mortar used in the exterior insulation finishing methods is a material vulnerable to fire
due to its thin finish and combustion, which causes the surface to rapidly collapse. In this study, it was
expected that the performance of the surface preparation mortar could be improved through EG with
excellent flame resistance. The experiments demonstrated that while the surface preparation mortar
using EG had problems, such as reduced bond strength and water absorption coefficient, its physical
performance was improved by using fly ash and silica fume. In the surface preparation mortar using
EG, the phenol foam on the surface of the composite insulation specimen showed no surface punctures
due to the flame, thus potentially reducing the penetration of the heat source.

For the surface preparation mortar incorporating only EG, the bonding strength, hot and
cold cycling strength, and water absorption coefficient were found to be lower than the standard.
When incorporating fly ash and silica fume, the bonding strength, hot and cold cycling strength,
and water absorption coefficient of the surface preparation mortar were improved; with fly ash
incorporation of 15% and silica fume of 3%, excellent physical properties were achieved.

When using fly ash and silica fume and up to 10% of EG was incorporated into the improved
surface preparation mortar, physical properties higher than the required performance for surface
preparation mortar were attained. Furthermore, this study experimentally confirmed that incorporating
EG can reduce the phenomenon of heat penetration to the rear surface when the surface preparation
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mortar is exposed to high temperatures, such as from a flame, thus causing the surface preparation
mortar to collapse.
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